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Correspondence between long-range and short-range spin glasses
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We compare the critical behavior of the short-range Ising spin glass with a spin glass with long-range
interactions which fall off as a power σ of the distance. We show that there is a value of σ of the long-range
model for which the critical behavior is very similar to that of the short-range model in four dimensions. We also
study a value of σ for which we find the critical behavior to be compatible with that of the three-dimensional
model, although we have much less precision than in the four-dimensional case.

DOI: 10.1103/PhysRevB.86.134416 PACS number(s): 75.50.Lk, 75.40.Mg, 05.50.+q

I. INTRODUCTION

In the theory of systems at their critical point it is instructive
to consider a range of dimensions d, since above an upper
critical dimension du the critical behavior becomes quite
simple and corresponds to that of mean-field theory. Hence it is
desirable to understand critical behavior up to, and just above,
d = du. For the case of spin glasses,1 where much of what
we know has come from numerical simulations, this has been
difficult because (i) the value of du is quite large (du = 6 as
opposed to 4 for conventional systems like ferromagnets) and
(ii) the slow dynamics, coming from the complicated “energy
landscape,” prevents equilibration of systems with more than
of order 104 spins at and below the transition temperature Tc.
Since the total number of spins V is related to the linear size
L by V = Ld , for dimensions around du (=6) it is then not
possible to study a range of values of L, which, however, is
necessary to carry out a finite-size scaling2,3 (FSS) analysis.

It has been proposed4 to try to circumvent this problem by
using, instead, a one-dimensional spin-glass model in which
the interactions Jij fall off as a power of the distance, roughly
Jij ∼ 1/|ri − rj |σ , since varying σ in this one-dimensional
(1D) model seems to be analogous to varying d in a short-range
models. In both cases there is a range where there is no
transition (d is below a lower critical dimension dl , and
σ greater than a certain value σl), a range where there
is a transition with non-mean-field exponents (dl < d < du,
σl > σ > σu for a certain σu which turns out to be 2/3),
and a transition with mean-field exponents (du < d < ∞,
σu > σ > 1/2). The advantage of the 1D model is that one can
study a large range of linear sizes for the whole range of σ .
Consequently, there have been several subsequent studies5–12

on these models.
The question that we tackle here is whether this connection

between long-range models in one dimension and short-range
models in a range of dimensions is just a vague analogy or
whether the connection can be made precise in the following
sense: for a given d is there a value of σ such that all the critical
exponents of the short-range model correspond with those of
the long-range model [in the sense of Eq. (5) below]? We will
denote the value of σ in Eq. (5) as a proxy for the dimension d.

A relation between the long-range (LR) and short-range
(SR) exponents has been proposed in Ref. 8. We reproduce

their argument here in a more general formulation. Consider
the singular part of the free-energy density. For a system in d

dimensions it has the scaling form

fsing = 1

Ld
f̃ (LyT t,LyH h,Lyuu), (1)

where f̃ is a scaling function, t ≡ (T − Tc)/Tc is the reduced
temperature, h is the magnetic field (for a spin glass it is
actually the variance of a random field), u is the operator
which gives the leading correction to scaling, yT is the thermal
exponent, yH is the magnetic exponent, and yu (<0) is the
exponent for the leading correction to scaling. These exponents
can be expressed in terms of more commonly used exponents,

yT = 1

ν
, yH = 1

2
(d + 2 − η), yu = −ω, (2)

where ν is the correlation-length exponent, η describes the
power-law decay of correlations at the critical point, and
ω > 0.

We make a connection between the two models by equating
the singular part of their free-energy densities. Let V be the
total number of spins (so V = Ld in the short-range model,
while V = L for the long-range model). We compare the two
free-energy densities for systems with the same number of
spins V = Ld

SR = LLR:

1
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(
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)
. (3)

In order to compare exponents we need to eliminate the
different prefactors in front of the scaling functions by writing
everything in terms of the total number of spins. Canceling a
factor of 1/V on both sides gives

f̃SR
(
V ySR

T /d t,V ySR
H /dh,V ySR

u /du
) = f̃LR

(
V yLR

T t,V yLR
H h,V yLR

u u
)
.

(4)

Hence, for each of the exponents, the correspondence between
the LR and SR values is

yLR(σ ) = ySR(d)

d
. (5)
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We note that in the mean-field regime, 6 < d < ∞, 2/3 >

σ > 1/2, Eq. (5) holds consistently8 for the thermal, magnetic,
and correction exponents with

d = 2

2σ − 1
(mean-field regime), (6)

since13,14 ηSR = 0,ηLR = 3 − 2σ, νSR = 1/2, νLR = 1/(2σ −
1),ωSR = (d − 6)/2, and ωLR = 2 − 3σ . Furthermore, the
exponents also match to first order in 6 − d for the SR model
and σ − 2/3 for the LR model.15 Actually, Eq. (5) (at least as
applied to the thermal exponent ν = 1/yT ) can be derived for
all d and σ from a superuniversality hypothesis.16

In this paper we will investigate whether, for d = 3 and 4,
we can find a value of σ which satisfies Eq. (5) simultaneously
for the thermal, magnetic, and correction-to-scaling exponents.

One advantage of long-range systems is that the exponent
η is known exactly, as was first shown by Fisher et al.17 for
ferromagnets. The result for spin glasses is

2 − ηLR(σ ) = 2σ − 1, (7)

so Eq. (5) for the magnetic exponent yH (=(d + 2 − η)/2) can
be written8

2σ − 1 = 2 − ηSR(d)

d
, (8)

which immediately gives us a value of σ that acts as a proxy
for d provided we know ηSR(d). For d = 3, the values of ηSR as
well as of other exponents have been determined accurately by
Hasenbusch et al.,18 and we use their values here. In particular,
they find ηSR(3) = −0.375(10), which, according to Eq. (8),
corresponds to a proxy value σ = 0.896. We shall therefore
perform simulations for this value of σ to see if the other
exponents, yT and yu, also match those of the d = 3 results18

according to Eq. (5).
However, for d = 4, the values of ηSR and the other

exponents are not known with great precision, so we carry
out a careful study of this model here to determine them more
accurately. We find ηSR(4) = −0.320(13) for which the proxy
value of σ , according to Eq. (8), is σ = 0.790. We therefore
also study this value of σ to see if the other exponents match
those of the d = 4 simulations according to Eq. (5).

It is also convenient to note that Eq. (5) for the thermal
exponent yT (=1/ν) can be written

νLR(σ ) = d νSR(d), (9)

and, since yu = −ω, the connection between the correction-
to-scaling exponents is

ωLR(σ ) = ωSR(d)

d
. (10)

To summarize, the main goal of this paper is to see if there is a
single value of σ which simultaneously satisfies Eqs. (8)–(10)
for d = 3 and (with a different value of σ ) for d = 4.

The plan of this paper is as follows. In Sec. II we describe the
model and the observables we calculate. Section III discusses
the finite-size-scaling analysis, while Sec. IV describes the
details of the simulations. The results and analysis are
presented in Sec. V, and our conclusions are summarized in
Sec. VI.

II. MODEL AND OBSERVABLES

We consider the Edwards-Anderson spin-glass model with
Hamiltonian

H = −
∑
〈i,j〉

JijSiSj , (11)

where the Ising spins Si take values ±1 and the quenched
interactions Jij are independent random variables, the form of
which will be different for the different models that we study.

The first model is a nearest-neighbor spin glass in four
dimensions in which the Jij take values ±1 with equal
probability if i and j are nearest neighbors, and are 0 otherwise,
i.e., the probability distribution is

P (Jij ) =
{

1
2 [δ(Jij − 1) + δ(Jij + 1)] (i,j neighbors),

δ(Jij ) (otherwise).
(12)

The advantage of the ±1 interactions is that we are able to
use multispin coding,19 in which the interactions and the spins
are represented by a single bit rather than a whole word. In
fact, our C code uses 128-bit words, using the streaming SIMD

extensions, so we simulate 128 samples in parallel. In order
to gain the full speedup, we use the same random numbers
for each of the 128 samples in a “batch.” Hence, while the
results for each sample are unbiased, there may be correlations
between samples in the same batch. Consequently, when we
estimate error bars we first average over the samples in a batch
and use this average as a single data point in the analysis. Data
from different batches are uncorrelated.

The spins are on a four-dimensional hypercubic lattice of
linear size L with periodic boundary conditions. The total
number of spins is V = L4.

The description of the interactions we take for the 1D
models is a bit more complicated. The interactions must fall
off with distance such that[

J 2
ij

]
av ∝ 1

r2σ
ij

, (13)

where rij = |ri − rj | [the i = 0,1, . . . ,L − 1 sites in the graph
are placed in a circle of radius L/(2π ), and the site i is at angle
i2π/L]. On the other hand [· · · ]av denotes an average over the
interactions. The simplest way to do this is to have every
spin interact with every other spin with an interaction strength
which has zero mean and standard deviation proportional to
1/rσ

ij . However, this is inefficient to simulate for large sizes,
because the CPU time per sweep is of order L2, rather than
Lz in short-range systems with coordination number z.20

Fortunately, it was realized by Leuzzi et al.10 that one can
have the CPU time scale also as Lz for the long-range model
if one dilutes it. In their version, most interactions are zero and
those that are nonzero have a strength of unity (i.e., the strength
does not decrease with distance). Rather it is the probability of
the interaction being nonzero which deceases with distance.
In the specific construction of Leuzzi et al.10 there are a total
of Lz/2 nonzero interactions with an average degree (i.e.,
coordination number) of z and the probability of a nonzero
interaction given by

pij = 1 − exp
(−A

/
r2σ
ij

) (�A
/
r2σ
ij at large rij

)
, (14)
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where A is chosen so that the mean degree is equal to some
specified value z.

In the Leuzzi et al. model, the degree is not the same for all
sites but has a Poisson distribution with mean z. Since we wish
to implement multispin coding, and since the computer code
for this depends strongly on the degree (and gets complicated
for large degree), we study, instead, a model with fixed degree.

Before discussing how we generate these bonds, we should
discuss to what extent physical properties will be modified. In
a recent work,24 the critical properties of the fully interacting
model were compared with those of the diluted model by
Leuzzi et al. The computation was carried out in the limit of
an infinite number of spin components. The main outcome
of this analysis was that the critical exponents are the same
(as suggested by universality), irrespective of the connectivity.
There were some major differences only for σ � 1, that is,
in the σ regime where no spin-glass transition arises. Here,
we shall not consider such a large σ . On the other hand, the
diluted model has been investigated in the nonextensive regime
(i.e., σ � 1/2) for Ising spin glasses.25 Not only universal
quantities, but also the transition temperatures, turned out
to be identical to those of the (infinite-range) Viana-Bray
model.26 Finally, one might question as well the effects of
fixing the connectivity rather than letting it fluctuate. This
problem was recently investigated for Ising spin glasses in the
hypercube.27 Fixing the connectivity does change the critical
temperature. However, universal quantities such as the critical
exponents are not modified by this choice. Furthermore,
scaling corrections were found to be dramatically smaller for
the fixed-connectivity model.

We are not aware of any simple algorithm to generate bonds
of arbitrary length such that each site has a specified number
of bonds (z here) and the probability of a bond between i

and j varies with distance rij in some specified way (∝1/r2σ
ij

here). We therefore construct the Hamiltonian for which we
will simulate the spins by first performing a Monte Carlo
simulation of the bonds. A similar (but simpler) problem was
resolved in this way in Ref. 27. We take the “Hamiltonian” of
the bonds to be given by

e−Hbond = e− ∑
〈i,j〉 εij ln r2σ

ij

∏
k

δ

(∑
l

εkl − z

)
, (15)

where εij = 0 or 1, in which 1 represents a bond present
between sites i and j , and 0 represents no bond. Graphically,
we regard each site i as having z “legs” associated with it, and
we initially pair up the legs in a random way, representing each
connected pair graphically as an “edge” and giving the value
εij = 1 to all edges while all other pairs (i,j ) have εij = 0.
We then run a Monte Carlo simulation in which the nonzero
εij are swapped according to a Metropolis probability for the
Hamiltonian in Eq. (15). To maintain exactly z nonzero ε’s for
each site the basic move involves reconnecting two bonds as
shown in the sketch in Fig. 1.

Specifically, we first choose site 1 in Fig. 1, with uniform
probability among the L possible choices. Next, site 3 is
chosen with probability proportional to 1/r2σ (r is the distance
between sites 1 and 3). Finally, site 2 (site 4) is chosen with
uniform probability among the z “neighbors” of site 1 (site 3).
Before the move is attempted, we need to check that the

4

1 2 3 4

1 2 3

FIG. 1. Each site has a fixed number of “legs” (here we show
three) and these legs are paired up by “edges.” In the top row, one
edge connects sites 1 and 2, and another edge connects sites 3 and 4. A
basic Monte Carlo move for the bond-generation simulation consists
of reconnecting two edges, as shown in the bottom row. (Other edges
are present but not shown.)

sites 1, 2, 3, and 4 verify two consistency conditions. First,
the four sites should be all different. Second, we require that
neither sites 1 and 4, nor 2 and 3, are paired. If the consistency
conditions are met, the basic move can be attempted and then
be accepted or rejected with Metropolis probability. One sweep
corresponds to Lz selection of sites of type 1 in Fig. 1.

After a suitable equilibration time,28 we freeze the εij , and
the resulting set of nonzero εij defines a “graph.” Each of
the 128 samples in a single batch of the multispin coding
algorithm has the same graph. On the edges of the graph we
put interactions with values ±1 with equal probability chosen
independently for each edge in each sample in a batch. The
result is that the probability distribution for a single bond is
given by

P (Jij ) = (1 − pij )δ(Jij ) + pij
1
2 [δ(Jij − 1) + δ(Jij + 1)],

(16)

in which pij is given approximately by Eq. (14) for an
appropriate choice of A corresponding to the specified value of
z. However, the bonds are no longer statistically independent;
rather there are correlations which ensure that each site has
exactly z nonzero bonds. For both σ = 0.896 and 0.790 we
take z = 6 neighbors.

We now describe the quantities that we calculate in the
simulations. The spin-glass order parameter is

q = 1

V

V∑
i=1

S
(1)
i S

(2)
i , (17)

where “(1)” and “(2)” are two identical copies of the system
with the same interactions. Its Fourier transform to wave
vector k is denote by q(k). We will calculate the spin-glass
susceptibility

χSG = V [〈q2〉]av, (18)

and also its wave-vector-dependent generalization,

χSG(k) = V [〈|q(k)|2〉]av. (19)
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From this we can extract the correlation length,3,29–31

ξL = 1

2 sin(π/L)

√
χ (0)

χ (k1)
− 1, (20)

where k1 is the smallest nonzero wave vector, k1 =
(2π/L)(1,0,0,0) for the 4D model and k1 = 2π/L for the
long-range models in 1D. Other quantities that we calculate,
important because they are dimensionless like ξL/L, are the
moment ratios

U4 = [〈q4〉]av

[〈q2〉]2
av

, (21)

U22 = [〈q2〉2]av − [〈q2〉]2
av

[〈q2〉]2
av

, (22)

and the susceptibility ratio

R12 = χSG(k1)

χSG(k2)
, (23)

where k2 is the second smallest nonzero wave vector,
k2 = (2π/L)(1,1,0,0) for the 4D model and k2 = 4π/L for
the long-range models. We will also determine derivatives
with respect to β of several of these quantities, using the
result 〈

∂O

∂β

〉
= 〈OH〉 − 〈O〉〈H〉. (24)

III. FINITE-SIZE-SCALING ANALYSIS

Using data from finite sizes, we have to extract the transition
temperature Tc, the correction-to-scaling exponent ω (since
corrections to scaling are significant), the correlation-length
exponent ν, and (for the short-range model for which the value
is not known exactly) the exponent η. In this section we show
how to include the leading correction to FSS. There are several
sources of subleading corrections which will not be included
in the formulas in this section, although we will try to include
them empirically in some of the fits to the data, as discussed
later in the section.

It is desirable to compute the various quantities one at a
time so the value of the exponents depend on each other to
the least extent possible. We therefore adopt the following
procedure. We start with the finite-size-scaling form of a
dimensionless quantity, since these quantities are simpler to
analyze than those with dimensions and so they form the core
of our analysis.

Dimensionless quantities are scale invariant, which means
that at Tc they remain finite (neither zero nor infinite) in the
limit of large L. However, dimensionless quantities are not
only scale invariant, they are also universal (i.e., they remain
constant under renormalization-group transformations). Ex-
amples of dimensionless quantities are ξL/L, U4, U22, and
R12. The distinction among scale-invariant and dimensionless
quantities has been stressed in Ref. 18. Here we will discuss
dimensionless quantities, but will comment on quantities
which are scale invariant but not dimensionless in the last
paragraph of this section.

A dimensionless quantity f (L,t) has the FSS scaling
form31–33

f (L,t) = F̃0(L1/ν t) + L−ωF̃1(L1/ν t), (25)

where ω is the correction-to-scaling exponent, and

t = T − Tc

Tc
. (26)

We are interested in the behavior at large L and small t , and
including just the leading corrections in 1/L and t gives

f (L,t) � F̃0(0) + L1/ν t F̃ ′
0(0) + L−ωF̃1(0). (27)

It will be useful to determine the values of t∗L where the quantity
f takes the same value for sizes L and sL, where s is a scale
factor which we shall take to be 2 here. We have

F̃0(0) + L1/ν t∗L F̃ ′
0(0) + L−ωF̃1(0)

= F̃0(0) + (sL)1/ν t∗L F̃ ′
0(0) + (sL)−ωF̃1(0), (28)

which gives

T ∗
L − Tc

Tc
≡ t∗L = Af

s L−ω−1/ν , (29)

or equivalently, to leading order,

βc − β∗
L

βc
= Af

s L−ω−1/ν , (30)

where the nonuniversal amplitude is given by

Af
s = (1 − s−ω) F1(0)

(s1/ν − 1) F ′
0(0)

. (31)

One can use Eq. (30) to locate βc. As we shall see, the
exponents ω and 1/ν are determined separately, and we use
those values when fitting the data to Eq. (30).

We shall determine the critical exponents using the quotient
method,33 which is a more modern form of Nightingale’s
phenomenological renormalization.34 First we determine the
correction exponent ω by applying the quotient method to
dimensionless quantities. Consider a second dimensionless
quantity g(L,t) which varies near Tc in the same way as f

in Eq. (27), i.e.,

g(L,t) � G̃0(0) + L1/ν t G̃′
0(0) + L−ωG̃1(0). (32)

Now compute g(L,t) at t∗L, given by Eq. (30), the temperature
where results for L and sL intersect for some different
dimensionless quantity f . We have

g(L,t∗L) � G̃0(0) + Ag,f
s L−ω, (33)

where A
g,f
s = A

f
s G̃′

0(0) + G̃1(0). While this could be used
directly to determine ω it is more convenient to take the ratio
(quotient) of this result with the corresponding result for size
sL, i.e.,

Q(g) ≡ g(sL,t∗L)

g(L,t∗L)
= 1 + Bg,f

s L−ω, (34)

where the amplitude B
g,f
s is nonuniversal (because of the

definition, it is zero if the quantities f and g are the same).
Equation (34) is the most convenient expression from which to
determine ω since it just involves the one unknown exponent
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ω, and one amplitude B. These quantities can be determined
by a straight-line fit to a log-log plot of Q(g) − 1 against L.

To determine the other exponents ν and η we need to
consider the FSS form of quantities which have dimensions.
Consider some quantity O which diverges in the bulk as t−xO .
Including the leading correction it has the FSS form

O(L,t) = LyO [Õ0(L1/ν t) + L−ωÕ1(L1/ν t)], (35)

where yO = xO/ν. Repeating the above arguments, and deter-
mining O for sizes L and sL at the intersection temperature
t∗L for the dimensionless quantity f for sizes L and sL, the
quotient can be written as

Q(O) ≡ O(sL,t∗L)

O(L,t∗L)
= syO + BO,f

s L−ω. (36)

Using the value of ω determined from Eq. (34) the exponent
yO is determined from Eq. (36) by a straight-line fit to a plot
of Q(O) against 1/Lω.

To determine η we can use Eq. (36) for the spin-glass sus-
ceptibility χSG, since yO = 2 − η because the susceptibility
exponent γ (≡xχSG ) = (2 − η)ν. To determine ν we note that
ξL/L is dimensionless and so has the same FSS form as in
Eq. (25). Differentiating, for instance, ξL with respect to β

brings down a factor of L1/ν and so yO = 1 + 1/ν in this
case (yO = 1/ν if we take the logarithmic derivative). Hence
we determine 1 + 1/ν from Eq. (36) with O given by the β

derivative of ξL.
To conclude, to carry out the FSS analysis we do the

following steps:
(1) Determine ω from Eq. (34) for one or more dimension-

less quantities f .
(2) Using the value of ω so determined, obtain 1 + 1/ν

(and 2 − η where necessary) from Eq. (36) with O = χSG and
O = ∂ξL/∂β, respectively.

(3) Using the value of ω from stage III and 1/ν from stage
III, determine βc from Eq. (30).

The error bars for 1 + 1/ν and 2 − η from stage III will
have a systematic component, coming from the uncertainty in
the value of ω from stage III, as well as a component from
statistical errors in the data being fitted. Similarly, the error
bar in βc from stage III will have a systematic component due
to uncertainty in the value of ω + 1/ν.

Each of these three stages requires only a straight-line fit.
However, in practice things are a little more tricky. We would
like to use data for as many sizes as possible, but in practice the
smaller sizes are affected by subleading corrections to scaling
so we can use data only for the larger sizes. It is therefore
necessary to include only a range of sizes for which the quality
of the fit is satisfactory.

In some cases we try to incorporate a subleading correction
to scaling to increase the range of sizes that can be used. These
are of different types, one of which involves higher powers
of the leading correction, and this is the only one we will
include here in order to avoid introducing too many additional
parameters. In other words, when we include subleading
corrections we will do a parabolic, rather than linear, fit to
the data as a function of 1/Lω.

In order to increase the number of data points relative to
the number of fit parameters, we will often do a combined

fit to several data sets. For example, when estimating ω we
will determine β∗

L from one dimensionless quantity f , and
then determine two (or more) other dimensionless quantities
at these temperatures. These data sets will be simultaneously
fitted to Eq. (34) with the same value for ω (since this
is universal) but different amplitudes B (since these are
nonuniversal). Hence, by combining two data sets, we double
the amount of data without doubling the number of fit
parameters. It should be mentioned that, for a given size, the
data for the different data sets are correlated, and the best
estimates of fitting parameters are obtained by including these
correlations.33,35,36 In other words, if a data point is (xi,yi), and
the fitting function is u(x), which depends on certain fitting
parameters, we determine those parameters by minimizing

χ2 =
∑
i,j

[yi − u(xi)](C
−1)ij [yj − u(xj )], (37)

where

Cij = 〈yiyj 〉 − 〈yi〉〈yj 〉 (38)

is the covariance matrix. If there are substantial correlations
in many elements, the covariance matrix can become singular,
but we have checked that this is not the case for the quantities
we study.

We end this section by discussing the FSS of a scale-
invariant (but dimensionful) quantity, which turns out to be
useful in our study of the LR model. Take Eq. (35) and imagine
that we know exactly the exponent yO . Then, O(L,t)/LyO is
scale invariant, since it remains finite at t = 0 even in the limit
of large L. This is precisely the situation in the LR model,
if we take for O the spin-glass (SG) susceptibility, because,
as explained in the Introduction, the anomalous dimension
is a known function of σ for those models. Nonetheless,
Eq. (25) needs to be modified when applied to χSG/L2σ−1,
because the magnetic scaling field u(h,t) is not exactly h,
as assumed in Eq. (1) (see, e.g., Refs. 3 and 18). Rather,
there is a nonlinear dependency on the thermodynamic control
parameters t and h: uh(h,t) = hũh(t) + O(h3), where ũh(t) =
1 + c1t + c2t

2 + · · · . Hence, the analog of Eq. (25) reads

χSG(L,t)

L2σ−1
= ũ2

h(t)[Õ0(L1/ν t) + L−ωÕ1(L1/ν t)]. (39)

We note that the multiplicative renormalization ũ2
h(t) cancels

out when looking for crossing points, namely,

χSG(L,t∗L)

L2σ−1
= χSG(sL,t∗L)

(sL)2σ−1
, (40)

so t∗L scales as in Eq. (30). Unfortunately, the multiplicative
renormalization can no longer be ignored when we compute
1/ν from ∂βχSG/L2σ−1. Indeed, differentiating Eq. (39) with
respect to β and neglecting terms of order 1/Lω+1/ν , we find

∂βχSG(L,t)

L2σ−1
= L1/ν

[
ũ2

h(t)Õ ′
0(L1/ν t) + L−ωũ2

h(t) Õ ′
1(L1/ν t)

+L−1/ν2ũh(t)ũ′
h(t) Õ0(L1/ν t)

]
, (41)

rather than Eq. (35). Both ũh and ũ′
h behave as L-independent

constants (up to corrections of order 1/Lω+1/ν) when evaluated
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at the crossing point t∗L given in Eq. (30). Hence, the quotient
of the β derivative of ln χSG is given by

Q(∂β ln χSG) = s1/ν + B1L
−ω + B2L

−1/ν, (42)

instead of Eq. (36), showing that there are corrections of order
L−1/ν as well as L−ω. For some values of σ , and also the
3D SR model,18 one finds 1/ν < ω so the L−1/ν correction
dominates.

IV. SIMULATION DETAILS

For each size and temperature we simulate four copies
of the spins with the same interactions. By simulating four
copies we can calculate, without bias, quantities which involve
a product of up to four thermal averages, such as the spin-
glass susceptibility, Eq. (18), the U4 moment ratio, (21), and
derivatives of these quantities with respect to β calculated from
Eq. (24).

The simulations use parallel tempering37 (PT) to speed up
equilibration. For the same set of interactions we study Nβ

values of β between βmax and βmin. To obtain good statistics
we simulate a large number Nsamp of samples, where Nsamp

is a multiple of 128 because 128 samples are simulated in
parallel by multispin coding. For the long-range models there
are Nsamp/128 different graphs, but each sample for the same
graph has different interactions. We run for Nsweep single-
spin flip (Metropolis) sweeps performing a parallel tempering
sweep every ten Metropolis sweeps. The parameters used for
the different models are shown in Tables I–III.

To check that the simulations were run for long enough
to ensure equilibration we adopted the following procedure.
We divide the measurements into bins whose size varies
logarithmically; the first averages over the last half of the
sweeps, i.e., between sweeps Nsweep and Nsweep/2, the second
averages between sweeps Nsweep/2 and Nsweep/4, the third
between sweeps Nsweep/4 and Nsweep/8, etc. We require that the
difference between the results in the first two bins is zero within
the error bars, where we get the error bar for the difference
by forming the difference between the results for the two bins
separately for each sample before averaging over samples. In
most cases, to be on the safe side, we actually require that

TABLE I. Parameters of the simulations of the 4D model: Nβ is
the number of temperatures with βmax the largest and βmin the smallest.
The number of Metropolis sweeps is given by Nsweep, and the number
of samples is Nsamp. The (inverse) temperature grid was optimized
for L = 16, and kept fixed for smaller L. As a rule, the β spacing
was 0.05. However, in order to reduce interpolation errors, the four
largest β’s are spaced by 0.025.

L Nsweep Nβ βmax βmin Nsamp

4 2.56 × 105 23 0.5025 0.4 220

5 2.56 × 105 23 0.5025 0.4 220

6 2.56 × 105 23 0.5025 0.4 220

8 2.56 × 105 23 0.5025 0.4 220

10 2.56 × 105 23 0.5025 0.4 220

12 2.56 × 105 23 0.5025 0.4 220

16 5.12 × 105 23 0.5025 0.4 220

TABLE II. Parameters of the simulations of the 1D model with
σ = 0.790. See Table I for an explanation of the symbols. The
(inverse) temperature grid was optimized for V = 32 768, and kept
fixed for the smaller systems. We choose the grid in such a way
that the acceptance in the parallel tempering move was roughly 20%.
Empirically, this was achieved by decreasing the β spacing as a
geometric progression with common ratio 0.98 (the largest spacing
was for the highest β).

L Nsweep Nβ βmax βmin Nsamp

512 106 16 0.671 0.538 64000
1024 106 16 0.671 0.538 64000
2048 106 16 0.671 0.538 64000
4096 1.28 × 106 16 0.671 0.538 64000
8192 1.28 × 106 16 0.671 0.538 64000

16384 2 × 106 16 0.671 0.538 64000
32768 2 × 106 16 0.671 0.538 64000

the differences between the first three bins are all zero within
errors.

This procedure is illustrated in Fig. 2 which shows data
for the long-range model with L = 4096 and σ = 0.896 at
β = 1.2, the largest β value that we studied. The vertical
axis is the difference in ξL/L between the bin containing
measurements in sweeps NMCS/2 to NMCS (MCS indicates
Monte Carlo Sweeps) and the bin for sweeps in the interval
NMCS/4 to NMCS/2, for different values of NMCS up to
Nsweep = 8.192 × 107, the value in Table III. Since the two
points for the largest number of sweeps are zero within errors,
it follows that the first three bins all agree.

V. RESULTS

A. Four-dimensional short-range model

Figures 3 and 4 show results for ξL/L defined in Eq. (20)
and Fig. 5 shows results for the dimensionless ratio of moments
U4 defined in Eq. (21). The resulting inverse temperatures
β∗

L where data for sizes L and 2L intersect, i.e., where their
quotient Q is unity, is shown in Table IV. Results are given for
both ξL/L and U4.

To compute the correction-to-scaling exponent ω we
determine the quotient of ξL/L at the U4 crossing and vice
versa. These quotients are shown in Table V and plotted in
Fig. 6. Fitting the largest two pairs of sizes for each quantity

TABLE III. Parameters of the simulations of the 1D model with
σ = 0.896. See Table I for an explanation of the symbols. The β

spacing was uniform up to L = 1024. For L = 2048 the β spacing
ranges from 0.03 to 0.05, while it goes from 0.03 to 0.04 for L = 4096
and from 0.02 to 0.03 for L = 8192.

L Nsweep Nβ βmax βmin Nsamp

512 1.28 × 106 16 1.5 0.6 12800
1024 2.56 × 106 13 1.2 0.6 12800
2048 1.024 × 107 14 1.2 0.65 12800
4096 8.192 × 107 16 1.2 0.65 12800
8192 8.192 × 107 16 1.1 0.71 12800
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FIG. 2. (Color online) The difference in the values of ξL/L

between measurements obtained in the range of sweeps NMCS/2 to
NMCS and measurements in the range NMCS/4 to NMCS/2, for values
of NMCS increasing by factors of 2 up to Nsweep = 8.192 × 107. The
data are for the long-range model with σ = 0.896 at β = 1.2, the
lowest temperature studied.

to Eq. (34) for s = 2 with the same exponent ω gives

ωSR(4) = 1.04(10), χ2/NDOF = 0.99/1, (43)

where NDOF is the number of degrees of freedom, and χ2 is
defined in Eq. (37). It should be mentioned that the lines in
Fig. 6 are not separate fits to each set of data but are combined
fits including the whole covariance matrix.

We have also tried fits including subleading corrections to
scaling. For instance, considering, in addition, the quotient of
R12, defined in Eq. (23), at the crossings of ξL/L and U4, and
fitting the three largest sizes to 1 + B1L

−ω + B2L
−2ω gives a

satisfactory fit with ω = 1.29(26), χ2/NDOF = 2.26/5. How-
ever, we prefer the result ω = 1.04(10) since it has been
obtained using larger lattices (L � 6).
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FIG. 3. (Color online) A global view of the data for the correlation
length divided by L for the 4D model.
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FIG. 4. (Color online) An enlarged view of the data in Fig. 3
showing the region of the intersections.

Next we compute η from the quotients of χSG, defined in
Eq. (18), at the crossings of ξL/L and U4, which are shown in
Table VI and Figs. 4 and 5. Assuming ω = 1.04(10), a linear
fit to Eq. (36) with s = 2 and the same value of yO (=2 − η)
for both quantities gives, for the largest two pairs of sizes,
Q ≡ 22−η = 4.949(45)[+8

−14], χ2/NDOF = 0.42/1, in which
the numbers in square brackets, [· · · ], correspond to the errors
due to the uncertainty in the value of ω. This fit is shown in
Fig. 7 by the dashed lines.

On the other hand, a quadratic fit to Q(χSG) = Q +
B1L

−ω + B2L
−2ω using the largest three pairs gives Q =

5.039(10)[+20
−16], χ2/NDOF = 0.076/1, which is also an accept-

able fit, shown by the solid lines in Fig. 7.
If we assume the larger value for ω discussed above, namely,

ω = 1.29(26), we find that only a quadratic fit is accept-
able, and the value for Q is Q = 4.962(30)[6], χ2/NDOF =
0.011/1, which is intermediate between the two previous
values of Q. We can summarize all the numbers with the

2
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 0.485  0.49  0.495  0.5

U
4

β

L=  4
L=  5
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L=12
L=16

FIG. 5. (Color online) An enlarged view of the data for U4 for the
4D model showing the region of the intersections.
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TABLE IV. Inverse temperatures β∗
L, where data for sizes L and

2L intersect, i.e., where the quotient Q is equal to unity, for ξL/L and
the ratio of moments U4, for the 4D short-range model.

L β∗
L where Q(ξL/L) = 1 β∗

L where Q(U4) = 1

4 0.49113 ± 0.00009 0.49725 ± 0.00011
5 0.49598 ± 0.00007 0.50001 ± 0.00009
6 0.49825 ± 0.00006 0.50118 ± 0.00008
8 0.50012 ± 0.00005 0.50180 ± 0.00006

value

Q ≡ 22−η = 4.994(45). (44)

The central value is shown as the solid horizontal line in Fig. 7,
and the error bars are indicated by the dotted horizontal lines.
Equation (44) gives

ηSR(4) = −0.320(13). (45)

To compute ν we have used the quotients for the β derivative
of ξ at the crossings of ξL/L. The values for each pair are given
in Table VII. Taking ω = 1.04(10) we obtain fitting the three
largest pairs, to Eq. (36) for s = 2,

Q ≡ 21+1/ν = 3.828(9)[8], χ2/NDOF = 0.68/1, (46)

which gives ν = 1.068(4)[3]. Combining the errors we get our
final estimate for ν as

νSR(4) = 1.068(7). (47)

The data and the fit are shown in Fig. 8
Finally we estimate βc by fitting the crossing points for

ξL/L and U4 to Eq. (30), using the previously determined
values ω = 1.04(10) and ν = 1.068(7). The data have already
been given in Table IV and are plotted in Fig. 9. We obtain a
good fit considering only the (6,12) and (8,16) pairs:

βc = 0.50256(14)[15], χ2/NDOF = 0.24/1. (48)

This fit is shown by the dashed lines in Fig. 9.
We have tried to (roughly) take into account higher-order

corrections to scaling adding a quadratic term in L−ω−1/ν . We
obtain a good fit with the pairs (5,10), (6,12), and (8,16):

βc = 0.50195(34)[1], χ2/NDOF = 0.30/1, (49)

and this is shown by the solid lines in Fig. 9. We can therefore
safely take the value

βc = 0.5023(6) ⇒ Tc = 1.9908(24) (d = 4) (50)

as our final result.
We end this section by comparing our results with previous

computations by other authors. Marinari and Zuliani38 studied

TABLE V. Quotients of U4 at the crossings of ξL/L, and vice
versa, for the 4D short-range model.

L Q(U4) where Q(ξL/L) = 1 Q(ξL/L) where Q(U4) = 1

4 1.01675 ± 0.00020 1.02835 ± 0.00033
5 1.01311 ± 0.00020 1.02230 ± 0.00033
6 1.01112 ± 0.00020 1.01886 ± 0.00033
8 1.00822 ± 0.00020 1.01397 ± 0.00033

1
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 1.035
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Q
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ω = 1.04

Q(U4) where Q(ξL/L)=1

Q(ξL/L) where Q(U4)=1

FIG. 6. (Color online) The quotient of the dimensionless quantity
ξL/L of the 4D model at the U4 crossing (squares) and the quotient
of U4 at the ξL/L crossing (triangles). The straight lines represent the
best fit to Eq. (34) using the largest two sizes, with the correction-to-
scaling exponent ω as an adjustable parameter.

the 4D spin glass with binary couplings, finding Tc = 2.03(3),
ν = 1.00(10), and η = −0.30(5), in good agreement with
our more accurate estimates. Jörg and Katzgraber39 studied
a different version of the 4D spin glass which is expected to
belong to the same universality class. They found ν = 1.02(2)
and η = −0.275(25), which are two standard deviations from
our estimate. Jörg and Katzgraber also considered the leading
corrections to scaling, but found an extremely large exponent,
ω ≈ 2.5. They were aware that such a large ω is unlikely to
be correct, and they attributed their result to the small lattice
sizes that they could equilibrate.

B. One-dimensional long-range model with σ = 0.790

From Eq. (8) and the value ηSR(4) = −0.320(13) for the 4D
model given in Eq. (45), we see that σ = 0.790 is a proxy for
the 4D short-range model, at least according to the comparison
of the exponents η [or equivalently of the magnetic exponents
yH ; see Eq. (5)]. In this section we will see if Eq. (5) is also
satisfied for the thermal exponents yT [for which Eq. (5) can be
expressed in terms of ν as shown in Eq. (9)], and the correction-
to-scaling exponents ω (=−yu). Since ηLR is known exactly,
2 − ηLR(σ ) = 2σ − 1 [see Eq. (7)] we can include χSG/L2σ−1

as another scale-invariant quantity to be studied.
We focus on ξL and χSG/L2σ−1, data for which are shown

in Fig. 10, and the corresponding crossing points are given in
Table VIII. Our first task is to try to determine the correction-to-
scaling exponent ω. We fit the quotients of ξL/L, U4, and U22,

TABLE VI. Quotients of χSG at the crossings of ξL/L and U4 for
the 4D short-range model.

L Q(χSG) where Q(ξL/L) = 1 Q(χSG) where Q(U4) = 1

4 4.6464 ± 0.0022 5.0077 ± 0.0045
5 4.7477 ± 0.0022 5.0368 ± 0.0046
6 4.8074 ± 0.0022 5.0547 ± 0.0047
8 4.8673 ± 0.0022 5.0522 ± 0.0047
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FIG. 7. (Color online) The quotients of χSG of the 4D model at the
crossings of ξL/L (triangles) and U4 (squares) as a function of L−ω,
where ω has already been determined (see Fig. 6), and is given by
Eq. (43). The dashed lines are the linear fit, with a common intercept
on the y axis, to the two largest pairs of sizes, and the solid lines
are the quadratic fit to the three largest pairs of sizes (again with a
common intercept). The intercept is equal to 22−η. The horizontal
lines indicate the final estimate and error bars for Q given in Eq. (44).
This leads to the final estimate for η in Eq. (45).

defined in Eq. (22), at the crossing of χSG/L2σ−1, including
all the (L,2L) pairs. A straight-line fit, shown in Fig. 11, is
acceptable:

ω = 0.539(9), χ2/NDOF = 16.7/14, (51)

and has a probability of 15%. A quadratic fit to 1 + B1L
−ω +

B2L
−2ω gives a better fit: ω = 0.29(−4 + 9), χ2/NDOF =

7/11. This is consistent with the value 0.26(3) expected from
the correspondence in Eq. (10) and the value of ω for the 4D
model given in Eq. (43). We have also tried fits in which ω is
fixed to the value 0.26. A straight-line fit using all the data is
very poor, χ2/NDOF = 1069/15, whereas a quadratic fit works
well, χ2/NDOF = 7.5/12, and is shown in Fig. 12.

Altogether, we see that our data for the quotients of scale-
invariant quantities do not constrain ω precisely. Any value in
the range 0.25–0.55 can be considered acceptable. Fortunately,
this includes the value expected from the the correspondence
with the 4D model, ω = 0.26(3).

To estimate ν we consider the (L,2L) quotients of the
logarithmic derivatives of χSG, ξL, and U4 with respect to β,
at the crossings of χSG/L2σ−1. All these quotients should tend
to 21/ν for L → ∞. A straight-line fit according to Eq. (36),

TABLE VII. Quotients of the β derivative of ξL at the crossings
of ξL/L for the 4D short-range model.

L Q(∂βξL) where Q(ξL/L) = 1

4 3.9581 ± 0.0024
5 3.9340 ± 0.0026
6 3.9133 ± 0.0025
8 3.8936 ± 0.0031

 3.82

 3.84

 3.86

 3.88

 3.9

 3.92

 3.94

 3.96

 3.98

0  0.05  0.1  0.15  0.2  0.25

Q

L-ω

d = 4
ω = 1.04

Q(∂βξL) where Q(ξL/L)=1

FIG. 8. (Color online) The quotient of ∂βξL of the 4D model at
the crossing of ξL/L. as a function of L−ω, where ω has already been
determined (see Fig. 6), and is given by Eq. (43). The solid line is a
linear fit to Eq. (36) using the three largest pairs of sizes. The intercept
is equal to 21+1/ν . The final value of ν is given in Eq. (47).

allowing ω as well as the intercept Q to vary, is shown in
Fig. 13. The result is

Q ≡ 21/ν = 1.1703(23), χ2/NDOF = 14.24/13, (52)

ωLR(0.790) = 0.277(8), (53)

which gives

νLR(0.790) = 4.41(19). (54)

This is consistent with the result 4.272(20) expected from
the correspondence with the 4D model [see Eq. (9)] and

 0.488
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 0.492

 0.494

 0.496

 0.498

 0.5
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 0.504
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L-(ω + 1/ν)

d = 4
ω=1.04
ν=1.068
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β*
L where Q(U4)=1

FIG. 9. (Color online) Values of β∗
L, the crossing points for ξL/L

and U4, for the 4D model, and fits as a function of 1/Lω+1/ν , for the
4D model. We used the values of ω and ν previously determined [see
Eqs. (43) and (47)]. The dashed lines are the linear fit, according to
Eq. (30), with a common intercept on the y axis, to the two largest
pairs of sizes, and the solid lines are the quadratic fit to the three
largest pairs of sizes (again with a common intercept). The intercept
is the critical coupling βc. The green data points are the estimates for
βc for the two fits, Eqs. (48) and (49).
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FIG. 10. (Color online) Correlation length in units of the system
size (top) and scale-invariant combination of the SG susceptibility
and the lattice dimension χSG/L2σ−1 (bottom), as a function of the
inverse temperature β, for the LR model with σ = 0.790. For both
quantities, the curves for the different L should cross at temperatures
that approach the critical point when L grows; see Eq. (30).

the 4D value of ν given in Eq. (47), νSR(4) = 1.068(7).
It is surprising that the fits in Fig. 13 give such a good
precision for ω, better than using quotients of scale-invariant
quantities which we showed in Figs. 11 and 12. The result
ω = 0.277(8) is consistent with that expected from the 4D
correspondence, ω = 0.26(3). We have also tried a quadratic
fit, which gives Q = 1.1742(58)[22], χ2/NDOF = 9.54/11,
and a linear fit discarding the L = 512 data, which gives
Q = 1.1683(15)[62], χ2/NDOF = 7.56/8 [both of these fits
used the value for ω obtained from the correspondence with
the 4D model, ω = ωSR(4)/4 = 0.26(3)]. These results are all
consistent with Eq. (54) which we therefore take as our final
estimate for νLR(0.790).

However, the alert reader will recall from Sec. III that
the β derivative of χSG/L2σ−1 suffers from two types of
correction to scaling, one of order L−ω and the other of order

TABLE VIII. Inverse temperatures β∗
L, where data for sizes L

and 2L intersect, i.e., where the quotient Q is equal to unity, for
χSG/L2σ−1 and ξL/L for the LR model with σ = 0.790.

L β∗
L where Q(χSG/L2σ−1)=1 β∗

L where Q(ξL/L)=1

512 0.6538 ± 0.0020 0.6665 ± 0.0066
1024 0.6532 ± 0.0018 0.6598 ± 0.0050
2048 0.6516 ± 0.0014 0.6586 ± 0.0038
4096 0.6498 ± 0.0012 0.6545 ± 0.0031
8192 0.6500 ± 0.0009 0.6541 ± 0.0023

16384 0.6492 ± 0.0008 0.6501 ± 0.0019
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FIG. 11. (Color online) The quotients of dimensionless quantities
ξL/L, U4, and U22 for σ = 0.790 at the crossing of χSG/L2σ−1. The
straight lines represent the best fit to Eq. (34) using all the data, with
the correction-to-scaling exponent ω as an adjustable parameter.

L−1/ν ; see Eqs. (41) and (42). The relationship between the
LR and SR exponents in Eqs. (9) and (10), combined with
our numerical results for the d = 4 SR model in Sec. V A,
suggests that the two corrections to scaling are very similar for
σ = 0.790 because ωSR(4) � 1/νSR(4). This implies that the
two corrections can be lumped together into a single term to a
good approximation. Indeed, we have succeeded in analyzing
our numerical data by considering only the scaling corrections
of order L−ω. Therefore, although we take Eq. (53) as our final
estimate for ωLR(0.790), we warn that its error is probably
underestimated, due to the oversimplification in the functional
form for the scaling corrections.
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FIG. 12. (Color online) The quotients of dimensionless quantities
ξL/L, U4, and U22 at the crossings of χSG/L2σ−1 for σ = 0.790. The
lines represent the best quadratic fits as functions of 1/Lω, using all
the data, where ω is fixed at 0.26 (=1.04/4), the value expected from
the correspondence with the 4D model, for which the value of ω is
given in Eq. (43).
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FIG. 13. (Color online) The quotients of ∂β ln ξL, ∂β ln U4, and
∂β ln χSG at the crossings of χSG/L2σ−1 for σ = 0.790. The lines
represent the best straight-line fits as functions of 1/Lω, using all the
data, in which ω, as well as the intercept Q = 21/ν , are fit parameters.

By contrast, we shall see in Sec. V C that for σ = 0.896 the
corrections of order L−1/ν turn out to be dominant, and will
need to be taken into account explicitly.

Finally, in this section, we determine βc by fitting the
crossing points of ξL/L and χSG/L2σ−1 shown in Table VIII
to Eq. (30), assuming the values in Eqs. (53) and (54),
ω = 0.277(8), ν = 4.41(19). The plot is shown in Fig. 14,
and the result is βc = 0.64805(39)[2]. Combining the errors
gives

βc = 0.64805(41) ⇒ Tc = 1.5431(10), (55)

with χ2/NDOF = 4.47/10. Note that the contribution to the
error from the uncertainty in ω is very small.
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FIG. 14. (Color online) Values of β∗
L, the crossing points for ξL/L

and χSG/L2σ−1, for σ = 0.790, as a function of 1/Lω+1/ν , where the
values of ω and ν are fixed at the values given in Eqs. (53) and (54).
The intercept is the critical coupling βc.
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FIG. 15. (Color online) Correlation length in units of the system
size (top) and scale-invariant combination of the SG susceptibility
and the lattice dimension χSG/L2σ−1 (bottom), as a function of the
inverse temperature β, for the LR model with σ = 0.896. For both
quantities, the curves for the different L should cross at temperatures
that approach the critical point when L grows; see Eq. (30).

C. One-dimensional long-range model with σ = 0.896

According to Eq. (8) and the value of η for the 3D model
given in Ref. 18, ηSR(3) = −0.375(10), σ = 0.896 is a proxy
for 3D, at least according to the comparison of the exponents
η (or equivalently of the magnetic exponents yH ). We now
attempt to see if the correspondence also works for the
exponents ω and ν.

As we show in Fig. 15, ξL/L displays a rather marginal
behavior for this value of σ . We are not able to resolve the
crossing temperatures for this dimensionless quantity. On the
other hand, crossing points of χSG/L2σ−1 are easily identified.
Our interpretation of these findings is that, for this value of σ ,
we are fairly close to the critical value σl , such that for σ > σl

there is no longer a SG phase; see Sec. I. It is expected that14

σl = 1 since this corresponds to d − 2 + η = 0 with d = 1
and η = ηLR(σ ) = 3 − 2σ . Hence a transition is expected for
σ = 0.896. It is easier to find crossing points from χSG/L2σ−1,
because, in the SG phase, this value scales as La with an
exponent a larger than the corresponding one for ξL/L, so
we feel that our results for σ = 0.896 are consistent with the
expected transition.

Unfortunately, plots of dimensionless quantities do not
allow us to determine ω because there is very little size
dependence in the quotients. This is illustrated in Fig. 16
which shows quotients of ξL/L, U4, and U22 at crossings of
χSG/L2σ−1.

To determine ν we first consider the quotients of the
logarithmic derivatives with respect to β of the dimensionless
quantities ξL and U4 at the χSG/L2σ−1 crossing (Fig. 17). A
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FIG. 16. (Color online) Quotients of the dimensionless quantities
ξL/L, U4, and U22 at the crossings of χSG/L2σ−1 for σ = 0.896.
Compared to the error bars there is very little size dependence so the
data are inadequate to determine the correction-to-scaling exponent ω.

fit to Q + B1L
−ω does not allow us to find ω, so we fix the

value ω = 0.33(3), obtained from Eq. (5) and the result of
Hasenbusch et al.18 that ωSR(3) = 1.0(1), obtaining

Q ≡ 21/ν = 1.0890(202)[2], χ2/NDOF = 1.14/5, (56)

which determines ν to be in the range 5.7 < ν < 10.4. Notice
the smallness of the error bars coming from the ω error,
or conversely the difficulty of determining ω from these
quantities.

We also tried a more complex fit including the quotients
of logarithmic derivatives of the scale-invariant quantity
χSG/L2σ−1. As discussed in Sec. III, this derivative (but only
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FIG. 17. (Color online) The quotients of ∂β ln ξL, ∂β ln U4, and
∂β ln χSG at the crossings of χSG/L2σ−1 for σ = 0.896. For ∂β ln ξL

and ∂β ln U4 the lines are fits to functions of type Q + B1L
−ω, where

Q = 21/ν ; see Eq. (36). For χSG we need to consider also an L−1/ν

term; see Eq. (42). The ω value is fixed to the value 0.33 expected from
the 3D data of Hasenbusch et al. (Ref. 18) who find ωSR(3) = 1.0(1),
and Eq. (10), while the value of ν is a fit parameter.

this one) suffers from additional scaling corrections of order
L−1/ν . Note that, according to Eqs. (9) and (10) and the
SR values18 ωSR(3) = 1.0(1), νSR(3) = 2.45(15), we expect
ωLR ≈ 0.33 and 1/νLR ≈ 0.14, so the corrections of order
L−1/ν are dominant. We therefore fit the data for the quotients
of the logarithmic derivative of χSG/L2σ−1 to Eq. (42), while
for the quotients of the logarithmic derivatives of U4 and
ξL/L we use Eq. (36) with yO = 1/ν, which corresponds to
B2 = 0. The data is shown in Fig. 17.

To obtain a reliable fit, we need to fix the value of ω and,
as above, we take this to be ω = 0.33(3), obtaining

Q ≡ 21/ν = 1.087(199)[3], χ2/NDOF = 1.54/7, (57)

which determines ν to be in the range 6.8 < ν < 10.6, so our
estimate for ν is

νLR(0.896) = 8.7(1.9). (58)

Again, the effect of the ω uncertainty is very small. We have
tried to bound the ω value from this fit, but the result is almost
useless [ω ∈ (0,0.97)].

Finally we discuss the value of βc. We do not see any evolu-
tion of βc with L. However, we perform several fits to estimate
the extrapolation errors. First we try a fit of the χSG/L2σ−1

crossings taking ω and ν from the 3D-derived values: ω =
0.33(3), ν = 7.35(45) so ω + 1/ν = 0.47(4). The result is
βc = 1.004(15)[1], with χ2/NDOF = 0.24/2. If we use ω =
0.33(3) but the ν value obtained above, ν = 8.7(1.9), i.e.,
ω + 1/ν = 0.44(5), we get βc = 1.003(16)[2], χ2/NDOF =
0.23/2.

These last two results are statistically correlated, and we
take the latter as our final estimate:

βc = 1.003(18) ⇒ Tc = 0.997(18). (59)

VI. CONCLUSIONS

The purpose of this paper is to see if there is a value of
σ for the long-range spin-glass model which corresponds
precisely to a short-range four-dimensional spin glass, and
(with a different value of σ ) to a three-dimensional spin glass,
in the sense that all the LR and SR exponents, in particular,
η, ν, and ω, match in the sense of Eqs. (5)–(10). Since ηLR

is given exactly by the simple expression in Eq. (7), we have
chosen two values of σ, 0.790 and 0.896, as proxies for 4D
and 3D, respectively, since the values of η match according to
Eq. (8). The question, then, is whether the other exponents, ω

and ν, match according to Eqs. (10) and (9).
Our results for ω and ν are summarized in Table IX. For

the case of 4D, the correspondence works well, the values for
the exponents being consistent with Eqs. (9) and (10) within
reasonably modest error bars. However, for 3D, we are not able
to establish a sharp connection, since, for the corresponding
long-range model, σ = 0.896, we cannot determine ω. If
we assume that the value of ωLR(0.896) is that given by
the matching formula, Eq. (10), with the value of ω from
the 3D simulations,18 namely, ωLR(0.896) = 0.33(3), then
we find νLR = 8.7 ± 1.9 which is consistent with 3νSR(3) =
7.35 ± 0.45.
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TABLE IX. Summary of results for critical exponents of the short-
range models in 3D and 4D, the expected (proxy) results for the
long-range models based on the short-range results and the connection
in Eq. (5), and the actual results for the long-range models. It was not
possible to estimate ω for the long-range model with σ = 0.896. If
we assume that it is given by the matching formula, ωSR/d , then we
obtain the result for νLR(0.896) shown in the table. The 3D results are
from Ref. 18, and all other results are from the present work.

d = 4, σ = 0.790 d = 3, σ = 0.896

ωSR(d) 1.04(10) 1.0(1)
ωSR(d)/d 0.26(4) 0.33(3)
ωLR(σ ) 0.277(8) –

νSR(d) 1.068(5) 2.45(15)
d νSR(d) 4.272(20) 7.35(45)
νLR(σ ) 4.41(19) 8.7(1.9)

While it seems unlikely to us that all the critical exponents
of the LR and SR models match exactly according to Eq. (5),
our results indicate that these equations are satisfied to a

good approximation, and hence the critical behaviors of the
SR and corresponding LR models are very similar. Whether
this similarity extends to the more subtle question of the
nature of the spin-glass phase below Tc remains to be seen.
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