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We present ab initio calculations of magnetic exchange parameters of stoichiometric Heusler compound
Ni2MnSn and a few nonstoichiometric Ni2Mn1+xSn1−x cases. Use of the exchange parameters in subsequent
Monte Carlo simulations allows us to evaluate the magnetization curves as a function of temperature and
composition as well as the critical temperatures of the magnetic phase transitions. The latter are compared to
those obtained from a mean-field approximation using the Heisenberg model. We find that the variation of the
experimental Curie temperatures of nonstoichiometric alloys can be explained theoretically if we assume that
the main impact of disorder is the intermixing of manganese and tin on their corresponding sublattices and the
simultaneous appearance of strong antiferromagnetic trends which originate from the nearest-neighbor Mn-Mn
interactions on different sublattices. The Curie temperatures of the Ni-Mn-Sn alloys which have been obtained
from the Monte Carlo simulations are in qualitative agreement with the experimental transition temperatures.
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I. INTRODUCTION

The ferromagnetic (FM) shape memory materials of type
Ni-Mn-X (X = In, Sn, Sb) have led to an existing field of
research over the last decade because of the possible use
of the diverse functionality of the alloys in different fields
of technological applications.1–5 Some interesting properties,
such as magnetic shape memory effect (MSME), magnetic
field induced strain (FIS), magnetoresistance (MR), exchange
bias effect (EBE), and magnetocaloric effect (MCE), have been
investigated for the nonstoichiometric Heusler alloys. As we
know, the magnetic properties of these alloys are very sensitive
to the content of Mn because the Mn excess atoms substitute
for X on the X sublattice of the Heusler structure.

In the case of Ni-Mn-Sn alloys, the stoichiometric Ni2MnSn
compound orders in the L21 structure, in which the Sn
atoms occupy the sites (0,0,0), Mn occupy ( 1

2 , 1
2 , 1

2 ) ones,
and Ni atoms are located at the sites ( 1

4 , 1
4 , 1

4 ) and ( 3
4 , 3

4 , 3
4 )

with 16 atoms per unit cell.6 In the nonstoichiometric case,
Ni2Mn1+xSn1−x , we may assume that the excess Mn atoms
occupy sites of the Sn-sublattice and that these atoms can
interact antiferromagnetically (AFM) with the surrounding Mn
atoms on the regular Mn sublattice because of the much shorter
distance between Mn1-Mn2 compared to the Mn1-Mn1 and
Mn2-Mn2 distances (“1” refers to the original Mn sublattice
while “2” refers to the Sn sublattice).6 Ferromagnetic behavior
in the L21 structure is observed for the range 0.0 � x �
0.4, and the Curie temperature, TC ≈ 350 K, is practically
unchanged in this range of composition.1–3 (For simplicity, we
use here “L21” instead of B2 to designate the cubic austenitic
Heusler structure and “L10” for the corresponding tetragonally
distorted structure regardless of composition and c/a ratio.)
The alloys with 0.4 < x � 1.0 undergo a martensitic transition
from the high-temperature L21 structure to the 10M, 14M, L10,
or 4O structure depending on the composition.5,7,8 These alloys

show a variety of magnetic transitions. For Ni-Mn-X alloys,
after the martensitic transformation, the Mn-Mn distance may
decrease further due to the twinning in the martensitic phase
which leads to enhanced antiferromagnetic (AFM) exchange
interactions. The coexistence of FM and AFM interactions
in the martensitic phase is also responsible for the EBE
and inverse MCE.9–14 For further features of the complex
magnetic order of Heusler alloys (in relation to structural
transformations and functional properties) we refer to the
literature.15–21

The importance of the magnetic exchange interactions for
the physical properties of the disordered Heusler materials was
recently highlighted by Şaşıoğlu et al.22 and Entel et al.23 The
dependence of the electronic structures, magnetic exchange
parameters, and Curie temperatures of Ni2MnX (X = Ga, In,
Sn, and Sb) was investigated using different implementations
of density functional theory (DFT) (augmented spherical wave
method within the atomic-sphere approximation,22 plane wave
method as implemented in the Vienna Ab initio Simulation
Package,24 and the SPR-KKR-CPA method25). It was found
that the magnetic exchange parameters show RKKY-like oscil-
latory behavior as a function of the interatomic spacing which
however gets more and more disturbed with increasing amount
of structural disorder. For example, in case of Ni2MnSn the
Mn-Mn exchange interactions increase within the first atomic
shell compared to Ni2MnGa and Ni2MnIn while the exchange
parameters within the third and fourth shells are small and
strongly negative, respectively. Not only structural disorder is
important but the addition of a quarternary transition element
which has recently been discussed by Siewert et al. for the (Pt,
Ni)-Mn-Z alloys with Z = Ga, Sn using DFT and Monte Carlo
(MC) simulations.26 The theoretical martensitic transition
temperatures have been obtained from free-energy calculations
involving phonons and DFT total energies, whereas the Curie
temperatures have been calculated from MC simulations
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using the Heisenberg model with the ab initio exchange
parameters.

The influence of configurational order and disorder in
Heusler alloys based on the Co2MnGa system was investigated
theoretically by Singh et al.,27 Arroyave et al.,28 and Siewert
et al.29 using DFT calculations. The authors suggested that the
austenitic and martensitic phases have disordered B2 structure.
Ghosh and Sanyal discussed the influence of structural disorder
in Ni-Mn-Ga alloys also using first-principles calculations.30

The discussion of the different magnetic phases which emerge
from the magnetic exchange interactions shows that structural
disorder and increasing valence electron concentration leads to
competing FM and AFM interactions which are present at all
temperatures. However below the martensitic transformation
temperature, the influence of the AFM interactions becomes
overwhelmingly large. This is the characteristic feature of all
alloys which emerge from the series Ni2Mn1+x(Ga, In, Sn,
Sb)1−x . This behavior is decisive since it influences mostly
the various kinds of functional properties mentioned above.
Another quite general observation is that the Ni-Mn exchange
interaction is usually FM and helps to stabilize a FM ground
state although the Mn-Mn interaction can be larger and AFM.
Details of first-principles and MC simulations show that the
actual magnetic spin configuration depends on composition,
temperature, and whether the system is in the austenitic or
martensitic phase.23,31

In this paper we report ab initio calculations of the
magnetic exchange parameters and Monte Carlo simulations
of the Curie temperatures of nonstoichiometrically ordered
and disordered Heusler Ni2Mn1+xSn1−x alloys. For some
nonstoichiometrically disordered alloys we consider different
degrees of disorder from 5% to 50% between Mn and Sn atoms.
For example, 5% of disorder in Ni2MnSn alloy means that 5%
of the Sn atoms on the regular Sn sublattice are randomly
replaced by 5% of Mn atoms, whereas 5% of Mn atoms at
the regular Mn sublattice are randomly replaced by 5% of
Sn atoms. Henceforth, we call this “structural disorder” to
be distinguished from the “chemical disorder” in the case of
Mn excess where the Mn excess atoms substitute Sn on the
Sn sublattice (denoted as “nonstoichiometrically ordered”).
We show that both types of disorder are required to explain
the magnetic trends of the Ni2Mn1+xSn1−x alloys in order to
reproduce the experimental trends.

The magnetic exchange parameters are calculated for
ordered (L21, 4O, and L10) structures and for such L21

structure in which partial disorder between Mn and Sn atoms
exists. For the ordered and “disordered” L21 structures, we
calculate the magnetization curves and plot the magnetic T-x
diagram of Ni2Mn1+xSn1−x alloys as it is obtained from
the MC simulations and mean-field approximation (MFA)
using the ab initio magnetic exchange parameters. Also,
the MC simulations of the magnetization curves for the
ordered and “disordered” L21 structure allow us to plot the
composition-disorder phase diagram displaying ferromagnetic
and antiferromagnetic (or ferrimagnetic) phases.

The paper is organized as follows. In Sec. II we discuss
the results of ab initio calculations of the magnetic properties
of ordered and disordered Ni-Mn-Sn systems. In Sec. III we
present the results of Monte Carlo simulations. Concluding
remarks are listed in Sec. IV.

II. AB INITIO CALCULATION OF THE MAGNETIC
PROPERTIES OF Ni2Mn1+xSn1−x ALLOYS

In this section, we present computational details of the
calculation of magnetic exchange parameters, magnetic mo-
ments, and densities of states (DOS) curves for the ordered and
disordered Ni2Mn1+xSn1−x alloys. The calculations have been
carried out for the high-temperature austenitic L21 structure
(space group Fm3m) and for the low-temperature martensitic
4O and L10 structures (space groups Pmma and Fmmm,
respectively). For the electronic structure calculations and
evaluation of exchange parameters we used the spin-polarized
relativistic Korringa-Kohn-Rostoker (SPR-KKR) code.32 The
effect of chemical disorder is taken by using the single-
site coherent-potential approximation (CPA). The magnetic
exchange parameters are calculated by using the formula from
the Ref. 33 (see also Refs. 34 and 35),

Jij = 1

4π

∫ EF

dE ImTr{�iτ
ij

↑ �jτ
ji

↓ }. (1)

τ is the scattering path operator and �i = t−1
i↑ − t−1

i↓ , where t is
the scattering t matrix. For disordered systems, the scattering
path operator in the single-site CPA expression,

τ ij = [
1 + τ 00

c

(
t−1
i − t−1

c

)]−1

× τ ij
c

[
1 + (

t−1
j − t−1

c

)
τ 00

c

]−1
, (2)

is substituted in Eq. (1). Here the exchange interaction between
a pair of spins is projected onto the classical Heisenberg Hamil-
tonian. Since within this method the exchange parameters are
computed from the total energy variation due to small rotations
of a pair of spins causing a perturbation in spin density, it is
obvious that structural disorder as well as changes of distance
between the atoms due to martensitic transformations will
greatly affect the magnetic exchange parameters Jij .

As just mentioned, in this paper we include the effect of
chemical disorder on the Jij using the single-site CPA. The
maximum number of CPA iterations and the CPA tolerance
were set to 20 and 0.01 mRy, respectively. The first step in these
calculations is to calculate the self-consistent potential (SCF).
The lmax (the angular momentum expansion for the major
component of the wave function) was restricted to two. For
SCF cycles, the scattering path operator was calculated by the
Brillouin zone (BZ) integration36 with the special point method
using a regular k-mesh grid of 223 with 834 k points. All
calculations were converged to 0.01 mRy of the total energy.
To achieve this convergence, we have used the BROYDEN2
scheme37–39 (an iterative quasi-Newton method to solve the
system of nonlinear equations) with the exchange-correlation
potential of Vosko-Wilk-Nusair (VWN).40 The BROYDEN2
scheme was started after a first iteration. The iteration depth
for the BROYDEN algorithm was set to 40. For the SCF
calculations the arclike contour path in the complex energy
plane has been chosen as in approach of weakly bound states
which are treated as core states. The upper end of the energy
path Emax is set to the Fermi energy EF . Regarding the
real part of lowest energy value we have used the value of
Emin = −0.2 Ry. The number of E-mesh points was set to
30. In order to achieve faster convergence, the SCF mixing
parameter was set to 0.20. The maximum number of SCF
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TABLE I. Lattice parameters (Å) of Ni2Mn1+xSn1−x (Refs. 5,7, and 8).

Structure L21

x 0 0.1 0.2 0.27 0.3 0.33 0.37 0.4
a = b = c 6.046 6.034 6.024 6.009 6.005 6.002 5.998 5.995

Structure 4O
x 0.43 0.48 0.52 0.55 0.59
a 8.584 8.584 8.583 8.583 8.583
b 5.602 5.602 5.602 5.602 5.601
c 4.362 4.362 4.362 4.361 4.361

Structure L10

x 0.8 0.85 0.9
a 7.595 7.592 7.589
b 7.595 7.592 7.589
c 6.98 6.96 6.93
c/a 0.919 0.916 0.913

iterations was taken to 200. The self-consistent potential is
then used to calculate the magnetic exchange parameters
with the help of the KKR Green’s function method and
the formulation of Liechtenstein et al.33 For that we have
taken the spin-polarized scalar-relativistic (SP-SREL) Dirac-
Hamiltonian with an orbital momentum cutoff of lmax = 2 on
a grid of 573, i.e., 4495 k points. As the solver for SP-SREL
differential equations the Bulirsch-Stoer (BS) method39 with
a tolerance of 2 × 10−8 was used. The exchange coupling
parameters are calculated with respect to the central site i

of a cluster atoms with the radius Rclu = max|Ri − Rj |. We
have taken the radius of a sphere Rclu of 2.5. For the lattice
parameters we have used the values from Refs. 5,7, and 8
which are listed in Table I.

The ab initio magnetic exchange parameters of the ordered
structures of Ni2Mn1+xSn1−x are presented in Fig. 1. We
emphasize again that for the “ordered nonstoichiometric”
structures the excess Mn atoms (x) substitute Sn atoms
(chemical disorder) not to be confused with the structural
disorder (y) which is defined here as an additional intermixing
of Mn and Sn on the corresponding Mn and Sn sublattices
with concentration y. Figure 1 clearly reveals that for the
cubic L21 structure in the range of compositions 0 � x � 0.27,
Mn excess leads to an insignificant decrease of the Mn1-Mn1

and Mn1-Ni interactions (Mn1 and Mn2 denote atoms on
regular Mn and Sn sublattice sites, respectively), whereas the
Mn1-Mn2 and Mn2-Ni interactions are negligibly small. In
contrast, in the range of compositions 0.28 � x � 0.4, we
notice a rapid change of magnetic interactions. For example,
the Mn1-Mn1 (Mn1-Ni and Mn2-Ni) interaction is decreased
(enhanced) with increasing Mn excess.

Moreover the Mn1-Mn2 interaction for alloys with x �
0.28 is predominantly of AFM type. It should be noted
that alloys with x � 0.28 are closely in composition to the
alloys which undergo a martensitic transformation. It turns
out that in the case of orthorhombic structure (4O), the AFM
Mn1-Mn2 interaction is largest compared to other structures
(the modulated monoclinic structures are not considered).
The Mn1-Mn1 interactions are practically zero. This behavior
indicates that there is a crossover from ferromagnetism to

antiferromagnetism with increasing Mn excess. As stated
before, the AFM ordering with increasing content of Mn
is connected with the decrease of nearest-neighbor Mn-Mn
distances. As shown in Ref. 23, the binary alloy Ni-Mn is
antiferromagnetic with a Néel temperature of 1075 K as
obtained from MC simulations. We would like to point out that
the large AFM interactions are also responsible for the rapid
drop in the magnetization curves of Ni-Mn-Sn alloys at the
structural phase transition which leads to EBE and the inverse
MCE. It should also be noted that our theoretical magnetic
exchange parameters for the Ni-Mn-Sn alloys are close to
the values which were obtained previously by Şaşıoğlu22 and
Entel.23

Figure 2 shows the experimental and theoretical concen-
tration dependence of the total magnetic moment per formula
unit, μtot, for the cubic L21 structure of Ni2Mn1+xSn1−x alloys
in the range 0 � x � 0.4. The experimental magnetic mo-
ments were taken from Ref. 8 (estimated from the spontaneous
magnetization curves). Theoretical values of μMn1 , μMn2 , and
μNi have been calculated for the ordered structure of Ni-Mn-Sn
using the SPR-KKR package. The total magnetic moment per
formula unit of Ni2Mn1+xSn1−x is given by

μtot = 2μNi + μMn1 − x μMn2 . (3)

In the expression for μtot we take into account that the
magnetic moment of Mn2 atoms located on the Sn sites
in Ni2Mn1+xSn1−x is antiferromagnetically coupled to the
magnetic moments of the Mn1 atoms on the Mn sites.6,20,41

As shown in Fig. 2, the theoretical and experimental values
of the magnetic moments decrease with increasing x. The
theoretical data show a drop of the magnetic moment in
the range 0.27 < x < 0.3. This drop is cause by the strong
AFM interaction between Mn1 and Mn2 atoms; see Fig. 1(e)
which goes hand in hand with the martensitic transition in this
range of compositions although the experimental data show
that the structural transition occurs in samples with x = 0.4.
Nonetheless, Fig. 2 suggests that the calculated magnetic
moments are in rather good agreement with the experimental
data. It should be noted that in the paper of Ito et al. it was
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FIG. 1. (Color online) (a)–(d) The ab initio magnetic exchange parameters Jij of Ni2Mn1+xSn1−x for x = 0, 0.4, 0.52, 0.8 as a function
of the distance d/a between the atoms in units of the lattice constant a. For instance, Mn1-Mn2 in the panel denotes the exchange interaction
between the first atom (Mn1) at the origin and the second atom (Mn2) a distance d/a apart. (e) Composition dependence of magnetic exchange
parameters in the first coordination shell of Ni2Mn1+xSn1−x .
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FIG. 2. (Color online) The experimental and theoretical (for the
ordered structure) concentration dependence of the magnetic moment
of Ni2Mn1+xSn1−x alloys. The open (filled) symbols refer to the
experimental (ab initio) data with experimental data from Ref. 8.

shown that the magnetic moment of Ni2Mn1+xSn1−x first
decreases with increasing x, reaches a minimum, and then
increases again.42 On the basis of our ab initio we cannot
confirm that there is indeed such an intrinsic dependence.

We have also studied the influence of partial disorder be-
tween Mn and Sn atoms on the magnetic exchange parameters
and magnetic moments of Ni2Mn1+xSn1−x . Figure 3 shows the
dependence of the exchange parameters on the concentration
of Mn excess and the disorder between Mn and Sn atoms. It
should be noted that, for instance, a disorder of 10% means
that 10% of regular Mn (Sn) sites are now occupied by the Sn
(Mn) atoms which corresponds to a partially disordered B2
phase.

Clearly, the disorder has strong influence on the magnetic
exchange parameters; see Fig. 3. We notice that first, the
compositional dependence is rather smooth and second, the
compositional range of rapid change of magnetic exchange
parameters decreases with increasing disorder. For example,
the Mn1-Mn1 interaction in Fig. 3(a) is reduced linearly with
Mn excess due to increasing disorder. For 50% disorder
and composition Ni2Mn1.4Sn0.6 the Mn1-Mn1 interaction is
approximately zero. This means that disorder destabilizes
ferromagnetic order in cubic austenite of Ni-Mn-Sn and favors
the appearance of strong AFM exchange between Mn1-Mn2

atoms in the whole concentration range of austenite (0 � x �
0.4), see Fig. 3(b), in comparison to the trend of Mn1-Mn2

interactions for the case of ordered structures. From Fig. 1(e)
we may infer that the strong AFM exchange interaction is
observed for the ordered systems only in the composition
interval 0.27 < x � 0.4. Further increase of disorder does not
lead to a large decrease of the AFM exchange parameters.
Figure 3(c) shows that for the case of ordered structures
the Mn2-Ni exchange is almost zero for the composition
interval 0 � x � 0.27. The increasing of disorder leads to
the increasing of the Mn2-Ni exchange [Fig. 3(d)]. On the
other hand, it is obvious from Fig. 3(d) that the Mn1(Mn2)-Ni
exchange increases linearly with increasing Mn excess and
that the Mn1-Ni and Mn2-Ni exchange parameters are of
the same magnitude for the ordered systems. Figures 3(e)

and 3(f) show the dependencies of exchange parameters on
the structural disorder (y) for x = 0.21 and 0.31. It is seen
that the Mn1-Mn1 interactions almost linearly decrease with
the increasing of the structural disorder, the Mn1(Mn2)-Ni
exchange not depend on the disorder degree, and Mn1-Mn2

interactions depend nonlinearly on the structural disorder.
The increasing of the AFM interactions with increasing of
the structural disorder after 40% of the disorder can be
explained by the increasing of the number of Mn2 atoms on Sn
sites.

We notice that for the case of ordered structures the Mn1-Ni
exchange practically does not change in the compositional
range from 0 to 0.27, whereas the Mn2-Ni interaction has
practically zero value [Fig. 3(c)]. However, for the range
0.27 < x � 0.4 this interaction rises sharply. The drop is due
to the strong AFM exchange between Mn1 and Mn2; see
Fig. 1(e). If we compare the exchange of Mn1(Mn2)-Ni for
ordered and disordered cases, we notice that the exchange
parameters of the ordered systems and disordered structures
have the same slope in the range 0.27 < x � 0.4.

In Fig. 4(a) we show the electronic density of states curves
of Ni2Mn1.21Sn0.79 for different degrees of disorder. We notice
that for the ordered case the DOS curve is shifted as a whole
to lower energies by ≈0.4 eV. We also observe that with
increasing degree of disorder all peaks in the DOS curves
are diminished. The DOS at the Fermi level of spin-down
electrons is increased compared to the ordered case. For
spin-up electrons the DOS at EF does not depend much on
the degree of disorder. Figure 4(b) shows the DOS curves for
Ni2Mn1.31Sn0.69. In this case the DOS curves for the ordered
alloy are not shifted.

The value of the spin-down DOS at EF of Ni2Mn1+xSn1−x

(x = 0–0.4) is plotted in Fig. 5 for different degrees of
disorder (from 0% to 50%). The DOS value for the ordered
alloy (0%) increases with increasing concentration and in the
concentration range 0.27 � x � 0.29 shows a jump followed
by a constant value. This jump is caused by the strong AFM
interaction between Mn1 and Mn2 atoms; see Fig. 1(e). If
we allow for disorder then the jump is shifted to lower
concentration. For 10% and higher disorder the jump has
vanished and the DOS value increases monotonously, since
in these cases the strong AFM interactions are observed in the
whole composition range of L21 cubic structure as shown by
our ab initio calculations [see Figs. 3(b) and 3(f)].

Figure 6 shows the theoretical dependence of the magnetic
moment on excess Mn and disorder between Mn and Sn
atoms in Ni2Mn1+xSn1−x . The behavior of μtot is presented in
Fig. 6(a) while μMn1 and μMn2 are plotted in Fig. 6(b). In this
case μtot per formula unit of the disordered Ni2Mn1+xSn1−x

alloys is given by

μtot = 2μNi + (1 − y)μMn1 − (y + x)μMn2 (4)

where y denotes the degree of structural disorder.
With increasing degree of disorder the total magnetic

moment decreases smoothly with increasing x. For a large
degree of disorder (more than 40%) the magnetic moment
can even become zero or negative. This means that with
increasing degree of disorder the alloy makes a transition to
an antiferromagnetic (AFM) or a ferrimagnetic (FRM) state.
This crossover has been discussed before. It is associated with
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FIG. 3. (Color online) The dependence of the ab initio magnetic exchange parameters of the first coordination shell of Ni2Mn1+xSn1−x on
composition and disorder between Mn and Sn atoms. (a) The variation of the Mn1-Mn1 exchange parameters as a function of x for different
degrees of disorder (y) ranging from zero to 50%. (b) The Mn1-Mn2 and (c) and (d) the Mn1-Ni (filled symbols) and Mn2-Ni (open symbols)
exchange parameters. (e) and (f) The dependence of the exchange parameters from the degree of disorder for two compositions (x = 0.21 and
x = 0.31).

the competition between ferromagnetic Mn1-Mn1, Mn1-Ni,
and Mn2-Ni exchange interactions and the antiferromagnetic
Mn1-Mn2 ones. It is well known that Mn which substitutes
Sn becomes antiferromagnetically coupled to the surrounding
Mn atoms which sit on the regular Mn sublattice. This allows
us to describe the physics in terms of the first one being the
Mn1 sublattice and the second one the Mn2 sublattice. With
increasing degree of disorder the number of Mn atoms on the
second sublattice increases but the magnetic moment (μMn2 ) of
this sublattice decreases; see Fig. 6(b). The opposite situation is
observed for the Mn1 sublattice; here, the number of Mn atoms
decreases with increasing disorder but the magnetic moment

μMn1 of this sublattice increases. At some degree of disorder
the magnetic moments of both sublattices are equal and the
alloy transforms to an antiferromagnetic state (for example,
for composition Ni2Mn1.2Sn0.8 with a degree of disorder of
40%). With further increase of disorder a ferrimagnetic state
can be achieved with μMn1 > μMn2 while the full magnetic
moment of the alloy will be negative. This information may
be used to derive from the MC simulations a compositional-
disorder phase diagram for the Ni2Mn1+xSn1−x alloys which is
presented in the next section. We note that a similar tendency
of the overall behavior of the magnetic moments has been
observed experimentally and theoretically for the quaternary
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FIG. 4. (Color online) The total electronic DOS curves for the
cubic structure of (a) Ni2Mn1.21Sn0.79 and (b) Ni2Mn1.31Sn0.69 with
different degrees of disorder (y).

Heusler compound Mn2−xCoxVAl with B2 order.43 In this
work the increase of Co content leads to a negative total
magnetic moment and hence to the antiferromagnetic and
ferrimagnetic order.
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FIG. 5. (Color online) The compositional dependence of the spin-
down DOS at the Fermi level of Ni2Mn1+xSn1−x as a function of x

and different degrees of disorder.

0 0.1 0.2 0.3 0.4
Mn excess (x)

0

1

2

3

4

T
ot

al
 m

ag
ne

tic
 m

om
en

t (
µ B

/f.
u.

)

 0 %
10 %
20 %
30 %
40 %
50 %

(a)  Ni2Mn1+xSn1-x  (µ
tot

)

0 0.1 0.2 0.3 0.4
Mn excess (x)

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

M
ag

ne
tic

 m
om

en
t (

M
n 1, M

n 2) 
 (

µ B
/f.

u.
)

10 %
20 %
30 %
40 %
50 %

(b)  Ni2Mn1+xSn1-x  (µMn1
, µMn2

)

µMn1
:  filled symbols

µMn2
:  open symbols

FIG. 6. (Color online) Theoretical magnetic moments per
formula unit of Ni2Mn1+xSn1−x as a function of the composition
x and structural disorder (y) showing the (a) dependence of the
total magnetic moment (μtot) and (b) dependence of the magnetic
moments μMn1 and μMn2 . Lines with filled (open) symbols mark
μMn1 and μMn2 , respectively.

III. EVALUATION OF THE COMPOSITION-DEPENDENT
CURIE TEMPERATURES

In this section, we discuss the Curie temperatures of ordered
and disordered Ni2Mn1+xSn1−x alloys using the MFA and the
MC simulations by employing the Heisenberg model.

The mean-field solution of the Heisenberg model has been
obtained by diagonalizing corresponding matrices for the
magnetic exchange parameters which can be obtained from
the coupled equations for a multisublattice material.22,27,44 We
would like to remind the reader that the crystal structure of
L21 Ni-Mn-Sn austenite consists of four interpenetrating fcc
lattices A, B, C, and D with origin (A) at ( 1

2 , 1
2 , 1

2 ), (B) at
( 1

4 , 1
4 , 1

4 ), and (C) and (D) at ( 3
4 , 3

4 , 3
4 ) and (0,0,0), respectively.

Mn and Sn occupy the A and D and Ni occupies the B and C
sites. Since the excess Mn atoms are distributed randomly on
the Sn sublattice, and Sn is assumed to be nonmagnetic, we
consider a multisublattice Heusler system where Mn1 (Mn2)
are located on sublattices A and D and two Ni sublattices B and
C. The system of coupled equations (3)–(6) listed below has
nontrivial solutions if the corresponding determinant is zero
whereby the largest eigenvalue of the determinant determines
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the Curie temperature:

3
2kBT SA = nAJAASA + nAJABSB + nAJACSC

+ nAnDJADSD, (5)
3
2kBT SB = nAJBASA + JBBSB + JBCSC

+ nDJBDSD, (6)

3
2kBT SC = nAJCASA + JCBSB + JCCSC

+ nDJCDSD, (7)

3
2kBT SD = nAnDJDASA + nDJDBSB + nDJDCSC

+ nDJDDSD. (8)

Here, the Jml (m,l = A,B,C,D) represent the total sum
of the ab initio exchange interactions between the m and l

sublattices; nm is the concentration of each atom in the non-
stoichiometric Heusler alloys; Sm is the average z component
of the spin.

For the Ni2Mn1+xSn1−x alloys we have used the following
parameters: nMn1 = 1, nMn2 = x (where x = 0 . . . 0.4). The
summed values Jmn (where m, n = Mn1, Mn2, Ni) have
been obtained from the SPR-KKR calculations. In order
to check this method for nonstoichiometric Heusler alloys,
we have simulated the concentration dependence of the
Curie temperature of Ni2+xMn1−xGa alloys for the cubic
and tetragonal structures45 as exemplary cases. We find that
our Curie temperatures are in good agreement with other
theoretical values which were obtained by Li et al.44 For
example, in the case of x = 0 (0.25) we obtain for the
Curie temperature of austenite (T A

C ) and martensite (T M
C ,

c/a = 1.25) T A
C = 435 K and T M

C = 615 K (T A
C = 286 K,

T M
C = 378 K). Approximately, similar values have been

presented by Li et al.44 (x = 0: T A
C = 462 K, T M

C = 658 K, and
x = 0.25: T A

C = 263 K, T M
C = 362 K). The small differences

in Curie temperatures can be associated with the different
methods when calculating the magnetic exchange parameters.
In this context, we would like to point out that if we take into
account two sublattices A and B, for example, for stoichiometic
Ni2MnGa (Ni2MnSn), we obtain Curie temperatures very
close to the experimental values, T A

C = 389 K (Ga) [T A
C =

352 K (Sn)], respectively (compare also Ref. 22). However,
this is not completely accurate since we have to take into
account the Ni sublattices as well (as is done here).

The Monte Carlo simulations have been performed for the
real three-dimensional Heusler lattice using the Metropolis
algorithm.46 In its simplest version, some new, random spin
direction is chosen and the energy change which would result
if this new spin orientation is kept is then calculated. The
number of sites is N = L3, where L is the number of cubic
unit cells of the Heusler alloys. We have used L = 7 which in
the case of Ni2MnSn leads to a simulation cell which contains
1687 Mn1, 1688 Sn, and 2744 Ni atoms. The configurations of
excess Mn2 atoms on the Sn sublattice are chosen randomly
and the total number of Mn2 atoms is fixed by the composition
Ni2Mn1+xSn1−x . In our MC simulations, we considered only
magnetic interactions between magnetic Mn1, Mn2, and Ni
atoms and have taken into account interactions within three
coordination spheres. For example, each Mn1 atom interacts
with 42 Mn1 atoms, 38 Mn2 atoms, and 56 Ni atoms. The

model Hamiltonian is written as

Hm = −
∑
〈ij〉

Ji,j SiSj , (9)

where the Jij are the magnetic exchange parameters (positive
in the case of FM interactions and negative in case of AFM
interactions depending on the distance between the atoms);
Si = (Sx

i ,S
y

i ,Sz
i ) is a classical Heisenberg spin variable |Si | =

1. The values of the magnetic exchange constants have been
taken from our ab initio calculations.

As a time unit, we have used one Monte Carlo step
consisting of N attempts to change the Si variables. A new
spin direction can be chosen by randomly choosing new spin
components. The spin components are chosen in the following
manner.46 Two random numbers r1 and r2 are chosen from
the interval [0, 1] to produce a vector with two components
ζ1 = 1 − 2r1 and ζ2 = 1 − 2r2. The length of the vector is
determined by ζ 2 = ζ 2

1 + ζ 2
2 and if ζ 2 < 1, then a new spin

vector is computed with components

Sx = 2ζ1

√
1 − ζ 2, (10a)

Sy = 2ζ2

√
1 − ζ 2, (10b)

Sz = 1 − 2ζ 2. (10c)

For a given temperature the number of MC steps at each site
was taken as 105. The simulation started from the ferromag-
netic phase with Sz

i = 1. In order to obtain equilibrium values
of the internal energy and order parameter, the first 104 MC
steps were discarded. The internal energy of the system and
the order parameter were averaged over 225 configurations
for each 400 MC steps. The order parameter is defined in the
following way:

mα = 1

Nα

∑
i

√(
S

α,x
i

)2 + (
S

α,y

i

)2 + (
S

α,z
i

)2
, (11)

where α denotes Mn1, Mn2, and Ni and Nα the total number
of α atoms; i runs over the corresponding lattice sites of the α

atoms.
According to Eq. (4) the total magnetization for non-

stoichiometric ordered (y = 0) and disordered (y �= 0)
Ni2Mn1+xSn1−x alloys is calculated as

M = 2μNi m
Ni + (1 − y)μMn1 mMn1 − (y + x)μMn2 mMn2

(12)

with mα given by Eq. (11). The dependence of the magnetic
moments (μMn1 and μMn2 ) on the composition and structural
disorder allows us to derive the composition-disorder phase
diagram of Ni2Mn1+xSn1−x alloys (see Fig. 7) using the
Heisenberg model and MC method.

The gray area in Fig. 7 marks the region of stable FM
austenite with nonvanishing total magnetization given by
Eq. (12) and finite Curie temperature, respectively. With
increasing degree of disorder, i.e., with increasing inter-
mixing of Mn and Sn on the corresponding Mn and Sn
sublattices with concentration y (which can be described by
Ni2Mn1+xSn1−x = Ni2Mn1−ySnyMnx+ySn1−x−y where x is
the Mn excess concentration and y the degree of disorder),
an AFM or FRM austenitic phase appears (white area). It is
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FIG. 7. (Color online) Calculated composition-disorder phase
diagram of Ni2Mn1+xSn1−x (Ni2Mn1−ySnyMnx+ySn1−x−y). Here FM
marks the region of the ferromagnetic phase while AFM and FRM
denotes the antiferromagnetic or ferrimagnetic one.

interesting to note that for large disorder (y) and deviation
from stoichiometric composition (x) we obtain μMn1 > μMn2

[compare Fig. 6(b)], although the number of Mn2 atoms may
become larger compared to the number of Mn1 atoms. This
can lead to zero or negative values of the total magnetization
although the sublattice magnetizations mMn1 and mMn2 are
nonzero emphasizing the existence of an AFM or FRM
phase.

Figures 8(a) and 8(b) show the magnetization curves of
Ni2Mn1+xSn1−x alloys for the cubic “L21” structure in zero
magnetic field with degree of disorder (y) between Mn and Sn
atoms ranging from 0% to 25%. Finally, Fig. 8(c) displays the
experimental (T ,x) phase diagram taken from Ref. 8 to which
we have added the theoretical Curie temperatures.

Obviously, the experimental Curie temperatures (open
circles) do not vary much with Mn excess up to x = 0.5.
This is in contrast to the theoretical TC values (filled circles)
which decrease between 0 � x � 0.27 in case of vanishing
disorder, y = 0. This can be related to a slow reduction of
the magnetic exchange interaction between Mn and Ni for
this range of composition; see Fig. 1(e). For the subsequent
range of compositions, 0.28 < x � 0.4, we observe stronger
interactions leading to an increase of TC(x). The same trend
is found when using the mean-field approximation (filled
diamonds). However, if we allow for disorder (y = 25 at. %)
we can reproduce the approximately constant behavior of
the experimental Curie temperatures in the compositional
range 0 � x � 0.4 (filled right triangles) which underlines
the importance of intermixing effects in the Mn and Sn
sublattices.

We have investigated the influence of disorder between Mn
and Sn atoms on the Curie temperature more systematically.
The Monte Carlo simulations of the Heisenberg model show
that already for a disorder of 5% the Curie temperature is
of the order of 400 K for all compositions from the interval
0.1 < x < 0.3. Further increase of the degree of disorder leads
to a small reduction of TC . For y = 0.5–0.25, TC practically
does not change for compositions with 0 � x � 0.4. The best
agreement between theoretical and experimental results is
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FIG. 8. (Color online) (a) Magnetization curves of
Ni2Mn1+xSn1−x (0 � x � 0.4) as a function of temperature
in zero magnetic field and vanishing disorder (y = 0).
(b) Magnetization curves of Ni2Mn1+xSn1−x (0 � x � 0.31)
in zero magnetic field for 25% disorder. (c) Experimental (T ,x)
phase diagram of Ni2Mn1+xSn1−x to which the theoretical Curie
temperatures have been added. The curves with open (filled) symbols
mark the experimental (theoretical) data where the experimental data
have been taken from Ref. 8.

obtained for a disorder of 25%; see Fig. 8(c). It should be noted
we have also performed ab initio calculations of the magnetic
exchange parameters and subsequent Monte Carlo simulations
in order to obtain the Curie temperature for compositions
with different disorder between Ni and Mn atoms. It seems
that this type of intermixing is not realistic and does not
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reflect the actual composition since in this case the calculated
Curie temperatures deviate largely from the experimental ones.
We tentatively conclude that structural disorder in Ni-Mn-Sn
alloys involves primarily Mn and Sn on the corresponding two
fcc sublattices.

IV. SUMMARY

We have investigated the effect of structural order and dis-
order on the magnetic properties of Ni2Mn1+xSn1−x alloys in
the concentration range (0 � x � 0.9) on the basis of density
functional theory calculation and Monte Carlo simulations
of the classical Heisenberg model. The magnetic exchange
parameters and magnetic moments as well as the electronic
structure and density of states curves have been determined
by the ab initio calculations using the SPR-KKR package.
The calculations reveal that strong AFM exchange interaction
exists between nearest-neighbor Mn1-Mn2 atoms with Mn1

located on the original Mn sublattice and Mn2 on the Sn
sublattice. This AFM interaction is important, i.e., particularly
strong, in the region 0.27 < x � 0.4.

The largest AFM interactions have been obtained for the
martensitic phase of Ni2Mn1+xSn1−x in the compositional
range 0.4 < x � 0.6. Any further increase of the Mn content
leads to decreasing FM and AFM Mn-Mn exchange interac-
tions.

It should be noted that the AFM Mn1-Mn2 interactions
are predominant in tetragonally distorted L10-like martensite
for the range 0.8 � x � 0.9 where the FM Mn1-Mn1 inter-
actions are approximately close to zero. This agrees with
the experimental observation that the binary Ni-Mn alloy is
antiferromagnetic. The calculations also show the important
role of an additional degree of disorder between Mn and Sn (y)

on the magnetic properties of Ni2Mn1+xSn1−x . This structural
disorder in the L21 structure leads to strong AFM interactions
between Mn1 and Mn2 in the composition range 0 � x � 0.4.
Moreover, with increasing x and y an AFM or ferrimagnetic
austenitic phase is stabilized.

The Curie temperatures have been obtained from the MC
simulations using the ab initio magnetic exchange parameters
as input (in addition, we have calculated the magnetic
transition temperatures using the MFA for the classical
Heisenberg Hamiltonian by solving a matrix equation for the
multisublattice system). The numerical results for the Curie
temperatures in the case of structural disorder (y = 0.25) agree
well with the experimental data.

We would like to point out that when taking into account
the partially disordered B2 austenitic phase (y �= 0), we
find a stabilizing effect on the Curie temperature in the
compositional range 0 � x � 0.4. This is clearly in contrast
to the case of an ordered L21 structure (y = 0) where both
the MC simulations and MFA lead to drastic changes of the
Curie temperature with increasing x. This means that partial
structural disorder is one way to control the Curie temperature
in some compositional range. We expect that this fact may
be used to improve functional properties like the magnetic
shape memory effect by, for example, appropriate alloying.
On the other hand, the increase of AFM correlations may be
used to enhance the magnetocaloric and exchange bias effects
of the magnetic Heusler alloys.
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