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Field-induced spin exciton doublet splitting in dx2− y2-wave CeMIn5(M = Rh,Ir,Co)
heavy-electron superconductors
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We investigate the spin exciton modes in the superconducting dx2−y2 state of CeMIn5 heavy-fermion
compounds found at the antiferromagnetic wave vector by inelastic neutron scattering. We present a theoretical
model that explains the field dependence for both field directions. We show that the recently observed splitting
of the spin exciton doublet in CeCoIn5 into two nondegenerate modes for an in-plane field appears naturally in
this model. This is due to the spin anisotropy of g factors and quasiparticle interactions, which lead to different
resonant conditions for the dynamic susceptibility components. We predict that the splitting of the spin-resonance
doublet becomes strongly nonlinear for larger fields when the energy of both split components decreases. For a
field along the tetragonal axis, no splitting but only a broadening of the resonance is found in agreement with the
experiment.
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I. INTRODUCTION

In unconventional superconductors, quasiparticle excita-
tions that determine low-temperature thermodynamics and
response exhibit a generally anisotropic gap �(k) with possible
node lines on the Fermi surface (FS). In addition to these
single-particle excitations, collective excitations may appear.
The collective oscillation of the superfluid density or “Higgs
mode” that belongs to the singlet spin sector is difficult to
observe. In addition, collective spin triplet excitations may be
present below the gap edges that are formed as bound states
due to quasiparticle interactions. They are accessible directly
by inelastic neutron scattering (INS) and have been found in
a considerable number of unconventional superconductors. In
heavy-fermion compounds, their typical energies are in the
range of just 1 meV. The most clear-cut example belongs to
the class of 115 superconductors CeMIn5 (M = Rh, Ir, and
Co). They have attracted great interest because of coexisting
and competing antiferromagnetic (AF) and superconducting
(SC) states,1–4 and, in particular, due to the possible exis-
tence of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase in
CeCoIn5.5

The highest superconducting critical temperature of this
family appears in CeCoIn5 with Tc = 2.3 K, and the question
of the gap symmetry in these compounds has been intensely
discussed.6–8 A powerful indirect method to study the uncon-
ventional gap symmetry is provided by the spin-resonance
peak, which may appear in INS. Such a pronounced spin
resonance has been observed in CeCoIn5 and La-substituted
crystals at ωr/2�1 = 0.65 in the superconducting state by
INS where 2�1 is the main quasiparticle gap obtained from
tunneling experiments.9 It is confined to a narrow region
around the AF wave vector Q = ( 1

2 , 1
2 , 1

2 ).10 A theoretical cal-
culation of the dynamical spin response using a realistic Fermi
surface11 shows that the resonance can appear only for the
dx2−y2 -wave gap symmetry but not for the dxy -type gap because
the precondition �(k + Q) = −�(k) for a spin resonance12

is only fulfilled in the former case. Indeed, the dx2−y2 gap
symmetry has also been found by thermal conductivity7 and
specific heat measurements8 in rotating magnetic fields.

The existence of a spin exciton resonance in the SC
phase is a well-established many-body effect, which has
also been observed in other unconventional superconductors,
such as high-Tc cuprates,13 heavy-fermion metals UPd2Al3
(Refs. 14–16) and CeCu2Si2 (Refs. 17 and 18) and, in particu-
lar, in many Fe-pnictide compounds.19 The appearance of the
resonance depends sensitively on the type of unconventional
Cooper pairing and provides a powerful criterion to eliminate
certain forms of pairing when a resonance is observed. These
interpretations, however, all depend considerably on theoret-
ical phenomenological model features, such as FS nesting
properties, nodal positions, and momentum dependence of
the gap as well as the size and anisotropy of quasiparticle
interactions.

The spin exciton is a triplet excitation in the isotropic
case since it should appear as a pole or resonance in all
three components of the susceptibility tensor. In principle,
in the presence of the magnetic field, it should split into
three modes with different polarizations (left and right handed
as well as longitudinal). The field-induced splitting of spin
excitons has been predicted for the cuprates20 but, so far,
was never identified experimentally in these unconventional
superconductors.

Recently, an apparent field-induced spin exciton splitting
was found for the first time in CeCoIn5 by INS and gave
rise to an interesting debate. In Ref. 21, a splitting into two
(rather than the expected three) modes was found for the
field in the tetragonal plane, and no splitting was found for
the perpendicular field. On the other hand, no splitting was
reported in Refs. 22 and 23 for both field directions, and only
an increased broadening of the peak was observed.22 Further-
more, it has been proposed that the FFLO-type inhomogeneous
superconducting “Q phase”24–27 is due to the condensation of
the lower split-off branch of spin excitons close to the upper
critical field.21,28

In this paper, we present a theoretical analysis to address
the field splitting of the spin resonance, which was recently
observed in INS experiments21 for the first time in an
unconventional superconductor. We investigate whether the
conventional picture of this mode as a triplet bound state of
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quasiparticles can explain these observations. We clarify the
appropriate conditions for the splitting to occur for the different
field directions as well as the number and field dependence of
the split spin exciton modes.

II. THEORETICAL MODEL

The Anderson lattice model provides a convenient frame to
model the heavy quasiparticle bands in CeMIn5 realistically.29

The electronic structure of CeMIn5 has been investigated by
using tight-binding models with effective hybridization for
f electrons and c (conduction) electrons.29,30 The crystalline
electric-field (CEF) splitting is approximately three times
larger than the quasiparticle band width (W ≈ 4 meV), and
then one may restrict the model to consider the lowest
�

(1)
7 Kramers doublet of 4f states.31 This can be described

by a pseudospin σ =↑↓ degree of freedom. Choosing its
quantization axis along the ẑ direction, which is defined by the
magnetic field, the Anderson lattice model Hamiltonian for the
two hybridized conduction and localized orbitals (c,f ), which
are doubly Kramers degenerate is given by

H =
∑
kσ

εc
kσ c

†
kσ ckσ + ε

f

kσ f
†
kσ fkσ + Vk(c†kσ fkσ + H.c.)

+
∑
kk′

Uff f
†
k↑fk↑f

†
k′↓fk′↓, (1)

where c
†
kσ creates an electron with spin σ in the conduction

orbital with wave vector k = (kx,ky,kz). Furthermore, εc
kσ =

εc
k − Hc

B and ε
f

kσ = ε
f

k − Hf

B , where εc
k and ε

f

k are effective
tight-binding dispersions of the conduction band and the
renormalized dispersion for the f band, respectively. The
Zeeman splittings of bands due to the effective molecular
fields are given by Hc

B = hc
Bσz with hc

B = 1
2gcχ̃μBB and

Hf

B = h
f

Bσz with h
f

B = 1
2g

f
α χ̃μBB. Here, σz is the Pauli

matrix, B is the magnetic field, gc is the g factor for c electrons,
g

f
α is the g factor for the f electrons in direction α =‖ , ⊥ with

respect to the tetragonal plane, χ̃ is the Stoner enhancement
factor of the homogeneous susceptibility due to quasiparticle
interactions, and μB is the Bohr magneton. The anisotropy of
the g factors is obtained from that of magnetization or spin
susceptibility32 as g

f

⊥/g
f

‖ = 2.3 assuming that the f -electron
contribution in the magnetization dominates. For that reason,
we chose a small gc/g

f

‖ = 0.2. Furthermore, f
†
kσ creates the

f electron with momentum k and pseudospin σ , and Uff is
its on-site Coulomb repulsion. Finally, Vk is the hybridization
energy between the lowest 4f doublet and the conduction
bands, which implicitly contains the effect of spin orbit and
the CEF term and is taken as momentum independent.

It is known29 that, in the limit of Uff → ∞ where double
occupation of the f states is excluded, an auxiliary boson
defines the mean-field (MF) Hamiltonian as

H =
∑
kσ

εc
kσ c

†
kσ ckσ + ε̃

f

kσ f
†
kσ fkσ + Ṽk(c†kσ fkσ + H.c.)

+ λ(r2 − 1), (2)

where Ṽk = Vkr is the effective hybridization obtained by
projecting out double occupancies (r2 = 1 − nf ) and ε̃

f

kσ =
ε

f

kσ + λ.33,34 The MF Hamiltonian can be diagonalized using

the unitary transformation,

fkσ = u+,kσα+,kσ + u−,kσ α−,kσ ,
(3)

ckσ = u−,kσα+,kσ − u+,kσ α−,kσ ,

and, as a result, one can find the MF quasiparticle Hamiltonian
as

HMF =
∑
±,kσ

E±
kσα

†
±,kσ α±,kσ , + λ(r2 − 1), (4)

where the two pairs of quasiparticle bands (pairwise degener-
ate for the zero field) are given by

E±
kσ = 1

2

[
εc

kσ + ε̃
f

kσ ±
√(

εc
kσ − ε̃

f

kσ

)2 + 4Ṽ 2
k

]
, (5)

and the quasiparticle mixing amplitudes are obtained from

u2
±,kσ = 1

2

⎛
⎝1 ± εc

kσ − ε̃
f

kσ√(
εc

kσ − ε̃
f

kσ

)2 + 4Ṽ 2
k

⎞
⎠ . (6)

Using the parameters defined in Ref. 29 for the above
quasiparticle band structure, we plot the corresponding FS
in Fig. 1(a) in the absence of a magnetic field. Since the Fermi
level is located in the lower band E−

kσ , we can neglect the upper
band E+

kσ for discussing the low-energy spin excitations.
The superconducting pairs are then formed from the heavy

quasiparticles of the lower band leading to a pairing potential
in the Hamiltonian according to

HSC =
∑

k

�k(α†
−,k↑α

†
−,−k↓ + H.c.), (7)

0 1 212

1

0

0.5

ω 0

D
O

S
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FIG. 1. (Color online) (a) Fermi surface and (b) quasiparticle
density of states for a zero magnetic field, here, 2�1 = 0.56�0

and 2�2 = 1.5�0. (c) and (d) show Fermi surfaces for spin up and
spin down, respectively, in the presence of the magnetic field B0ẑ,
corresponding to Zeeman energy splitting h

f

B0
= g

f

‖ χ̃μBB0 = 0.3�0,
which is also used in subsequent figures.
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where �k is the superconducting d-wave gap function for
CeMIn5 given by

�k = �0

2
(cos kx − cos ky). (8)

By defining the new Nambu spinors as ψ̂
†
k = (φ̂†

1k,φ̂
†
2k), the

effective Hamiltonian can be written as

Heff = 1

2

∑
k

ψ̂
†
kβ̂kψ̂k. (9)

Here, φ̂
†
1k = (α†

−,k↑,α
†
−,k↓),

φ̂
†
2k = (α−,−k↑,α−,−k↓), and

β̂k =

⎡
⎢⎢⎢⎣

E−
k↑ 0 0 �k

0 E−
k↓ −�k 0

0 −�k −E−
−k↑ 0

�k 0 0 −E−
−k↓

⎤
⎥⎥⎥⎦. (10)

The propagator matrix of the conduction electrons in
terms of the Nambu spinor in the Matsubara representation
is obtained as Ĝ(k,τ ) = −〈T ψ̂k(τ )ψ̂†

k(0)〉. Using a standard
equation-of-motion method, one can find that

Ĝ(k,ωn) = (iωn − β̂k)−1. (11)

Explicitly written,

Ĝ(k,τ ) =
[

Ĝ11
0 (k,τ ) Ĝ12

0 (k,τ )

Ĝ21
0 (k,τ ) Ĝ22

0 (k,τ )

]
, (12)

where Ĝ
ςς ′
0 (k,τ ) = −〈T φ̂ςk(τ )φ̂†

ς ′k(0)〉 and ς,ς ′ = 1,2 de-
note the spinor components for ±k below Eq. (9).

A. Magnetic susceptibility

The noninteracting or bare dynamical f -electron suscepti-
bility is defined by

χll′
q (τ ) = −θ (τ )

〈
Tj l

q(τ )j l′
−q(0)

〉
, (13)

where

j l
q =

∑
kσσ ′

f
†
k+qσ M̂l

σσ ′fkσ ′ . (14)

The hybridizing 4f states are in a |�(1)
7 〉 Kramers doublet

state, and therefore, their physical moment operator (in units
of μB) can be presented by a pseudospin matrix σ according
to (l = +, − ,z)

M̂l = mlσl. (15)

Here, ml are matrix elements, and their anisotropy (m± =
m‖; mz = m⊥) may be directly obtained from that of the ex-
perimental spin susceptibility of quasiparticles32 according to
m⊥/m‖ = g

f

⊥/g
f

‖ = (χs
⊥/χs

‖ )1/2 = 2.3. Their absolute value
is not significant as it only sets the overall scale. Then, the
bare physical moment susceptibility can be expressed as

χll′(q,ω) = mlml′χ
ll′
0 (q,ω), (16)

where χll′
0 (q,ω) is the pseudospin susceptibility defined by

χll′
0 (q,ω) =

∑
k,{σ }

σ l
σσ ′σ

l′
σ1σ

′
1
u−,k+qσ u−,k+qσ ′

1
u−,kσ1

u−,kσ ′

×
∫

dω′Ĝ11
0σσ ′

1
(k + q,ν + ω′)Ĝ11

0σ1σ
′(k,ω′)

× |iν→ω+i0+ . (17)

With the definition of the new basis as ϕ̂
†
k =

(b+,1k,b+,2k,b−,2k,b−,1k) and applying the Bogoliubov trans-
formation given by

α
†
−,k↑ = v+,1kb+,1k + v−,1kb−,1k,

α−,−k↓ = −v−,1kb+,1k + v+,1kb−,1k, (18)

α
†
−,k↓ = v+,2kb+,2k − v−,2kb−,2k,

α−,−k↑ = v−,2kb+,2k + v+,2kb−,2k,

the effective Hamiltonian in Eq. (9) is diagonalized by β̂d
k =

Pkβ̂kP
−1
k , where Pk is a 4 × 4 matrix, composed of the

eigenvectors of β̂k. Here, β̂d
k is the diagonal matrix constructed

from the corresponding eigenvalues,

Ē±
1k = Ē±

2,−k = 1
2

[
E−

k↑ − E−
−k↓ ±

√
(E−

k↑ + E−
−k↓)2 + 4�2

k

]
,

(19)

and P −1
k is the matrix inverse of Pk. Furthermore,

v2
±,1k = v2

±,2,−k = 1

2

⎛
⎝1 ± E−

k↑ + E−
−k↓√

(E−
k↑ + E−

−k↓)2 + 4�2
k

⎞
⎠ .

(20)

Then, Ĝd (k,ωn) = (iωn − β̂d
k )−1 is diagonal, and we can write

Ĝ11
0σσ1

(k,ωn) =
4∑

s ′=1

γ k
σσ1s ′Ĝ

d
s ′ (k,ωn), (21)

where γ k
σσ1s ′ = P −1

kσs ′Pks ′σ1 . Thus, the pseudospin susceptibility
can now be expressed as

χll′
0 (q,ω) =

∑
k,{σ }

∑
{s}

σ l
σσ ′σ

l′
σ1σ

′
1
γ

k+q
σσ ′

1s2
γ k

σ1σ
′s ′

2

× u−,k+qσ u−,k+qσ ′
1
u−,kσ1

u−,kσ ′

×
f

(
β̂d

k+q,s2

) − f
(
β̂d

k,s ′
2

)
ω − (

β̂d
k+q,s2

− β̂d
k,s ′

2

) , (22)

where f (. . .) is the Fermi function. The combination of
prefactors in the sum of Eq. (22) is the combined coherence
factors arising from the hybridization and the superconducting
state. Finally, the Cartesian dynamic magnetic susceptibility
tensor in random-phase approximation (RPA) has the form

χ̂RPA(q,ω) = [1 − Ĵ (q)χ̂(q,ω)]−1χ̂ (q,ω), (23)

where Ĵ (q) is the effective quasiparticle interaction matrix
with nonzero elements: J zz

q = J⊥
q ,J±

q = J∓
q = J

‖
q . Similar to

the g factors, they may be anisotropic. Furthermore, their
momentum dependence can be modeled by a Lorentzian
function, which is peaked at the wave vector Q associated
with the indirect hybridization gap.35 Finally, the total dynamic
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magnetic susceptibility is obtained as the trace of the tensor
according to

χRPA(q,ω) = χzz
RPA(q,ω) + 1

2 [χ±
RPA(q,ω) + χ∓

RPA(q,ω)]. (24)

For momentum transfer q along the Q = ( 1
2 , 1

2 , 1
2 ) direction,

this is directly proportional to the dynamical f -electron
structure factor S(q,ω) observed in INS experiments. The total
magnetic scattering cross section is dominated by the magnetic
response of more localized f electrons because their atomic
form factors are larger than those of conduction electrons
for momentum transfer on the order of a reciprocal lattice
vector. Therefore, only the f -electron dynamical response is
considered here.

III. NUMERICAL RESULTS

In this section, we numerically evaluate the dynamic
magnetic susceptibility for our model of 115 systems. We
consider two different cases, namely, the magnetic field along
the ẑ direction (out of plane: c axis) and along the x̂ direction
(in plane: a axis). For clarity, we first give the relevant
physical parameters of CeCoIn5 to simplify comparison with
experimental results.

We present the superconducting quasiparticle density of
states (DOS) in Fig. 1(b). As a result of the inner and outer
parts of the Fermi sheets [see Fig. 1(a)], it showed two kind
of gaps, namely, the lower �1 and the larger �2, which were
both identified in tunneling experiments.9

For the main (lower) tunneling gap, we have 2�1 =
0.56�0 = 0.92 meV or �0 = 1.64 meV for the gap amplitude
in Eq. (8). The spin-resonance energy for the zero field is
ωr = 0.6 meV (Ref. 10) or ωr/2�1  0.65.

First, using Eq. (22), we calculate the individual compo-
nents χll′

0 (Q,ω) of the pseudospin susceptibility tensor and its
trace χ tot

0 (Q,ω) = χzz
0 (Q,ω) + 1

2 [χ±
0 (Q,ω) + χ∓

0 (Q,ω)]. For
B → 0, Fig. 2(a) shows that 1

2χ±
0 , 1

2χ∓
0 , and χzz

0 become
identical, independent of the field direction due to isotropy in
the pseudospin space. Therefore, χ tot

0 for B → 0 in Fig. 2(a)
is simply three times each of these components. This means
that the anisotropy enters only through the matrix elements
in the physical moment susceptibility of Eq. (16) discussed
below. The pseudospin susceptibility in the presence of a
magnetic field along the ẑ direction is shown in Fig. 2(b)
and for the x̂ direction in Fig. 2(c). We note, here, that, for
calculating the pseudospin susceptibility with a magnetic field
along the x̂ direction, we have applied a π/2 rotation along
the ŷ direction (x̂ → −ẑ and ẑ → x̂) and a similar one in the
k space. For the finite field and both directions, the individual
components for each field direction start to differ because of
the polarization of quasiparticle bands in the field. This leads
to a change in the nesting conditions of the FS in the presence
of a magnetic field, shown in Figs. 1(c) and 1(d), which is
different for each susceptibility component. Most importantly,
the energy dependence of χ±

0 and χ∓
0 shows a splitting in

an opposite manner increasing with field. This is due to the
chirality introduced in the response due to the splitting of
quasiparticle band energies in Eq. (22).

We also calculate the total bare physical susceptibility
χ tot(Q,ω), resulting from Eq. (16), in Fig. 3. The anisotropy

a B 0

Re 0
to

ImΧ0
to

ReΧ0

ImΧ0

Re 0

Im 0

Re 0
zz

Im 0
zz

0 1 2 30.2

0.

0.2

0.4

0.6

Ω 0

Χ
0
1

0

Reχ0
tot

Imχ0
tot

Reχ0

Imχ0

Reχ0

Imχ0

Reχ0
zz

Imχ0
zz

c B B0 x

ReΧ0
to

ImΧ0
to

ReΧ0

ImΧ0

ReΧ0

ImΧ0

ReΧ0
zz

ImΧ0
zz

0 1 2 30.2

0.

0.2

0.4

0.6

Ω 0

Χ
0
1

0

Reχ0
tot

Imχ0
tot

Reχ0

Imχ0

Reχ0

Imχ0

Reχ0
zz

Imχ0
zz

b B B0 z

ReΧ0
to

ImΧ0
to

ReΧ0

ImΧ0

ReΧ0

ImΧ0

ReΧ0
zz

ImΧ0
zz

0 1 2 30.2

0.

0.2

0.4

0.6

Ω 0

Χ
0
1

0

Reχ0
tot

Imχ0
tot

Reχ0

Imχ0

Reχ0

Imχ0

Reχ0
zz

Imχ0
zz

FIG. 2. (Color online) Individual components [χll′
0 (Q,ω)] and

total [χ tot
0 (Q,ω)] of the unperturbed pseudospin susceptibility in

(a) the absence, (b) the presence of the magnetic field along the ẑ

direction, and for (c) the magnetic field along the x̂ direction. (B0 is
the same as Fig. 1.)

enters only through the matrix elements m‖,m⊥ in the physical
moment susceptibility of Eq. (16). It is shown at zero magnetic
field (B → 0) and for the magnetic field along the ẑ and
x̂ directions (in the original axis notation), respectively. We
note that, for B → 0, the 1

2χ± and 1
2χ∓ components are still

equivalent as in Fig. 2(a) but differ from χzz due to the different
magnetic moments for in-plane and out-of-plane directions
[see Eq. (15)].

Finally, from Eq. (25), the interacting RPA susceptibility
and the spectrum of excitations given by its imaginary part
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can be calculated. In general form, we obtain

χRPA(q,ω) = m2
zχ

zz
0

1 − λzχ
zz
0

+
(
m2

x + m2
y

)
(χ±

0 + χ∓
0 ) − (

λxm
2
y + λym

2
x

)
χ±

0 χ∓
0

4 − (λx + λy)(χ±
0 + χ∓

0 ) + λxλyχ
±
0 χ∓

0

, (25)

where the interaction parameters are defined as λl = m2
l J

l
q. Explicitly, for field B in the ab plane with rotated axes (l = z =

y =‖ ,x =⊥), we have

χRPA(q,ω) = m2
‖χ

zz
0

1 − λ‖χzz
0

+ (m2
‖ + m2

⊥)(χ±
0 + χ∓

0 ) − (λ‖m2
⊥ + λ⊥m2

‖)χ±
0 χ∓

0

4 − (λ‖ + λ⊥)(χ±
0 + χ∓

0 ) + λ⊥λ‖χ±
0 χ∓

0

, (26)

and, for field B along the c direction with original axes (l =
x = y =‖ , z =⊥), one obtains

χRPA(q,ω) = m2
⊥χzz

0

1 − λ⊥χzz
0

+ m2
‖χ

±
0

2 − λ‖χ±
0

+ m2
‖χ

∓
0

2 − λ‖χ∓
0

. (27)

If the resonance condition should be satisfied for both
transverse parts in Eq. (26), then one must have m2

‖J
⊥
q ≈

m2
⊥J

‖
q . Since the CEF states and, hence, the anisotropy may

change as an effect of substitutions in the pure 115 compounds,
the resonance signatures may also change accordingly. As
a result of the sign change in the superconducting gap
function (�k+Q = −�k) at the antiferromagnetic momentum
Q, the spectral function Im χ0(Q,ω) remains zero for the
low frequencies and then shows a discontinuous jump at the
onset frequency of the particle-hole continuum, i.e., close
to ωc = min(�k+Q + �k). This is around �0  2�1, where
2�1 is the gap in the superconducting DOS in [Fig. 1(b)],
which is observed in the tunneling spectrum of CeCoIn5.9

The resonance may appear for energies ω < ωc, under the
conditions that: (i) J ll′

q Re χll′
0q(ω) = 1 and (ii) Im χll′

0q(ω) 
0 (ll′ = ±, ∓ ,zz).

We begin our discussion of numerical results by considering
the strongly anisotropic case with J⊥

Q � J
‖
Q. Only in this

case is the resonance condition satisfied for both χ±
0Q and

χ∓
0Q components and not for χzz

0Q, i.e., a resonance doublet

ReΧtot, B B0 x
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ImΧtot, B 0
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0.6

0.8
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Im χ tot, B B0 x
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Re χ tot, B 0
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FIG. 3. (Color online) The total unperturbed physical susceptibil-
ity (including matrix elements m‖,m⊥; χ tot(Q,ω) = χzz + 1

2 [χ± +
χ∓]) for the zero field and finite field along the ẑ and x̂ directions.
(B0 is the same as in Fig. 1.)

is possible as observed in the experiment. At zero magnetic
field, a single sharp peak for the degenerate resonance is
observed, which is shown in Fig. 4. By applying the magnetic
field, the bare χ±

0 ,χ∓
0 susceptibilities start to split into an

upper and lower branch [Figs. 2(b) and 2(c)], and as a
result, the two resonance peaks of the doublet are revealed
in the RPA frequency spectrum. Because of the anisotropic
interaction, these peaks are completely distinguishable for the
in-plane magnetic field showing a linear Zeeman splitting for
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FIG. 4. (Color online) RPA susceptibility in the absence and
presence of the magnetic field: (a) along the ẑ direction and (b) along
the x̂ direction. Parameters corresponding to the behavior as observed
in CeCoIn5 with g⊥

f /g
‖
f = 2.3 and J ⊥

Q = 2.6�0; J ‖
Q = 13.5�0. (B0

is the same as in Fig. 1.)
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FIG. 5. (Color online) RPA susceptibility peak positions corre-
sponding to spin-resonance energies as function of field strength:
(a) along the ẑ direction and (b) along the x̂ direction. Anisotropic
g factors with g⊥

f /g
‖
f = 2.3 and quasiparticle interaction parame-

ters J ⊥
Q = 2.6�0; J ‖

Q = 13.5�0, leading to similar behavior as in

CeCoIn5 for both field directions. Here, the maximum h
f

B = 0.7�0

corresponds to a field B = 39.7/(gl
f χ̃) in Teslas for direction

l =⊥ , ‖.

small fields. On the other hand, they merge together for the
out-of-plane field, and a single broadened peak appears whose
width increases with the field. Using the procedure described
above for various fields, we obtain the peak positions of the
RPA spectrum versus magnetic-field strength in Fig. 5. For
the field oriented along the ẑ direction [Fig. 5(a)], we always
have a single peak with a larger broadening, and by increasing
the magnetic field, the peak moves to lower energies. But for
the magnetic field applied in the x̂ direction [Fig. 5(b)], the
RPA result always shows two peaks with narrower linewidths.
When the field is increased, these peaks first show a linear
Zeeman splitting, and one of them moves to larger energies
and the other one to lower energies. Finally, at large fields,
nonlinear behavior sets in, and both start to move to lower
energies. These results are in complete qualitative agreement
with the experimental observation for CeCoIn5 (Ref. 21) at
lower fields, which so far, only have been used. It is clear
that the linear splitting observed must be modified when
larger fields closer to the upper critical fields are applied.
The absolute field scale at the maximum h

f

B = 0.7�0 is
B = 39.7/(gl

f χ̃) in Teslas for direction l =‖ , ⊥. From a

comparison with the experimental linear splitting region up
to 6T � H

‖
c2 and the one in Fig. 5(a) with h

f

B ≈ 0.35, one gets
the parameter g

‖
f χ̃ = 3.3. We note that the reference scale

�0 is only constant for fields smaller than the upper critical
field (H ‖

c2 = 11.9,H⊥
c2 = 4.95 T). For larger fields, one has to

scale with �0(B), which vanishes at the upper critical fields
H

‖,⊥
c2 where the resonance energies ωr (B) also have to vanish

for both field directions. When the curves in Figs. 5(a) and
5(b) are multiplied by the scaling function �0(B), the field
dependence ωr (B) is obtained in absolute (meV) units.

Finally, we mention here that our results within the phe-
nomenological RPA theory depend on the model parameters,
i.e., anisotropic matrix elements and quasiparticle interaction
energies. Changing these parameters leads to other interesting
regimes where the anisotropies of the magnetic moment and
quasiparticle interaction along the tetragonal axes play the
decisive role. The RPA treatment shows that, even in the
absence of the magnetic field, an additional peak from the χzz

0q
component may appear for suitable parameters, and therefore,
in principle, two peaks may exist in the RPA spectrum even
at a zero field. In the presence of the magnetic field, such as
the previous cases, the degenerate (doublet) peak of the χ±

0q

and χ∓
0q components splits and, finally, leads to three different

peaks at the finite field. We should stress here that, by moving
to a lower interaction energy, the resonance occurs just for χ∓

0q,
and the splitting of the resonance vanishes. This could give an
insight into the challenging alternative experiments where the
splitting behavior for the in-plane field has not been seen.22

IV. CONCLUSION

We have given an explanation of the observed field splitting
of feedback spin-resonance excitations recently observed for
the first time in the unconventional superconductor CeCoIn5.
Our calculations are based on a RPA model with tetragonal
anisotropy for collective spin excitations that may also be
relevant for other members of the 115 family. Using the
appropriate hybridized bands and associated Fermi surface
as well as the proper dx2−y2 superconducting gap symmetry,
the spin resonance appears at ω/2�1 = 0.73, close to the
experimental value. Here, 2�1 is the main tunneling gap
indicated in the DOS of Fig. 1(b) and is found in Ref. 9.

In the isotropic case, the resonance is a spin triplet excitation
that should split into three modes in a field as predicted in the
case of a cuprate model.20 However, because of the presence
of strong CEF and hybridization-induced anisotropies of g

factors and interactions of 4f -type quasiparticles in the 115
compounds, the resonance condition may, in this case, not
be fulfilled for all three triplet components. For sufficiently
strong anisotropy, the zero-field resonance is only a twofold
degenerate transverse doublet state because the longitudinal
component does not satisfy the resonance condition. For the
field in the tetragonal plane, the doublet splits with a linear
Zeeman effect for low fields, one branch moving to higher,
and the other branch moving to lower energies. However, for
larger fields, a crossover to nonlinear field dependence with
both split resonance energies decreasing sets in. For the field
perpendicular to the tetragonal plane, no splitting but only a
broadening of the doublet resonance excitation appears. These
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salient features of our model calculation correspond closely
to the experimental observations in CeCoIn5 performed for
small fields.21 It would be very interesting to investigate the
predicted nonlinear field dependence for larger fields.

Finally, we note that other scenarios are possible depending
on the anisotropies and strengths of quasiparticle interactions

where, for example, the in-plane splitting of the resonance
disappears and a single peak with anomalous broadening as
for the out-of-plane field is observed. In fact, this behavior
was proposed in an alternative experiment,22 and further
experimental as well as theoretical investigations are necessary
to clarify this issue.
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