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High-temperature superconductivity at the FeSe/SrTiO3 interface
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In several recent experiments the superconducting gap of a single-unit-cell-thick FeSe film on SrTiO3 substrate
has been observed by scanning tunneling spectroscopy and angle-resolved photoemission spectroscopy. The value
of the superconducting gap is about nine times larger than that of the bulk FeSe under ambient pressure, suggesting
a much higher pairing energy scale and Tc than all other iron-based superconductors and thus calling for a better
understanding of its superconducting mechanism. In this paper we study the effects of screening due to the
SrTiO3 ferroelectric phonons on Cooper pairing in FeSe. We conclude that it can significantly enhance the energy
scale of Cooper pairing and even change the pairing symmetry. Our results also raise some concerns on whether
phonons can be completely ignored for bulk iron-based superconductors.
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I. INTRODUCTION

In a recent experiment1 a single-unit-cell-thick FeSe
film was grown on the TiO2 terminated (001) surface of
SrTiO3(STO) by molecular beam epitaxy. Two gaps (∼10 and
20 meV) were observed by scanning tunneling microscopy
(STM) at low temperatures. At present there is no transport
data and superconducting Tc has not been determined by
resistivity measurement, but an estimate of Tc by the bulk
FeSe 2�/Tc ratio gives Tc ∼ 80 K, which is much higher
than all other iron-based superconductors.1 Subsequently
angle-resolved photoemission spectroscopy (ARPES) results
reported that there are only electron Fermi surfaces in the su-
perconducting samples,2,3 suggesting that the superconducting
FeSe films are electron doped. The ARPES-observed electron
pockets are nearly circular, with an approximately constant
gap on them (between 10 and 19 meV at low temperatures for
different samples). By studying the temperature dependence
of the energy gap in the ARPES measurement, estimates of Tc

at 40–65 K are obtained.3 Currently there is no explanation for
the discrepancy of two gaps versus one gap between the STM
and ARPES measurements.

The original experimental report suggested that the STO
substrate plays an important role in promoting pairing in the
FeSe thin films.1 Here we recall some of the properties of STO
that we think are relevant to the electron pairing problem. STO
is a “quantum paraelectric” insulator.4 The huge dielectric
constant at low temperatures is due to the ionic movements.
The associated phonon, the ferroelectric (FE) phonon, involve
the relative displacement of the Ti and O atoms. An example
of such displacement is shown in the right panel of Fig. 1.
This phonon mode is soft at the zone center. This FE phonon
has two important effects on the FeSe electrons. The first is
to mix states separated by momentum (π,π ) in the unfolded
Brillouin zone. This is because a frozen FE phonon breaks the
symmetry of the Fe glide plane (z ↔ −z reflection about Fe
plane followed by a translation to nearest-neighbor Fe), which
enables the Brillouin zone unfolding. In addition, the soft zone
center FE phonons can screen the intrapocket electron-electron
repulsion.

At low temperatures bulk STO also undergoes an an-
tiferrodistortive (AFD) transition. This distortion involves
alternating clockwise and counterclockwise rotations of oxy-
gen about titanium (see the left panel of Fig. 1). A recent
density functional theory study5 found that aside from zone
folding, static AFD distortion has little effect on the FeSe
band structure. Therefore we ignore the AFD phonon in the
following discussion.

In the rest of the paper we perform a two-stage calculation
to treat both the electronic correlation and the electron-
phonon coupling, using the same idea of previous two-stage
renormalization group (RG) studies.6,7 The first stage is
a functional renormalization group (FRG)8,9 calculation. It
determines the most important electronic scattering processes
at low energies. As found in previous studies9–11 for energies
lower than the magnetic fluctuation energy scale, �e, the
strongest electron-electron scattering is in the Cooper channel
(for superconducting samples). This is used as the input for the
the second-stage analysis, in which a generalized Eliashberg
equation is solved to treat the effect of FE phonons at energies
lower than the maximum phonon frequency �ph (�ph < �e).
Some reasonable parameters are tested to see if the large Tc en-
hancement can be achieved. Due to the uncertainty of the sur-
face doping we study both undoped and electron-doped FeSe.

II. THE FIRST STAGE: FRG CALCULATION

In the first stage of the calculation we employ the FRG
method to derive the low-energy effective interaction at an
energy cutoff �e. The unrenormalized electronic Hamiltonian
H = Hband + HI consists of the bandstructure part Hband

and the atomic Hubbard-Hund interaction HI . Hband is
a tight-binding fit of ARPES-measured band structures2

(Fig. 2). It is worth noting that this band structure differs
substantially from those for other pnictides in that the hole
band top near � and the electron band bottom near X and Y

are separated by a small gap. Interestingly in a recent ARPES
work on AxFeySe2 this feature is noted and emphasized.12

The interaction HI is characterized by three parameters,
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FIG. 1. (Color online) Left panel: an example of AFD distortion
in the TiO2 plane. Right panel: a caricature of the frozen FE phonon
with the atomic displacement in the (001) direction.

intraorbital repulsion U , interorbital repulsion U ′, and Hund’s
interaction strength J , with the details given in Appendix A.
The singular-mode FRG (SM-FRG) method used in these
calculations is briefly explained in Appendix A. For all our
calculations we use (U,U ′,JH ) = (2,1.35,0.325) eV.

The FRG results are summarized in Fig. 3. For the undoped
case, the leading pairing channel is S± with opposite signs
of order parameters between electron and hole Fermi surfaces.
This result is consistent with previous Fermi surface patch FRG
calculations,13 while in the electron-doped case the leading
pairing channel is the fully gapped dx2−y2 pairing, with oppo-
site signs of order parameters between two electron pockets.

III. THE SECOND STAGE: THE
ELIASHBERG EQUATIONS

In the first-stage calculations the electronic-correlation-
driven pairing instabilities have been identified. In both
undoped and electron-doped cases the leading pairing in-
stabilities are nodeless. These are used as the input for the
second-stage calculation of electron-phonon coupling effects.
In this section we treat the electron-phonon coupling mainly by
the phenomenological Eliashberg equation formalism. Some
of our conclusions are supported by FRG calculations with
electron-phonon couplings reported in Appendix B.

The formalism and notations of the Eliashberg equations
closely follow those in Scalapino et al.14 and McMillan.15 The
details can be found in Appendix C. In order to make analytic
calculation feasible, we model the low-energy electronic de-
grees of freedom by two Fermi surfaces. In the case of undoped
FeSe these correspond to hole and electron pockets, and for
the electron-doped case both Fermi surfaces correspond to
electron pockets (at X and Y ). These two Fermi surfaces are
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FIG. 2. (Color online) A tight-binding fit to the band dispersion
observed in Ref. 2.
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FIG. 3. (Color online) (a) and (c) Fermi surfaces of the undoped
vs electron-doped FeSe band structure used in the SM-FRG calcula-
tion. (b) and (d) RG flows of the coupling strengths S of the leading
pairing channels for the undoped vs electron-doped cases. Horizontal
axis is the frequency cutoff �.

labeled by a = 1,2 in Eq. (C1) respectively. Moreover we
assume these Fermi surfaces have constant density of states
(DOS) N1,2. Because the leading pairing instabilities driven by
electronic correlations are nodeless, we ignore the dependence
of the interaction vertex Vabcd ( p1, p2, p3, p4) [see Eq. (C1)] on
momentum p1,2,3,4 and keep the dependence on the Fermi sur-
face index only, that is, Vabcd . These simplifications are made in
view of the presumably strong disorder-induced quasiparticle
scattering at the FeSe/STO interface, which will average out
the fine structures in Vabcd ( p1, p2, p3, p4) and the DOS and are
consistent with the isotropic gaps observed by ARPES.2

Assuming the following form for the self-energy of the
Nambu spinor �,

�a(ω) = [1 − Za(ω)]ωτ0 + Za(ω)�a(ω)τ1, (1)

we derive the self-consistent equations for Z and � following
standard procedures.14 The results are given by Eqs. (C7)
and (C8) in Appendix C. Assuming the McMillan ansatz,
Eqs. (C9), these equation can be solved to yield Za(0) = 1 +∑

b

√
Nb/Naλab for the normal state Za(0) and the following

eigenvalue problem for Tc:

2∑
b=1

λab

[
ln

�ph

Tc

·
√

Nb�b(0) + 〈ω〉ab

�ph

√
Nb�b(∞)

]

+
√

Na�a(∞) =
√

NaZa(0)�a(0) (2)

and

−
2∑

b=1

vab

[
ln

�ph

Tc

√
Nb�b(0) + ln

�e

�ph
·
√

Nb�b(∞)

]

=
√

Na�a(∞). (3)

In the above equations λab = 2
∫ ∞

0
dν
ν

α2
ab(ν)F (ν), where F (ν)

is the density of states associated with the phonon mode and
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α2
ab(ν) is the effective electron-phonon coupling constants. In

addition vab = √
NaNbVabba , and 〈ω〉ab is a weighted average

[weighted by α2
ab(ν)F (ν)/ν] of the phonon frequency.

For the sake of simplicity we set N1 = N2, λaa → λintra =
(λ11 + λ22)/2, λab → λinter = (λ12 + λ21)/2, vaa → vintra =
(v11 + v22)/2, vab → vinter = (v12 + v21)/2, and 〈ω〉ab = 〈ω〉
in the following. With the above simplifications we can
determine the Tc for the “odd-sign” pairing (�1 = −�2) and
the “even-sign” pairing (�1 = �2) respectively as

T odd
c = �ph · e

−(1+λ+)/Max[λ−−V∗
−(1+λ− 〈ω〉

�ph
),0]

,
(4)

T even
c = �ph · e

−(1+λ+)/Max[λ+−V∗
+(1+λ+ 〈ω〉

�ph
),0]

,

where

λ± = λintra ± λinter, V± = Vintra ± Vinter,
(5)

V ∗
± = V±/[1 + V± ln(�e/�ph)].

Note that the Max[. . . ,0] symbol is just to ensure that the
denominator of the exponent is non-negative, as in the case of
the Bardeen-Cooper-Schrieffer Tc formula. We have checked
that changing the ratio of DOS N1/N2 has little effect on Tc but
has a strong effect on the gap ratio �1/�2. In obtaining the
above result we have assumed that 1 + V± ln(�e/�ph) > 0;
that is, the pure electronic driven Tc is lower than �ph/kB .

According to Eq. (4), increase of λintra − λinter and Vinter −
Vintra raises the Tc for the odd-sign pairing. On the other hand,
to raise the Tc of the even-sign pairing we need to increase
λintra + λinter but decrease Vintra + Vinter; that is,

(λintra − λinter) ↗ , (Vinter − Vintra) ↗ ⇒ T odd
c ↗ ,

(6)
(λintra + λinter) ↗ , (Vinter + Vintra) ↘ ⇒ T even

c ↗ .

The physics behind Eq. (6) is rather simple. Odd- (even-)
sign pairing requires the interpocket Cooper scattering to
be repulsive (attractive). Since phonon-mediated scattering
is necessarily attractive, it follows that strong interpocket
electron-phonon interaction enhances even-sign pairing while
suppress the odd-sign pairing. Because attractive intrapocket
scattering strengthens both even- and odd-sign pairing, strong
intrapocket electron-phonon interaction is beneficial to both.

If phonons are indeed responsible for the observed Tc

enhancement, there should be other signatures of the electron-
phonon coupling. For example, due to the large anharmonicity
of the FE phonons, we expect using a pump laser to excite them
will have a clear effect on Tc. The more traditional phonon sig-
natures such as kink in the quasiparticle dispersion and shoul-
der in the tunneling experiment are discussed in Appendix D.

In the following subsections the main results for the un-
doped and electron-doped cases are presented. The parameters
used are chosen by the following considerations: (1) �e

is chosen at ∼200 meV, about the typical bandwidth of
spin waves in antiferromagnetic parent iron-based materials;
(2) from the choice of �e and the bulk FeSe Tc of ∼8 K,
V± can be estimated to be around 1/ log(�e/kBTc) ∼ 0.2; (3)
the ratio 〈ω〉/�ph is customarily chosen at 0.5; (4) the �ph is
chosen by an optimistic rough estimate of ∼100 meV, about
half of �e; (5) the most difficult choice is the electron-phonon
coupling strength λ±—we treat these as unknown parameters

and draw phase diagrams with respect to them. To justify the
perturbative Eliashberg equation we restrict λinter,λintra < 1.

A. The undoped FeSe/STO

For undoped FeSe/STO the first-stage RG generates Vinter >

0, hence favoring odd-sign (S+−) pairing.9,10,16,17 This is
caused by the antiferromagnetic fluctuation. As discussed
above, λintra enhances the S+− pairing while λinter weakens it.
Setting Vinter = 0.2 and Vintra = ±0.05, the “phase diagrams”
as a function of λintra and λinter are shown in Figs. 4(a) and
4(b). The associated Tc enhancement factors are shown in
Figs. 4(c) and 4(d). Note the magnitude of the Tc enhancement
differs by approximately an order of magnitude in Figs. 4(c)
and 4(d) by merely reversing the sign of Vintra. Clearly
this quantity is not something we can confidently predict.
What is robust is the fact that when λinter � λintra electron-
phonon interaction stabilizes even-sign pairing. Conversely for
λintra � λinter odd-sign pairing is favored. Since for undoped
FeSe/STO the FE phonons mainly cause intrapocket elec-
tron scattering(λintra � λinter), we expect the electron-phonon
interaction to strengthen the odd-sign, in this case S+−,
pairing.

B. The electron-doped FeSe/STO

Our tight-binding fit of the ARPES band structure and
the associated Fermi surfaces are shown in Fig. 2. Because the
hole bands have completely sunk below the Fermi energy, the
antiferromagnetic fluctuation only occurs at energies greater
than the separation between the top of the hole bands and
the Fermi energy. According to Ref. 2 this separation is
approximately 80 meV. If sufficiently strong, this high-energy
magnetic fluctuation can trigger S++ pairing on the electron
pockets. This pairing form factor can be thought of as S+−
restricted to the exposed electron Fermi surfaces. When this
form factor is the leading pairing channel, we expect Vintra

and Vinter(between electron pockets in this case) both to be
negative. Under this condition, adding the electron-phonon
interaction, the phase diagram is shown in Fig. 5(a), and
there is only S++ phase. The Tc enhancement is shown in
Fig. 5(b).

For larger separation between the hole bands and EF , the
nodeless d wave (where the gap function has opposite signs
on the two electron pockets) is the leading pairing channel. As
pointed out in Ref. 18 in the presence of hybridization between
the electron pockets (due to the absence of the z ↔ −z

glide plane symmetry at the interface) the d-wave pairing
can become nodal. For strong hybridization the reconstructed
electron pockets could have opposite sign pairing due to the
repulsive electron-electron interaction.18,19 We expect that in
both cases Fig. 4 should apply; that is, sufficiently strong
interpocket scattering (the first main effect of the FE phonon
in earlier discussions) can destabilize the odd-sign pairing
and turn it into even-sign pairing. In addition to the effect
of phonon, the inevitable disorder scattering also tends to
destabilize the odd-sign pairing in favor of even-sign pairing.
Thus we strongly believe the electron-doped FeSe/STO has
even-sign (or S++) pairing.
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FIG. 4. (Color online) (a) and (b) The phase diagram for undoped
FeSe/STO system. Light blue (gray) denotes even (odd) sign pairing,
respectively. (c) and (d) The Tc enhancement factor Tc/Tc0, where
Tc0 is the superconducting transition temperature in the absence of
the electron-phonon interaction. The parameters we used to construct
the figures are �e/�ph = 2, 〈ω〉/�ph = 0.5, and Vinter = 0.2, Vintra =
0.05 for panels (a) and (c), and Vinter = 0.2 and Vintra = −0.05 for
panels (b) and (d). The small triangular region near the lower left-hand
corner of panel (a) is nonsuperconducting.
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FIG. 5. (Color online) (a) The phase diagram for electron-doped
FeSe/STO system. Light blue denotes the even-sign pairing. (b) The
Tc enhancement factor Tc/Tc0, where Tc0 is the superconducting tran-
sition temperature in the absence of the electron-phonon interaction.
The parameters we used to construct the figures are �e/�ph = 2,
〈ω〉/�ph = 0.5, and Vintra = −0.2, Vinter = −0.05.

IV. DISCUSSION

We have studied the screening effects of the ferroelectric
phonons of SrTiO3 on the interaction between the electrons
in FeSe, by the combination of FRG and Eliashberg equation
methods. We conclude that such coupling can enhance the
pairing strength of FeSe. Our results show that the Tc enhance-
ment factor can be close to the experimental estimates of about
one order of magnitude,1 for strong electron-phonon coupling
strength λ ∼ 1 and reasonable values of other parameters.
Moreover, we find when the interpocket electron-phonon
scattering is strong, opposite-sign pairing will give way to
equal-sign pairing.

Why do the FE phonons not have a similar effect on the Tc of
doped STO? We believe the answer is polaron formation: For
a range of strong electron-phonon coupling, the formation of
polarons instead of Cooper pairs is favored. In a recent optical
experiment on n-type doped STO,20 a very sharp Drude peak
with a substantial mass enhancement (consistent with that of
“large polarons”) was observed.

The current study raises concerns about whether the role
of phonon can be completely ignored in bulk iron-based

134508-4



HIGH-TEMPERATURE SUPERCONDUCTIVITY AT THE . . . PHYSICAL REVIEW B 86, 134508 (2012)

superconductors.21 With appropriate interpretation of λintra and
λinter, our results can be used to address the phonon effects in
bulk iron-based superconductors as well.

Regarding material, there are other nearly ferroelectric
perovskite materials, for example, KTaO3.22 If FeSe films
can be epitaxially grown on these materials, similar Tc

enhancement should occur. Finally the results of Ref. 1 and
the present paper suggest the . . .FeSe/(STO)n/FeSe/(STO)n . . .

superlattice is a promising artificial material with high Tc.
There are still many unanswered questions about these

interesting experiments of FeSe thin films: (1) What caused
the FeSe doping and the Se vacancy? (2) Can the discrepancy
between Refs. 1 and 2 be due to surface doping caused by
the sample treatment prior to the ARPES measurement? STM
experiments on the annealed samples may provide very useful
information for this question. (3) Are there buried, hence not
yet detected, interface metallic bands?2 (4) Are there interface
ferroelectric ordering? (5) How strong is the coupling between
the electrons in FeSe and the ferroelectric phonons in STO?
Detailed first-principle calculations will be very useful to
answer this question. (6) Why the two-unit-cell-thick (and
higher thickness) FeSe films are not superconducting in the
STM experiment?1 Our current theoretical treatment ignored
many possible complications indicated in these questions.
Experimental clarification of these issues will greatly help the
solution of the pairing mechanism in this interesting system.
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APPENDIX A: THE SM-FRG METHOD

In this Appendix we describe the SM-FRG method used.
The microscopic Hamiltonian, which is valid for all cutoff <

bandwidth, that we use is H = Hband + HI + Hph + He−ph.
Here Hband is the two-dimensional band structure. For the
undoped case Hband is courtesy of Z.-Y. Lu.23 For the electron-
doped case it was obtained by a fit to the ARPES result.2 HI

describes the local electron-electron interaction given by

HI = U
∑
i,α

ni,α,↑ni,α,↓ + U ′ ∑
i,α>β

ni,αni,β

+ JH

∑
i,α>β,σ,σ ′

ψ
†
i,α,σ ψi,β,σ ψ

†
i,β,σ ′ψi,α,σ ′

+ JH

∑
i,α>β

(ψ†
i,α,↑ψ

†
i,α,↓ψi,β,↓ψi,β,↑ + H.c.), (A1)
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FIG. 6. A generic four-point vertex (a) is rearranged into the
pairing (b), crossing (c), and direct (d) channels. Here k,q,p are
momenta, σ and τ denote spins which are conserved during fermion
propagation, and m,n denote the form factor (see the text for
details).

where ψi,α,σ annihilates a spin σ electron at site i in orbital α

(α = 3z2 − r2,xz,yz,x2 − y2,xy), ni,α,σ = ψ
†
i,α,σ ψi,α,σ , and

ni,α = ∑
σ ni,α,σ . In the calculation of the main text we

used intra-orbital repulsion U = 2 eV, Hund’s rule coupling
JH = 0.31 eV, and interorbit repulsion U ′ = U − 2JH .

Figure 6(a) shows a generic four-point vertex function
�1234, which appears in the interaction ψ

†
1ψ

†
2(−�1234)ψ3ψ4.

Here 1,2,3,4 represent momentum (or real space position) and
orbital label. The spins σ and τ are conserved along fermion
propagators and will be suppressed henceforth. Figures 6(b)–
6(d) are rearrangements of Fig. 6(a) into the pairing (P ),
the crossing (C), and the direct (D) channels in such a
way that a collective momentum q can be identified. The
dependence on all other momenta and orbital labels is written
as

�
αβγ δ

k+q,−k,−p,p+q →
∑
mn

f ∗
m(k,α,β)Pmn(q)fn(p,δ,γ ),

�
αβγ δ

k+q,p,k,p+q →
∑
mn

f ∗
m(k,α,γ )Cmn(q)fn(p,δ,β), (A2)

�
αβγ δ

k+q,p,p+q,k →
∑
mn

f ∗
m(k,α,δ)Dmn(q)fn(p,γ,β).

Here fm=(l,o)(k,α,β) = hl(k)Mo(α,β) is a composite form
factor, where hl(k) is chosen from a set of orthonormal lattice
harmonics and Mo is a matrix in the orbital basis.

The decomposition Eq. (A2) for each channel would
be exact if the form factor set is complete. In practice,
however, a set of a few form factors is often sufficient to
capture the symmetry of the order parameters associated with
leading instabilities.24,25 In our case, the lattice harmonics
are chosen as h(k) = 1, cos kx ± cos ky , 2 cos kx cos ky , and
2 sin kx sin ky . They are all even since only singlet pairing
is relevant in our case. The M matrices are chosen so that
the combination

∑
αβ φαM(α,β)φβ (φα is the real atomic

orbital function) is irreducible and transforms according to
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A1g , B1g , or B2g under the point group.26 (One may also
use any bilinear φαφβ to determine a matrix M, but it is
less transparent symmetrywise.) Moreover, the M matrix is
normalized as TrM†M = 1. If the total number of composite
form factors is N , then P , C, and D are all N × N matrix
functions of q. Note that the P,C, and D channels are
not orthogonal. The overlap between different channels are
important for the growth of pairing interaction out of, for
example, the magnetic interaction.9,11,25 In the following we
denote XK = K̂X as the projection of X into the K channel via
Eq. (A2).

In the case with electron-phonon interaction we need the
phonon-mediated electron-electron scattering. According to
the He−ph defined in the text, this vertex is given by

V (q,νn) ∝
∑
pz

A2

ν2
n + ω2(q + pzẑ)

∝ A2√
ν2

n + ω2(q)
, (A3)

where q = (qx,qy) and νn are the momentum and (Matsubara)
frequency transfer in the electron-electron scattering, and
the last proportionality holds to leading order in ω0/c. The
λintra,inter discussed in the main text are both proportional to A2.
Notice that this vertex is naturally in the D channel and bears
trivial form factors with h = 1 and M = δαβ since according
to Eq. (B1) the electron-phonon interaction is local in real
space and diagonal in orbital basis.

The partial flows of P , C, and D are given by the one-
particle-irreducible diagrams shown in Fig. 7. Here the dashed
line denotes four-point fermion vertex, the wavy line denotes
the (surface) phonon-mediated vertex, and the dash-wavy line
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FIG. 7. One-loop diagrams contributing to the flow of the the
four-point vertex function in the pairing channel (a), crossing channel
(b), and direct channel [(c)–(e)]. Here m,m′n,n′ denote form factors,
while the momentum, orbital, and spin indices are left implicit. The
dashed line represents the four-point fermion vertex and the dash-
wavy line means that both fermion vertex and phonon propagator can
be inserted separately. The diagrams are one particle irreducible with
respect to both fermions and phonons, and the phonon line shares the
loop frequency since external fermion fields are set at zero frequency
as usual. The Matsubara frequency is continuous but subject to hard
infrared cutoff at running scale �.

means that both types of vertices can enter. We write the
partial flow equations as, in matrix form and for a collective
momentum q,

∂P

∂�
= (P + VP )χ ′

pp(P + VP ),

∂C

∂�
= (C + VC)χ ′

ph(C + VC), (A4)

∂D

∂�
= (C + VC − D)χ ′

phD + Dχ ′
ph(C + VC − D).

Here � is the running Matsubara frequency cutoff, VK is the
phonon-mediated interaction projected into the K channel at
cutoff �, and χ ′

pp/ph are matrix kernels with elements

(χ ′
pp)mn = − 1

2π

∫
d2p

(2π )2
fm(p,α,β)Gαγ (p + q,i�)

×Gβδ(−p,−i�)f ∗
n (p,γ,δ) + (� → −�),

(χ ′
ph)mn = − 1

2π

∫
d2p

(2π )2
fm(p,α,β)Gαγ (p + q,i�)

×Gδβ(p,i�)f ∗
n (p,γ,δ) + (� → −�), (A5)

where G is the bare fermion propagator in the orbital basis and
the summation over orbitals is left implicit.

Clearly, because of the � dependence, the effect of phonon-
mediated interaction, V , is important only if � reaches the
phonon band, above which the main contribution to the flow
of the fermion interaction vertex is from pure electron-electron
interaction. However, the electronic excitations do modify
phonon self-energy and electron-phonon vertex even when the
cutoff scale is above the phonon bandwidth. In the present work
such effects are accounted for by using the experimentally
measured phonon dispersion and the electron-phonon coupling
constant. The flows in Eq. (A4) collect contributions from
independent one-particle-irreducible diagrams for the total
change d�, which need to be subsequently projected to the
three channels. Therefore, the full flow equations can be
formally written as

dK

d�
= ∂K

∂�
+ K̂

∑
K ′ �=K

∂K ′

∂�
, (A6)

for K = P,C, and D. We used the fact that K̂∂K = ∂K by
definition.

The functions P , C, and D are related to the effective
interactions as VSC = −P − VP in SC channels, VSDW =
C + VC in SDW channels, and VCDW = C + VC − 2D in
CDW channels. We monitor the most negative singular values
SSC,SDW,CDW of such interactions (for all q) versus the running
cutoff �. The most negative one among SSC,SDW,CDW tells
us which channel is becoming unstable. The associated
eigenfunction dictates the symmetry and wave vector of the
order parameter.

APPENDIX B: FRG CALCULATION WITH
ELECTRON-PHONON COUPLING

In this Appendix we report our FRG calculation results for
undoped FeSe with electron-phonon coupling. The phonon
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Hamiltonian is given by Hph = ∑
p ω(p)a†

pap. Here p is the
three-dimensional momentum. We assume the following
dispersion for the FE phonon ω(p) =

√
ω2

0 + c2p2 where
ω0 ≈ 2 meV and c ∼ 70 meV Å are estimated from an early
neutron measurement.27 The electron-phonon Hamiltonian is
given by

He−ph = A
∑
i,α

uiniα →
∑
pz

∑
ka,k′b

gka,k′b;pz

× (
a
†
k−k′+pz

+ ak′−k−pz

)
�

†
k′bτ3�ka. (B1)

He−ph describes the coupling between electrons in the
FeSe layer and the nearest ion displacement ui in the TiO2

layer of STO. In the above pz = pzẑ is the out-of-plane
momentum of the phonon and τ3 is the third Pauli matrix
in the Nambu space. The summation over pz follows
from the fact that the electron-phonon coupling occurs at
the interface. Here a and b label the electron bands, and
gka,k′b;pz

∝ A〈ka|k′b〉/√ω(k − k′ + pz), where 〈ka|k′b〉 is
the overlap between band Bloch states. The phonon-mediated
intra- and interpocket Cooper scattering strengths are
given by λintra = ∑5

a=1 λaa/5 and λinter = ∑
a �=b λab/20,

where

λab =
√

NaNb

∑
pz

〈〈
2
∣∣gka,k′b;pz

∣∣2

ω(k − k′ + pz)

〉〉
a,b

, (B2)

where 〈〈·〉〉 denotes the joint average over k and k′, which lie on
Fermi pockets a and b respectively. Using ω0 and c above and
the Fermi pockets in Fig. 8(a) we estimate λinter/λintra ∼ 1/12.

We generalize the SM-FRG method24,25 to treat the
effects of both electron-electron and electron-phonon
interactions. In principle, we envision a boson-fermion FRG
calculation that involves the flow of electron self-energy, the
phonon self-energy, the electron-phonon coupling vertex,
the four-point phonon vertex, and the electron-electron
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FIG. 8. (Color online) (a) Undoped FeSe Fermi surface(s). (b)
The superconducting critical scale �c vs λintra. Panels (c) and (d)
presents the flow of SSC and SSDW, respectively. (Higher scales are
not shown.) The value of λintra increases by equal intervals along the
arrows.

interaction vertex. However, in the following we view
the electron dispersion, the phonon dispersion, and the
electron-phonon coupling as fully renormalized quantities.
The first two can be determined from experiments and the last
quantity is viewed as an adjustable parameter in our theory.
The RG flow of the electron-electron interaction, including
contributions from the pure electron-electron interaction and
the phonon-mediated interaction, is left. In the following the
renormalized interactions in the superconducting (SC) and
spin density wave (SDW) channels are denoted as SSC,SDW.
(The charge density wave channel turns out to be unimportant
and is not discussed.) The definitions as well as technical
details of the SM-FRG method can be found in Appendix A.

Figure 8(b) summarizes the superconducting critical scale
�c (filled squares) versus the electron-phonon interaction
parameter λintra (λinter ∼ λintra/12). This is extracted from
Fig. 8(c), which shows the flow of SSC. Figure 8(b) shows a
linearly rising �c as a function of λintra. When we compare
the maximum �c with that in the absence of electron-phonon
interaction, a maximum Tc enhancement ∼6.5 is obtained.
Given the fact that λintra ∼ 12λinter this result is consistent
with Fig. 4. We have checked that for all values of λintra in
Fig. 8(c) the pairing symmetry remains S+−. Figure 8(d)
shows that the SSDW almost saturates at low energy scales, and
the electron-phonon coupling reduces 1/SSDW only slightly.
Since this type of SDW is related to the pairing interaction,
the above observation justifies our previous assumptions for
the input to the Eliashberg calculation.

APPENDIX C: MULTIPLE-BAND
ELIASHBERG EQUATION

In this Appendix we briefly outline the derivation of the
multiple-band Eliashberg equations following the single-band
case of Scalapino et al..14

The effective electron-phonon Hamiltonian we consider, at
the energy cutoff �e, is given by

H =
2∑

a=1

∑
p

ε pa�
†
paτ3� pa +

∑
q

ω(q)a†
qaq

+
∑
a,b

∑
p, p′

g p p′,abϕ p− p′�
†
p′bτ3� pa

+ 1

2

∑
a,b,c,d

∑
p1, p2, p3

Vabcd ( p1, p2, p3, p4)

× (
�†

p3c
τ3� p1a

)(
�

†
p4d

τ3� p2b

)
. (C1)

Here �e is much smaller than the bandwidth but larger than
maximal phonon frequency �ph, � pa is the Nambu spinor for
electron band a with dispersion ε pa , aq is the destruction op-
erator for phonon with dispersion ω(q), ϕq = a

†
q + a−q , p4 =

p1 + p2 − p3, τ3 is the Pauli matrix, and Vabcd ( p1, p2, p3, p4)
is the (effective) electron-electron interaction. Different levels
of simplification are applied to Eq. (C1), which is discussed in
more details in the following.

Assume the Green’s function of Nambu spinor � to be
given by

[Ga( p,ω)]−1 = ω − ε paτ3 − �a( p,ω). (C2)
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The self-consistent equation of the self-energy �a( p,ω) is

�a( p,iω) = −T
∑
ω′, p′

∑
b

τ3Gb( p′,iω′)τ3 · [|g p p′,ab|2D( p − p′,iω − iω′) + Vabba( p, p′, p′, p)], (C3)

where ω′ is fermion Matsubara frequency. D(q,ν) is the Green’s function of the phonon. Using the spectral representation

D(q,iν ′) =
∫ ∞

0
dν B(q,ν)

[
1

iν ′ − ν
− 1

iν ′ + ν

]
, (C4)

and summing over ω′ by the procedure of Ref. 14, the self-consistent equation becomes

�a( p,ω) = −
∑

b

1

π

∑
p′

∫ ∞

−∞
dω′′ Im[τ3Gb( p′,ω′′)τ3]|g p p′,ab|2

∫ ∞

0
dν B( p − p′,ν)

[
N (ν) + f (−ω′′)

ω − ω′′ − ν
+ N (ν) + f (ω′′)

ω − ω′′ + ν

]

−
∑

b

1

π

∑
p′

∫ +∞

−∞
dω′′ Im[τ3Gb( p′,ω′′)τ3]

1

2
Vabba( p − p′) tanh(βω′′/2). (C5)

Assume each electron band a has a circular Fermi surface with constant DOS Na , define α2
ab(ν)F (ν) as the average of√

NaNb|g p p′,ab|2B( p − p′,ν) over p on Fermi surface a and p′ on Fermi surface b, and ignore the momentum dependence
of � close to Fermi surface. This equation further simplifies to

√
Na�a(ω) =

∑
b

√
Nb

∫ �e

−�e

dε p′,b

{
− 1

π

∫ ∞

−∞
dω′′

∫ ∞

0
dν α2

ab(ν)F (ν)Im[τ3Gb(p′,ω′′)τ3]

[
N (ν)+f (−ω′′)

ω−ω′′ − ν
+ N (ν) + f (ω′′)

ω − ω′′ + ν

]

− 1

π

∫ +∞

−∞
dω′′ Im[τ3Gb(p′,ω′′)τ3]

1

2
vab tanh(βω′′/2)

}
. (C6)

Here N (ν) = 1/(eβν − 1) and f (ω) = 1/(eβω + 1) are the Bose and Fermi distribution functions, vab = √
NaNbVabba . Assuming

that �a takes the form of Eq. (1), the above equation reduces to

√
Na[1 − Za(ω)] =

∑
b

√
Nb

∫ ∞

0
dν α2

ab(ν)F (ν)
∫ �e

0
dω′ Re

[
ω′

√
ω′2 − �2

b(ω′)

]
2

[
N (ν) + f (−ω′)
ω2 − (ω′ + ν)2

+ N (ν) + f (ω′)
ω2 − (ω′ − ν)2

]
, (C7)

and √
NaZa(ω)�a(ω) = −

∑
b

√
Nb

∫ ∞

0
dν α2

ab(ν)F (ν)
∫ �e

0
dω′ Re

[
�b(ω′)√

ω′2 − �2
b(ω′)

]
2

[
(ω′ + ν)[N (ν) + f (−ω′)]

ω2 − (ω′ + ν)2

+ (ω′ − ν)[N (ν) + f (ω′)]
ω2 − (ω′ − ν)2

]
−

∑
b

√
Nb

∫ �e

0
dω′ Re

[
�b(ω′)√

ω′2 − �2
b(ω′)

]
vab tanh(βω′/2). (C8)

These equations can be solved numerically for the fre-
quency dependence of Z and �. For a more transpar-
ent demonstration of the physics, we adopt the McMillan
approximation15 and look for solutions of the form

Za(ω < �ph) = Za(0), Za(ω > �ph) = 1,
(C9)

�a(ω < �ph) = �a(0), �a(ω > �ph) = �a(∞).

This leads to the generalized McMillan formula (3) in the main
text.

APPENDIX D: THE SIGNATURES OF
ELECTRON-PHONON COUPLING

Conventional signatures of the electron-phonon interac-
tion include the phonon-induced kink in the normal-state
dispersion and the phonon shoulder in the tunneling spectra.
However, these features are most pronounced when α2(ν)F (ν)
have a sharp peak at a characteristic phonon frequency. While
this is indeed the case for Einstein phonons, it is not true for the
soft phonons under discussion. Here we expect α2(ν)F (ν) to
have a wide distribution. Therefore, the above phonon features

may not be very obvious. For example, using the parameters
described in Appendix B a typical renormalized quasiparticle
dispersion in the normal state near the Fermi surface is shown
in Fig. 9.

0

 0  1  2  3  4  5

E

(|k|-kF)vF/Λph

FIG. 9. Solid (dashed) line is the renormalized (unrenormalized)
electron dispersion, obtained by numerical solution of Eq. (C7) with
parameters λintra = 0.5 and λinter = 0, and the model of FE phonon
described in Sec. II. No prominent kink is visible despite significant
(factor 1.5) mass enhancement at the Fermi level.
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