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Quantum turbulence of bellows-driven 4He superflow: Steady state
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Quantum turbulence in superfluid 4He is studied by the attenuation of second sound in flow channels of
7-mm and 10-mm side square cross sections, and 115-mm length. The ends of the channels are plugged by
sintered silver superleaks to allow a pure superflow (i.e., a net flow of the superfluid component only). Flows are
generated by mechanically operating a low temperature bellows assembly, as opposed to the helium fountain pump
commonly used for previous superflow turbulence studies. The temperature range is 1.35 K � T � 1.95 K, at the
saturated vapor pressure. The observed turbulent steady state is characterized by the vortex line density L1/2 =
γ (T )(v − vc), where v is the mean superflow velocity and vc is the critical velocity for the onset of turbulence. The
character of the steady state agrees with the Vinen phenomenological model for thermal counterflow turbulence.
The coefficient γ (T ) is in fair agreement with previous thermal pure superflow and counterflow experiments.
The critical velocity vc ≈ 0.2 cm/s is roughly temperature independent.
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I. INTRODUCTION

Quantum turbulence (QT)1 is the most general form of mo-
tion of quantum fluids displaying superfluidity, and represents
an interesting physical system for a deeper understanding of
turbulence in classical fluids, too. QT in superfluid 4He at finite
temperature is physically richer than conventional turbulence
in viscous fluids because of the two-fluid nature of superfluid
helium.2 The zero-entropy superfluid component can flow
without dissipation at low velocity, while being subject to
quantum mechanical constraints: The only form of rotational
motion allowed is a thin vortex line, whose circulation around
the core is not arbitrary as in classical fluids, but quantized in
units of κ = 0.997 × 10−7 m2/s.

Unlike the T → 0 K limit where the normal component
is absent, at finite temperatures, say for T � 1 K, QT in
superfluid 4He involves the dynamics of a tangle of such
quantized vortices coupled by the mutual friction force to
the viscous normal fluid component, that itself can easily
become turbulent.3 QT in superfluid 4He at finite temperature
thus represents the experimentally easily accessible but intel-
lectually most challenging case. Experimental investigation
is instrumental here, as at present neither purely theoretical
nor numerical studies are capable of taking into account with
sufficient precision all details of mutually interacting turbulent
superfluid and normal velocity fields.

In most early works, starting with the pioneering experi-
ments of Vinen,4 QT was studied in counterflow, the thermally
activated motion of normal and superfluid components in
opposite directions. Thermal counterflow has a turbulent
steady state (in fact, three different turbulent states have been
identified by Tough;5 see later) with no obvious classical
counterpart, but displays a classical-like character of its late
time decay.6–9

When instead QT is generated with methods used for clas-
sical flows (resulting in so-called co-flows), similarities with
classical turbulence appear more clearly, both in the steady-
state properties (Kolmogorov inertial range in energy spectrum
in various flows, e.g., between counter-rotating propellers,10

grid and wake flows in pressurized wind tunnel and “chunk”
turbulence flow;11 Kolmogorov “4/5-law” in pipe flow12)
as well as in the character of the decay (towed grid,6,13,14

spin down15), despite quantum-mechanical restrictions on the
motion of the superfluid component. Experimental research
proceeded hand in hand with theoretical and computational
studies, starting from the influential work of Schwarz.16

Comprehensive consideration of theoretical and computational
aspects lays beyond the scope of our article, however, two
theoretical works closely related to the present project will be
discussed in due course.

In general, three distinct cases of 4He QT at T � 1 K are
of particular interest: (i) thermal counterflow, (ii) co-flowing
normal and superfluid components, and (iii) pure superflow
(i.e., the net flow of the superfluid component only). In this
project we have studied properties of QT in pure superflow,
generated for the first time mechanically, as opposed to
thermally by helium fountain pump, as reported in previous
works.17–19 Low temperature bellows for the generation of
superfluid helium pipe flows have been already used by Van
Sciver and co-workers who studied pressure drop for steady
forced co-flow.20

Our project focuses on the single component net flow,
integrating measurements of vortex line density by second
sound attenuation, in steady and decaying turbulence. Let us
stress that, despite that this flow is generated by classical means
(mechanical bellows compression), thanks to the ability of
superleaks to filter out the normal fluid flow, the resulting
steady net pure superflow inside the channel does not have any
obvious classical analog. In this article we discuss the steady
state and onset of such turbulent flow, while a forthcoming
article will be dedicated to its decay. The article is organized as
follows: Sec. II describes our experimental setup and protocol,
Sec. III contains our experimental results, which are discussed
and compared with relevant previous experiments in Sec. IV;
we conclude in Sec. V. A step-by-step derivation of the
relationship between the vortex line density and the measured
amplitude of second sound [which is essential in this work;
Eq. (2)], is given in the appendix.
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II. APPARATUS AND METHOD

A. Flow channel, flow generation, and thermometry

The apparatus used is illustrated in Fig. 1. A net flow of
superfluid component through a flow channel is generated by
compressing a stainless steel bellows filled with superfluid 4He
and immersed in the open cryostat bath.

Two brass flow channels have been used, with internal
square cross section of side 7 mm and 10 mm, and finely
polished walls. Both channels are 115-mm long and have an
outer dimension of 32 mm. The channel ends are plugged by
silver-sintered superleaks (i.e., filters constituted by packing
of silver spheres with a 1/2 volume filling fraction), resulting
in submicron-sized pores to prevent a net flow of the viscous
normal component through the channel on any flow time scale
relevant to the experiment.21 The superleaks are designed
having in mind not to plug the internal cross section directly:
The channel ends have a roughly conical expansion of diameter
16 mm (not shown in Fig. 1) to which the 2-mm-thick sintered
silver superleaks are sintered in situ, thus the effective output
cross section for the flow through the superleaks is not smaller
than the cross section seen by the flow in the channel.

The bellows is driven by a computer-controlled motor
located on the cryostat flange at room temperature, and
connected to the bellows via gear box and shaft. The motor
can perform micron-accuracy positioning and can control the
velocity to within about 1%. The mean channel superflow
velocity v is calculated by requiring that the mass flow rate
of liquid out of the bellows equals the mass flow rate into
the channel, assuming the liquid incompressible. The bellows
volume has been calibrated at room temperature to within
about 2% accuracy. The mean flow velocity in the channel is
given by

v = v′ ∂V

∂h

1

A
, (1)

where v′ is the velocity of the shaft along the vertical
displacement h (measured by the motor’s encoder), V is
the bellows volume, and A is the cross section of the flow
channel. The maximum volume that can be displaced by the
bellows is about 400 ml, and from the calibration we obtained
∂V /∂h = 4.25 ± 0.08 ml/mm; overall the flow velocity is

FIG. 1. (Color online) Schematic diagram and photograph of the
bellows with the flow channel.

known to within 3% accuracy. During cool-down, the bellows
is filled with helium gas; liquid helium enters it below the
lambda transition via the channel, and it easily fills the
whole volume. Flows are studied only when generated by
compressing the bellows, not expanding it, that is to say,
when the flow velocity can be deduced unambiguously from
Eq. (1).22 Once the bellows is fully compressed, liquid helium
is recharged by expanding it.

The experiments have been carried out in the temperature
range 1.35 K � T � 1.95 K, at the saturated vapor pressure.
The absolute temperature of the bath is deduced from the vapor
pressure (measured via a separate line ending in the cryostat
close above the liquid bath level) and its fluctuations are
measured with a carbon resistance thermometer immersed
in the bath near the channel, itself calibrated against the
vapor pressure. The bath temperature is controlled either by
manual regulation of the pumping rate, or with a temperature
controller which uses as a reference the carbon thermometer
and a manganin heater wire immersed in the bath. We choose
whichever method gives a temperature control of about 1 mK
or better. Other two calibrated carbon thermometers are located
inside the bellows. All carbon thermometers are used primarily
as relative thermometers, since they are slightly affected by
thermal cycling. Their absolute reading is accurate to within
about 10 mK. No thermometers are installed inside the channel
to avoid disturbing the flow.

B. Second sound attenuation

QT is detected by the attenuation of second sound prop-
agating in a direction perpendicular to the mean superflow.
The second sound experiences attenuation additional to bulk
viscous losses when the thermal excitations constituting the
normal component are scattered by the vortex filaments. The
second sound speaker and receiver are circular membranes of
9-mm diameter with micron-size holes, located at mid channel
length (see Fig. 1; additionally, a blow-up drawing of the
channel and more construction details are given in Ref. 19).
The speaker membrane induces a second sound wave by
oscillating and displacing only the viscous normal component
of helium, thereby causing higher local concentration of
normal component and hence higher temperature. The channel
walls constitute a resonator for such wave. The membranes
have one gold-plated side in contact with the channel body
biased typically with 100 V and a circular brass electrode is
spring loaded against the other side, thus forming a capacitor
with one vibrating plate. In order to achieve the highest
signal-to-noise ratio, the drive amplitude is adjusted close
below the level at which the second sound signal versus drive
dependence starts to deviate from linearity—typically between
6 and 10 V.

An example of the signal detected by the second sound
receiver is shown in Fig. 2. The figure shows how the resonant
curve for quiescent helium is attenuated and broadened as
flows of increasing steady-state velocity are produced in
the channel. The frequency spectra have been acquired in
conditions of fully developed steady flow. Note the existence
of additional smaller peaks that most likely occur due to
weak coupling to longitudinal second sound resonances in the
channel. Experimentally, we always tried to use the harmonics
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FIG. 2. (Color online) Second sound resonance curves (first
mode) for different steady-state flow velocities in the 7-mm wide
channel at T = 1.35 K. The tallest curve corresponds to the case of
no flow in the channel, while others correspond to flow velocities
of, from top to bottom, 1.73, 2.60, 4.33, and 6.07 cm/s. (Inset) The
second sound amplitude at resonance monitored in time as a flow of
steady velocity 6.07 cm/s is switched on and off (same flow velocity
as most attenuated curve in main plot).

(in most cases the fundamental or its first overtone) which
for particular conditions were least affected by these parasitic
resonances. We have, however, thoroughly verified that results
are in no way affected by the choice of harmonic.

One can see in Fig. 2 that the central frequency is not
changed by the flow. This enables one to carry out a simplified
experiment where one samples in time the second sound
amplitude at the resonant frequency, observing the changes
occurring upon switching on a flow, maintaining its steady
state, and switching it off. An example of one such time series
is shown in the inset and provides the basis for the study of the
decay transient.

In this article we shall be solely concerned with the
steady-state properties of the flow. The decay transient also
contains valuable physical information and will be discussed
in a follow-up article. In the steady state the signal is sampled at
a rate of 5 points per second, and each point is averaged with a
lock-in amplifier time constant of 100 ms (for comparison, the
time for a second sound wave traveling at ≈20 m/s to complete
a return trip in the 1-cm wide channel is 1 ms). The amplitude
averaged during the steady state has a standard deviation of
less than 1% and during that process the temperature is usually
kept constant to better than 1 mK.

The second sound attenuation technique does not detect the
absolute vortex line length, but a quantity proportional to the
average of the square of the sine of the angle between the
vortex lines and the second sound propagation direction.23

Therefore, to infer the absolute length one needs to know
the actual spatial distribution of the lines. This is in general

not known, and perhaps cannot be known with certainty
unless directly visualized, which is not possible in this setup.
Therefore an assumption on the vortex line distribution is
necessary. Assuming that the vortex tangle is homogeneous
and isotropic, the total length of vortex lines per unit volume
L can be deduced from the measurement of the second sound
amplitude a as follows:

L = 6π�f0

Bκ

(
a0

a
− 1

)
, (2)

where a0 and �f0 are the amplitude and the full width at half
maximum of the second sound resonance without flow, and
B is the mutual friction coefficient (tabulated in Ref. 24).
All vortex line density computed in this article originates
from this equation. Another limiting case exists, that of vortex
lines all lying in planes parallel with the direction of second
sound propagation, and randomly oriented within that plane.
In that case L in Eq. (2) is reduced by a factor 4/3. Hints
on the derivation of this equation are provided, for example,
in Refs. 25 and 9 but a full derivation is given here for
convenience in the appendix. The non-attenuated resonance
width �f0 is obtained from a Lorentzian fit of the full resonant
curve as shown in Fig. 2, while a0 and a have been obtained
both from fits and from averaging the amplitude signal of the
type shown in the inset.

C. Temperature gradients

In this final section we turn to a discussion of the
distribution of temperature in the system. During steady flow
the helium inside the bellows becomes warmer (as measured
by local thermometers), due to the reduction of the superfluid
component fraction. Such increase is roughly linear with flow
velocity, and roughly independent of mean temperature; it is
at most 3 mK for the highest flow velocities considered in this
article, of about 20 cm/s. The temperature in the bath, instead,
is almost unchanged.

It is important to realize that the warming up of helium
inside the bellows cannot alter the mass flow rate through
the channel—which is entirely set by the rate of bellows
compression—therefore it does not affect the determination
of v discussed before. The helium in the channel is in fact
thermally well separated from both the helium in the bellows
and in the bath, because of low thermal conductivity of brass
walls and silver sinter.26

Regarding the temperature gradient in the helium inside the
channel, since no local thermometers are present, an estimation
is possible from the two-fluid equations of motion. Subtracting
the superfluid from the normal fluid momentum conservation
equations in the steady state [see Eqs. (A3) and (A4) in the
appendix], and neglecting nonlinear terms and viscous dissi-
pation, one can show that a thermal gradient ∇T = Fns/(ρsσ )
arises to balance the mutual friction force Fns, where ρs is
the density of the superfluid component and σ is the entropy
of helium per unit mass. For a tangle of randomly oriented
vortex lines we estimate ∇T ≈ −κρnBL(vn − vs)/(3ρσ ),
where for Fns we have used Eqs. (A6) and (A18), vn and
vn are the normal and superfluid velocities, and ρ and ρn are,
respectively, the total density of helium and of the normal
component. For our channel, assuming the normal fluid is at
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rest (vn = 0), we arrive at a maximal temperature difference
of order 10 mK for the highest attainable flow velocities,
with the temperature increasing along the direction of the
superflow. Note incidentally that such thermal gradient exists
irrespectively of whether the superflow is driven mechanically
(by a bellows) or thermally (by a fountain pump, as in Ref. 19),
and has the same orientation.

III. RESULTS

A. Vortex line density versus mean velocity

The steady-state vortex line density is plotted as L1/2 versus
the mean superflow velocity v in Fig. 3, for the 7-mm-wide
channel. Symbols distinguish values of L obtained from the
second sound amplitude a, extracted from a Lorentzian fit of
the full resonant curve (open symbols), from those for which a

is measured directly at resonance (solid symbols), as described
in Sec. II B. This second approach is required for v � 10 cm/s,
when the time for the bellows to complete a compression
becomes shorter than the time required for a sufficiently
detailed scan of the resonance; both approaches agree very
well. The data sets are fitted with straight lines of the form,

L1/2 = γ (T )(v − vc), (3)

and the fit is weighted against the relative importance of the
experimental error on L. The inset shows that the fitted lines
extrapolate to a nearly temperature independent intercept
vc ≈ 0.1 cm/s. This form of L(v) agrees with the steady-state
solution of Vinen’s phenomenological equation,4 which
describes well steady-state counterflow.

FIG. 3. (Color online) The square root of the steady-state vortex
line density L, as a function of mean superflow velocity v, for the
7-mm wide channel, at different temperatures. Open symbols relate
to L obtained from the second sound amplitude a extracted from a
Lorentzian fit of the full resonant curve, while solid symbols relate
to a directly measured at resonance. Straight lines are fits to the data
weighted by the uncertainty in L. The inset highlights the existence
of a positive intercept, vc.

FIG. 4. (Color online) Comparison of results from three different
channel configurations. (i) Solid circles, 7-mm channel with both
superleaks (as in Fig. 3); (ii) open circles, 7-mm channel with
downstream superleak removed; (iii) open triangles, 10-mm channel
with both superleaks. Straight lines guide the eye.

In Fig. 4 we show a comparison of some of the data
just presented, with results from runs where the downstream
superleak was removed from the 7-mm channel and runs with
the 10-mm channel with both superleaks present. We see that
removal of the downstream superleak does not lead to any
appreciable change in the observed steady-state vortex line
density in the 7-mm channel, suggesting that the flow is of
the same character. Additionally, we find that the observed
steady-state vortex line densities in the 7-mm and in the 10-mm
channels agree within experimental scatter, again in agreement
with Vinen’s phenomenological equation.4

B. γ (T ) coefficients

The γ (T ) coefficients of Eq. (3) are plotted as a function
of temperature in Fig. 5, for a variety of systems. Let us first
describe the results of the present work. The five slopes of
Fig. 3, relating to the 7-mm-wide channel, are represented
as solid blue circles, while the green solid squares relate to
the same channel with the downstream superleak removed,
leading to no appreciable change in γ . The open up-pointing
blue triangles are from the 10-mm-wide channel, showing
marginally but systematically higher γ than the 7-mm channel.
Whether this is attributable to a size effect cannot be easily
concluded since, first, only two channel sizes are available,
and secondly, the performance of the second sound sensors was
poorer in the 10-mm channel run, leading to lower accuracy.

Let us now turn to a comparison with related previous
works, starting with two pure superflow experiments. The
closest comparison is, in principle, with a previous experiment
run in Prague by Chagovets and Skrbek,19 where the same
flow channels and detection technique were used, but the
superflow was generated by helium fountain pump, instead of
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FIG. 5. (Color online) The quantity γ (T ) of Eq. (3) calculated
for available pure superflow and counterflow experiments and
simulations. Present work: solid blue circles, 7-mm channel; solid
green squares, 7-mm channel, downstream superleak removed; open
blue up-triangle, 10-mm channel. Other works: (i) thermally induced
pure superflow, open squares, Ashton et al., 0.13-mm diameter glass
channel;17 solid red down-triangle, Chagovets and Skrbek, 7-mm
channel as present work, A-state turbulence;19 (ii) counterflow, solid
blue up-triangle, solid magenta diamond, Martin and Tough, TII and
TI states, 1-mm diameter glass channel;27 open circles, Childers
and Tough, TI state, 0.13-mm diameter glass channels;28 asterisk,
TII state, 7-mm channel as present work, unpublished; dashed line,
Adachi et al., numerical simulation.29

bellows. For low velocities (there defined as the A state of pure
superflow turbulence) the authors found L1/2 = γ (T )(v − vc),
while at higher velocities they reported a transition to a B
state with L ∝ v. The A-state slopes are shown here as full
down-pointing red triangles: They are very different from the
bellows version of the experiment, and also significantly lower
than any other surveyed work. As it will be outlined in more
detail in Sec. IV, we have now evidence that the flow velocity in
the fountain experiment was overestimated by a factor roughly
between 2 and 4, depending on temperature and heat current:
If corrected by this factor, γ from the fountain-driven flow
would be roughly in agreement with the bellows-driven flow.
Therefore, for the time being, we shall not be concerned with
these results.

We offer instead as relevant comparison the results by Ash-
ton et al.,17 where pure superflow was driven by fountain pump
in a cylindrical glass channel, 0.13 mm in diameter, shown as
black open squares, in fair agreement with the present work,
despite L was deduced from measurements of temperature
difference along the channel. Although their channel was very
narrow, the average intervortex distance, 1/

√
L, was becoming

comparable with the channel size only at very low velocity,
suggesting that finite size effects did not play an important
role, and therefore justifying a comparison with our system.

Let us now consider thermal counterflow experiments. The
asterisk marks an unpublished datapoint obtained in Prague
with the same 7-mm-wide channel used in this work, but
in thermal counterflow. The up-pointing full cyan triangles
and the magenta diamonds are from Martin and Tough27 in
a 1-mm-diameter glass channel, relating, respectively, to the
TII and TI state of counterflow turbulence. As a reminder,
thermal counterflow turbulence in channels with a cross-
sectional aspect ratio close or equal to unity and absolute
width of order 1 mm or less has been classified by Tough
as possessing two turbulent regimes,5 TI, which immediately
follows the laminar state, and TII, occurring above a critical
line density, both satisfying L1/2 = γ (T )(v − vc) with γ in
TII state considerably larger than in TI. These two regimes are
not a universal property of counterflow turbulence: A single
state has been observed in channels with a very large cross-
sectional aspect ratio (although small absolute dimensions,
below 1 mm), termed TIII5 and also in the seminal work of
Vinen in channels with cross-sectional aspect ratio of order
1/2, with absolute dimensions of several mm.4

In pure superflows only a single regime has ever been
observed—the existence of A and B states reported by
Chagovets and Skrbek is presently under scrutiny on account
of uncertainties on flow velocities occurring in that experiment,
as further discussed in Sec. IV B.

The TII state measured by Martin and Tough27 agrees well
with the pure superflow experiments; their corresponding TI
state agrees with the TI state in a channel of about 10 times
smaller diameter (Childers and Tough, black open circles28)
and with the numerical simulation of Adachi et al.29 (dashed
line). This numerical simulation is based on the solution of
the full Biot-Savart integral23 and therefore takes into account
long-range interactions between vortices, and is solved in a
domain with periodic boundary conditions. Due to current
limitations in computational power, the simulation can reach
only modest vortex line densities, within the TI regime.

C. Critical velocities

In the present work we have investigated the critical velocity
that corresponds to the onset of QT, by producing long-lasting
steady flows (several tens of seconds), gradually increasing the
velocity from zero up to a value well into the turbulent regime,
and from there reducing it back to zero, observing changes in
the second sound amplitude tracked at resonance. An example
of such raw data is provided in Fig. 6, where the second sound
amplitude is plotted as function of time while the flow velocity
is increased in steps of 0.05 cm/s, lasting 50 s each. In this
particular case the first departure from noise occurs at around
t = 180 s, when v = 0.16 cm/s. The temperature stability in
the bath was 0.1 mK.

Figure 7 shows the mean critical velocity for different
systems. Regarding the present work, the ramp-up, and
ramp-down critical velocities, averaged over several mea-
surements, are plotted as black open circles and blue open
squares, respectively, for the 7-mm channel and as stars for
the 10-mm channel (average of very similar ramp-up and
ramp-down measurements). These measurements show, within
the available resolution, no temperature dependence and no
hysteresis effects.
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FIG. 6. (Color online) Example of raw data for the determination
of critical velocity. The second sound amplitude is tracked at
resonance, while the flow velocity is suddenly increased with
0.05 cm/s resolution steps lasting 50 s. Here a change in attenuation
distinguishable from the noise floor (dashed line) first appears at
around 180 s, when v = 0.16 cm/s. The blue line shows the
temperature of the bath, stable to within 0.1 mK.

The results also do not depend on whether the flow velocity
is increased (or decreased) quasi-continuously as opposed to
in discrete steps, nor do they depend on whether or not the
flow velocity is reduced to zero in between each increment
in velocity. The averages of ramp-up and ramp-down critical
velocities at different temperatures for the 7-mm channel are,
respectively, 0.20 ± 0.07 cm/s and 0.25 ± 0.06 cm/s, while
the average in the 10-mm channel in 0.21 ± 0.05 cm/s, all
agreeing within the uncertainty. For these low flow velocities,
the extent of second sound attenuation becomes comparable to
the signal noise, as shown in Fig. 6, therefore we conclude that
the real critical velocity must be at least as measured, or lower.

The critical velocity can also be estimated from the
intersection with the x axis of the straight line fits of Fig. 3
(inset), although this method assumes that the same slope
continues to hold at very low velocities. For the 7-mm channel
this intercept is 0.11 ± 0.03 cm/s: similar, but a little lower than
the direct measurement; this is consistent with the situation in
thermal counterflow as summarized by Tough.5

Critical velocities found in thermally generated superflow
experiments are also provided in Fig. 7. The black open squares
are from Baehr et al. who used a 0.13-mm diameter glass
channel,18 the same which yielded the black open squares
data in Fig. 5, but here the difference with the present work
is substantial. Whether or not this counts as a disagreement
will depend on whether the critical velocity is an intrinsic
property of the flow or depends on channel geometry. Evidence
discussed in the next section suggests that the latter is the case.

The red triangles are the critical velocities in the 7-mm and
10-mm-wide channels as used in the present work, but with the

FIG. 7. (Color online) The critical velocity for the onset of
turbulence from different experiments and simulations. Present work:
open black circles, open blue squares, open green up-triangles = ramp-
up, ramp-down, fit extrapolation, 7-mm channel; stars = average of
ramp-up and ramp-down, 10-mm channel. Other works: (i) thermal
pure superflow, open black squares = Baehr et al., 0.13-mm glass
channel;18 solid red down-triangles = Chagovets and Skrbek, 7-mm
and 10-mm channels as in present work;19 solid black squares, solid
black circles = Vinen, 2.4 × 6.5 mm2 and 4 × 7.8 mm2 channels;4

dashed line = Adachi et al., numerical simulation.29

fountain-driven superflow.19 As discussed above, these points
are very likely to be incorrect because of the overestimation
of superflow velocity, and should for the present purposes be
disregarded. If, however, the same temperature-independent
correction—which makes the γ coefficients agree—is applied
here, we would arrive at a value (temperature-averaged, on
account of the large error bars) of 0.50 ± 0.22 cm/s for
the thermally induced critical velocity in the 7-mm channel:
higher, but consistent with the present bellows experiment
which, incidentally, allows for much better control of very low
velocities than the fountain method.

The pioneering work of Vinen4 is also included, with the
2.4 × 6.5 mm2 and 4 × 7.8 mm2 channels, respectively, in
solid black squares and circles.

The simulation of Adachi et al.29 for counterflow with
periodic boundary conditions is also shown.

IV. DISCUSSION

A. Pure superflow in the framework of
Vinen’s counterflow model

The steady-state properties of pure superflow have been
analyzed in the previous section according to Eq. (3), in
agreement with the steady-state solution of Vinen’s model for
counterflow.4 In this model the key parameter which governs
the dynamical state of the flow is the counterflow velocity
(vn − vs)—no boundary effects are taken into account. The
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question now arises as to whether such counterflow framework
is sufficient to describe the physics of pure superflow, in
other words whether pure superflow can be regarded merely
as counterflow in the frame of reference of the normal
component (vn = 0).

From our analysis we conclude that the steady-state solution
of the Vinen model gives an equally good formal account of
both pure superflow and counterflow, and that, further, the
γ coefficients for pure superflow are in good quantitative
agreement with TII counterflow. However, the fact that a
TI counterflow state with much lower γ exists in channels
with aspect ratio around unity and sufficiently small absolute
cross-sectional dimensions, strongly suggests that the finite
size of the channel should be, in general, an additional
parameter of the problem.

The transition from TI to TII state has been suggested to
be triggered by the transition to turbulence in the normal
component,30 and more recently a convincing experimental
evidence that the normal component indeed becomes turbulent
for sufficiently high heat currents has been given.3 What is still
missing is a detailed explanation of how the channel cross-
section dimensions and shape could control such transition.

What is already well established is that if the channel aspect
ratio is sufficiently large, only one regime of counterflow
turbulence is observed (TIII, perhaps meaning that the normal
component becomes turbulent near or before the onset of
turbulence in the superfluid component), and for such regime
the γ coefficients are very similar to those of pure superflow.
To conclude unequivocally though that counterflow and pure
superflow are entirely equivalent, is still a contentious issue,
since, for example, the properties of the temporal decay of tur-
bulence are different, especially in the early stages of the decay.
This open issue will be explored in a future dedicated article.

Regarding the critical velocity for the onset of turbulence,
if the points from Chagovets and Skrbek19 in Fig. 7 are
disregarded on account of their very likely overestimation,
it is apparent that the critical velocity decreases in some
fashion with increasing channel cross section, a fact which
has been long known. The critical velocity for pure superflows
and counterflows has been measured in a variety of systems
during the decades, and several attempts have also been made
to account theoretically for its scaling with channel geometry,
which, according to the 1982 review by Tough5 did not lead
to a conclusive theoretical understanding of the problem.

A new theory, however, has recently been proposed by
Kruglov,31 based on the interaction of roton excitations with
the walls of the channel. Some results from this work, together
with a (partial) survey of experimental data are presented
in Fig. 8. The critical velocity vc is plotted as a function
of the smallest dimension of channel cross sections, d. We
distinguish pure superflow experiments (solid symbols) from
counterflow experiments (open symbols).

Regarding pure superflows, a large compilation of classic
results was provided almost half a century ago by Van Alphen
et al.,39 from which we have extracted a few, for d > 10−3 mm,
and present them here (error bars are not provided in the source
article); these pure superflow results are temperature indepen-
dent. We also show the pure superflow data from the 0.13-mm
diameter channel of Baehr et al.18 (already shown in Fig. 7,
and here temperature averaged) and the two values for our

FIG. 8. (Color online) The critical velocity vc for the onset of
turbulence as a function of the smallest dimension of channel cross
section d for different systems. Pure superflow experiments (solid
symbols), black squares = Hammel & Keller, isothermal flow;32

stars = Van Alphen et al., adiabatic flow rate;33 circle = Baehr
et al., temperature average of data in Fig. 7;18 up-triangles =
Chase, heat conduction;34 asterisk = Craig and Pellam, superfluid
wind tunnel;35 red squares = 7 × 7 mm2 and 10 × 10 mm2, present
work, temperature averaged and ramp-up and ramp-down averaged.
Counterflow experiments (open symbols), open blue diamond =
Ladner and Tough, 0.032 × 0.32 mm2;36 black open square =
Childers and Tough, 0.13-mm diameter;37 blue down-triangle =
Yarmchuk and Glaberson, 0.92 × 11.3 mm2;38 open red circle,
open green up-triangle = Vinen, 2.4 × 6.5 mm2 and 4 × 7.8 mm2.4

Kruglov theory,31 solid line = predicted absolute scaling of pure
superflow critical velocity; dashed lines = predicted scaling for
counterflow critical velocity (with undetermined prefactor); lines give
a lower and upper bound for the experimental data.

7- and 10-mm channels, also averaged over temperature and
ramp-up/ramp-down directions, since we have observed that
the critical velocity is almost independent of these parameters.
For completeness, we have also added experimental points
from some counterflow experiments, for which generally the
critical velocity does change with temperature. Here we have
chosen values relating to temperatures roughly between 1.3
and 1.35 K, where comparison between different experiments
was possible.

The tendency of the critical velocity to decrease with
increasing channel size is confirmed, and, although the data
points are somehow scattered, it is possible to distinguish
different trends for pure superflows and for counterflows.
The main part of Kruglov’s theory is developed for the
case of ideal pure superflows, where the normal component
is fully immobilized. The theory predicts vc = 	d−1/4 and
vc = 	′d−1, respectively, for d < 10 mm and d > 10 mm,
where 	 and 	′ are calculated theoretical prefactors. This
prediction is shown as a solid line. We see that the scaling
agrees quite nicely with most pure superflow experimental
data, except for the two data points from the present work,
which lie about a factor of 5 lower than the prediction.
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Van Alphen et al.39 show that in experiments where the
normal component is not firmly immobilized, a lower critical
velocity than predicted by the d−1/4 scaling is observed. They
argue that in these cases the onset of superfluid turbulence
is triggered by a transition to turbulence of the classical
type in the normal component, associated with a Reynolds
number Ren = vnd/νn, where νn is the effective kinematic
viscosity of the normal component. This way, for a given
critical Ren, vn ∼ d−1, and the superfluid critical velocity
would scale the same way, from the counterflow conservation
of mass condition ρnvn = −ρsvs. The authors point out that,
conversely, if the normal component is properly immobilized
by the use of superleaks, the d−1/4 scaling is observed to
hold up to rather large channel sizes, as exemplified by the
2-cm wide superfluid wind tunnel used by Craig and Pellam,35

shown as an asterisk in Fig. 8.
This confirms the view that the turbulence onset is regulated

by different physical processes occurring in the normal and
superfluid component (classical Reynolds number criterion,
versus quantized vortices nucleation) each of which has its
own dependence on channel size. Whenever the geometry
conditions are such that turbulence onset in the normal
component occurs first (at lower velocity) than would occur in
the superfluid in its own accord, the transition is triggered in
the superfluid, too.

These ideas perhaps suggest that, although our channel
is indeed plugged by superleaks, inside the channel vn 	= 0.
This need not imply that there is a net flow of a normal
component across the superleaks, merely internal motion of
the normal component in the channel. This fact may play a
very important role later, in the understanding of the character
of turbulence decay.

The Kruglov theory also predicts vc ∼ d−1 scaling for
counterflow, where the normal component is free to move,
although the prefactor of the scaling is not determined. We
have drawn two dashed lines where such prefactor is tuned by
a factor of 6.5 in order to enclose all the reported counterflow
experimental data. The fact that our two points fall within this
band may strengthen the hypothesis that the normal component
is not stationary during the observed steady state in the present
experiment. This was already suggested by Chagovets and
Skrbek19 about their experiments in Prague performed in
identical channels. In the following section we take a closer
look at those experiments.

B. Discrepancies between mechanically and
thermally driven superflow

In Sec. III we have shown how the present work yielded
considerably different γ (T ) and vc than its previous realization
where the superflow was driven by a heater located inside a
nozzle on top of the upper superleak, and held just below
the bath surface.19 In principle one would not expect such a
difference to occur solely due to a change in the method of flow
generation, because the essential physics of the flow inside the
superleak-plugged channel depends on the temperature gradi-
ent established along the channel (as argued in Sec. II C) and
such gradient would not be conceivably affected by a change
of flow source. Therefore we proceed with the assumption that
the two turbulent flows ought to have similar properties, and
we set out to seek other reasons for the discrepancy.

First, we have carefully re-examined the raw second sound
attenuation data from the fountain-driven experiment, and
independent evaluation confirms that values of L were deter-
mined correctly. We therefore reconsidered the determination
of mean superflow velocity. This quantity is unambiguous
in the bellows experiment, since it is simply related to the
measurement of rate of change of bellows volume. In the
fountain experiment, however, the mean superflow velocity
was not measured directly, but deduced from the power
supplied to the fountain heater placed in the nozzle above
the upper superleak Q̇ as

v = Q̇

AρsσT
. (4)

This relationship was shown to be valid under the assumption
that Q̇ is used entirely to drive the flow. However, recent direct
measurements in the fountain setup revealed that this is not
so, since, for example, a sizeable fraction of the heat provided
by the heater is spent to enhance evaporation of liquid helium
contained in the nozzle.

We have arranged a few replicas of the original fountain
experiment to allow for a direct visual determination of the
rate of filling of a calibrated volume downstream the channel,
from which we have calculated actual channel velocities. A
full account of these measurements, which in themselves for
various reasons did not constitute a trivial experiment, will be
presented in a dedicated article submitted to the Journal of
Low Temperature Physics.

The main message is that Eq. (4) always overestimates the
directly measured velocity. In short, for low heat currents v

is a few times smaller than predicted (depending on T and
Q̇) and roughly linear with Q̇. This correction brings the γ

coefficients of the A state of turbulence of Ref. 19 in rough
agreement with those of the bellows-driven flow presented in
this article.

An exact correction cannot however be expected, because
the flow velocity can be measured - by construction - only
while the fluid is filling the calibrated volume, hence before it
flows out into the bath, a condition that in principle is different
from that of the steady state in Ref. 19. At low heat currents it
was also possible, in limited circumstances, to measure second
sound attenuation simultaneously. This also confirmed that
L(v) of fountain and bellows driven flows are in reasonable
agreement. At higher heat currents the measured v grows with
Q̇ at even slower rate than at low heat currents, and therefore v

is even further reduced from the prediction. This suggests that
the reported transition from A (L ∝ v2) to B (L ∝ v) states
of pure superflow turbulence might be spuriously produced by
this effect, hence casting doubts over all conclusions pertaining
to steady-state turbulence in Ref. 19.

Precise quantitative conclusions unfortunately cannot
be drawn because of the limitations of this direct velocity
measurements technique. We stress, however, that the data
and discussion of the temporal decay of L in Ref. 19 remains
valid, as it is fully independent of knowledge of steady-state
flow velocity.

V. CONCLUSIONS

We have presented new measurements of the onset and
steady-state turbulence of a net flow of 4He superfluid
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component in channels of square cross sections of 7- and
10-mm sides, generated mechanically by a low temperature
bellows assembly and detected by the second sound attenua-
tion technique.

The dependence of vortex line density L on mean superflow
velocity v from both channels satisfies L1/2 = γ (T )(v − vc),
and therefore it would seem that this system is formally
understood within the framework of Vinen’s model for thermal
counterflow, which treats superflow as counterflow in the frame
of reference of the normal component. The γ (T ) coefficients
indeed agree with previous pure superflows and counterflows
in the TII regime (i.e., the regime observed in channels of a
large cross section of order unity, and sufficiently high vortex
line density). We observed a single turbulence regime across
the entire velocity range explored. The onset of turbulence
occurs at critical velocities vc not higher than about 0.2 cm/s,
a value that within the experimental resolution is roughly
independent of temperature. No hysteresis effects have been
observed. However, the critical velocity, when examined in
the context of other pure superflow experiments of greatly
varying channel width d, is lower than predicted by the
law vc ∼ d−1/4, which otherwise holds rather generally. This
suggests that the normal component, although not flowing past
the superleaks, may not be at rest in the channel, therefore
triggering turbulence in the superfluid at lower velocities.

This work strengthens what is currently known and under-
stood about fully developed turbulent superfluid channel flows
in the temperature range where the interaction between the
two velocity fields is important, and also draws attention to the
still open and complex problem of transition to turbulence in
the two-fluid system. Further characterization of the problem,
with more open issues, is provided by the observation of the
temporal decay of vortex line density upon suddenly stopping
the bellows drive, an aspect which will be discussed in a
follow-up article.
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APPENDIX: DERIVATION OF AN EXPRESSION TO
DEDUCE VORTEX LINE DENSITY FROM SECOND

SOUND ATTENUATION

We present here a step-by-step derivation for Eq. (2). The
plan is to derive the second sound wave equation from the two-
fluid equations of motion; set up the resonant conditions for the
flow channel; find an expression for the attenuation by vortex
lines of the second sound amplitude; and obtain workable
equations for the vortex line density L from assumptions on
the spacial distributions of the vortex lines.

Let us start from the set of two-fluid model equations, in
the limit of small normal and superfluid velocities vn and
vs and in the presence of the mutual friction force Fns.23 The
following equations are, respectively, the conservation of mass,
entropy (σ , per unit mass), and momentum for the superfluid

and normal components:

∂

∂t
(ρn + ρs) = −∇ · (ρnvn + ρsvs), (A1)

∂(ρσ )

∂t
= −∇ · (ρσvn), (A2)

ρs

(
∂vs

∂t
+ (vs · ∇) vs

)
= −ρs

ρ
∇p + ρsσ∇T − Fns, (A3)

ρn

(
∂vn

∂t
+ (vn · ∇)vn

)
= −ρn

ρ
∇p − ρsσ∇T

+ ηn∇2vn + Fns. (A4)

Symbols still undefined are the pressure p and the dynamic
viscosity of the normal component ηn. The mutual friction
force per unit volume is given by40

Fns = B
ρnρs

ρ
�̂ × [� × (vn − vs)] + B ′ ρnρs

ρ
� × (vn − vs),

(A5)

which applies to the case of a cylindrical container of superfluid
rotating around the central axis with angular velocity � (i.e.,
the case in which the vortex lines are oriented parallel with
the axis of rotation). The coefficient B is of order unity; the
second nondissipative term in B ′ is assumed small enough to
be neglected.

Since in the uniformly rotating container the full length
of vortex lines contributes to the angular velocity (no self-
canceling lines oriented in random directions) we can write
L = 2�/κ , where the orientation of L gives the orientation of
the lines at a given point. Neglecting the second term, Eq. (A5)
reduces to

Fns = −Bκ
ρsρn

2ρ
L(vn − vs) sin2 θ, (A6)

where θ is the angle between L and vns = vn − vs. For the sake
of clarity, notice that in this derivation by vns we do not mean
the main counterflow velocity along the channel direction
caused by the bellows, but the counterflow velocity associated
with the second sound wave, propagating perpendicular to the
channel. The fact that the mutual friction force is proportional
to sin2 θ is referred to as the “sine squared law”.41

To proceed, we can neglect the nonlinear terms in velocity
on the left-hand side of Eqs. (A3) and (A4) (this is possible
because in experiments we work in a regime where the second
sound driving amplitude is small enough to prevent generation
of turbulence) and we neglect the viscous dissipation in
Eq. (A4) (because of the small viscosity of the normal
component), then by multiplying Eq. (A3) by ρn/ρs and
subtracting it from Eq. (A4) we obtain

ρn
∂vns

∂t
= −ρσ∇T + ρ

ρs
Fns. (A7)

If we further assume that the counterflow velocity vns and
derivatives of density and entropy are small, combining
Eqs. (A1) and (A2) and neglecting terms nonlinear in small
quantities we get

∇ · vns = − ρ

σρs

∂σ

∂t
. (A8)

134515-9



BABUIN, STAMMEIER, VARGA, ROTTER, AND SKRBEK PHYSICAL REVIEW B 86, 134515 (2012)

Now we seek a solution for a second sound traveling wave
in the form of small perturbations σ ′ and T ′ around constant
values of σ0 and T0 of entropy and temperature, while leaving
pressure and density constant. With these simplifications
Eq. (A8) can be written as

∇ · vns = − ρσ

ρnc
2
2

∂T

∂t
, (A9)

where

c2 = σ

√
ρs

ρn

(
∂T

∂σ

)
ρ

(A10)

is the velocity of second sound. Substituting Eq. (A6) to
Eq. (A7) and solving for ∇T leads to

∇T = − ρn

σρ

(
BκL

2
(sin2 θ )vns + ∂vns

∂t

)
. (A11)

Taking the gradient of Eq. (A9) and interchanging time and
space derivatives we obtain

∇(∇ · vns) = 1

c2
2

(
BκL

2
(sin2 θ )

∂vns

∂t
+ ∂2vns

∂t2

)
. (A12)

We now consider a second sound plane wave traveling along
the z direction with angular frequency ω and wave vector kez.

vns = ezvns0e
i(ωt−kz). (A13)

Substituting this to Eq. (A12) we obtain

k = ± ω

c2

√
1 − i

BκL

2ω
sin2 θ. (A14)

The vortex line density measured in experiments usually
ranges from 104 to 106 cm−2, making κL of order of
1–100 Hz. The frequency of second sound used in experiments
is of order 1 kHz.

We can therefore usually (see later) limit ourselves with
the first two terms of Taylor expansion of the square root, and
since only the negative sign solution is physically meaningful
we obtain

k = − ω

c2

(
1 − i

BκL

4ω
sin2 θ

)
. (A15)

Substituting this back to Eq. (A13) we get the propagation of
an attenuated wave,

vns = ezvns0 exp

[
i

(
ωt − ω

c2
z

)
− αz

]
, (A16)

where the attenuation constant is

α = BκL

4c2
sin2 θ. (A17)

Now we need to replace sin2 θ by its mean value, making
an assumption on the spatial distribution of vortex lines.
Assuming a homogeneous and isotropic distribution, and
choosing a coordinate system so that vns always lies along
the z axis, we get

〈sin2 θ〉 = 1

4π

∫ 2π

0

∫ π

0
(sin3 θ )dθdφ = 2

3
, (A18)

and thus the attenuation constant for randomly oriented vortex
lines is

α = BκL

6c2
. (A19)

Note that if the tangle were completely polarized in the
direction perpendicular to the propagation of second sound,
the result in Eq. (A18) would be 1/2. So if the assumption of
homogeneity and isotropy were wrong, Eq. (A19) would be at
worst a factor 4/3 higher than the true value. The attenuation
of the second sound amplitude by mutual friction adds to the
ordinary bulk viscous attenuation. To account for this, we
decompose the attenuation constant to a part independent of
flow, and one given by Eq. (A19):

α̃ = α0 + α. (A20)

The attenuation constant is related to the quality factor of a
resonator Q = f0/�f where f0 is the resonance frequency
and �f is full width at half maximum of resonance the curve,
through

α̃ = π

λQ
= π�f

c2
, (A21)

where λ is the resonant wavelength.
When the second sound is excited at resonant frequency

the waves reflected at the receiver will constructively interfere
with the waves emitted from the transducer, giving the total
measured amplitude,

a = ae

+∞∑
n=1

e−α̃D = ae

eα̃D − 1
≈ ae

α̃D
, (A22)

where D is channel width and ae is amplitude of the wave
excited by the transducer. Using Eqs. (A20) and (A21) we
arrive at

α = π�f

c2

(
a0

a
− 1

)
. (A23)

Here a0 is the amplitude when there is no flow in the channel
and a is the amplitude with the flow. Finally, using Eq. (A19)
we obtain

L = 6π�f

Bκ

(
a0

a
− 1

)
. (A24)

This is the required formula (2) that gives vortex line density
as a function of directly measurable quantities.

If further terms in the Taylor expansion of Eq. (A14)
are considered one can arrive at the following more exact
expression (see also Ref. 9):

L′ = 3c2

BκD
ln

(
1 + p2P +

√
2p2P + p4P 2

1 + P + √
2P + P 2

)
, (A25)

where p = a0/a and P = 1 − cos(2πD�0/c2), with D�0/c2

small. The version of Eq. (A24) becomes an overestimation of
the true vortex line density provided by Eq. (A25) at extremely
high L. From a practical point of view, there is no need to use L′
instead of L as long as (L − L′)/L′ remains much lower than
about 30%, which is the maximum uncertainty in L introduced
by not knowing the exact spacial distribution of vortex lines.
For our channels with D = 7 mm, we find (L − L′)/L′ = 30%
at L′ ≈ 3 × 107 cm−2. The maximum L reported in this paper
is about 8 × 106, for which (L − L′)/L′ ∼= 8%.
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