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Surface acoustic wave driven ferromagnetic resonance in nickel thin films: Theory and experiment

L. Dreher,1,* M. Weiler,2 M. Pernpeintner,2 H. Huebl,2 R. Gross,2 M. S. Brandt,1 and S. T. B. Goennenwein2

1Walter Schottky Institut, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
2Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Strasse 8, 85748 Garching, Germany

(Received 26 July 2012; revised manuscript received 26 September 2012; published 17 October 2012)

We present an extensive experimental and theoretical study of surface acoustic wave driven ferromagnetic
resonance. In a first modeling approach based on the Landau-Lifshitz-Gilbert equation, we derive expressions
for the magnetization dynamics upon magnetoelastic driving that are used to calculate the absorbed microwave
power upon magnetic resonance as well as the spin-current density generated by the precessing magnetization in
the vicinity of a ferromagnet/normal metal interface. In a second modeling approach, we deal with the backaction
of the magnetization dynamics on the elastic wave by solving the elastic wave equation and the Landau-Lifshitz-
Gilbert equation self-consistently, obtaining analytical solutions for the acoustic wave phase shift and attenuation.
We compare both modeling approaches with the complex forward transmission of a LiNbO3/Ni surface acoustic
wave hybrid device recorded experimentally as a function of the external magnetic field orientation and magnitude,
rotating the field within three different planes and employing three different surface acoustic wave frequencies.
We find quantitative agreement of the experimentally observed power absorption and surface acoustic wave phase
shift with our modeling predictions using one set of parameters for all field configurations and frequencies.
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I. INTRODUCTION

Spin mechanics exploits the coupling of spin degrees of
freedom with elastic properties in order to control magnetic
properties and has been established in various material systems
in the static and dynamic regimes.1–13 In magnetostrictive
materials, a change in the magnetization orientation results
in elastic strain and vice versa, enabling strain-controlled
magnetization switching.1,6,8,14 Furthermore, an acoustic wave
propagating through a ferromagnet generates elastic strains
allowing one to drive magnetization dynamics via the mag-
netoelastic interaction if the acoustic wave frequency is in
resonance with the spin system at a given effective magnetic
field. This magnon-phonon interaction has been investigated
theoretically15–19 and experimentally20,21 in particular for bulk
acoustic waves.

Radio-frequency (rf) elastic strains in ferromagnetic thin
films can be generated by a surface acoustic wave (SAW) if
the ferromagnetic film is deposited directly on the surface of
a SAW carrying crystal, resulting in a rigid elastic coupling.
The physics of such heterostructures has been investigated
experimentally.22–25 Recently, it has been demonstrated that
the observed changes of the complex magnetotransmission
through a hybrid LiNbO3/Ni SAW delay line can be identified
with absorption and dispersion signals of a SAW driven
ferromagnetic resonance (FMR).26 We here use the term FMR
synonymously with spin wave resonance (SWR), which is the
more appropriate term if the ferromagnet is large compared
with the acoustic wavelength and a spin wave mode is excited.

Since SAW based devices are well established27 and can
be fabricated by lithographic techniques, they are attractive
candidates for acoustically driven FMR in combination with
ferromagnetic thin films. In acoustic FMR, the magnetization
dynamics is excited by a purely internal magnetoelastic
effective driving field, due to the rf strains generated by the
acoustic wave in the ferromagnet. The speed of sound is 5
orders of magnitude smaller than the speed of light, leading to
a wavelength of the SAW of the order of microns at GHz

frequencies. This potentially allows for FMR experiments
with micron-scale spatial resolution. Furthermore, spurious
electromagnetic crosstalk can be separated from magnetoelas-
tic effects associated with the acoustic wave by time-domain
techniques.26,28

The latter feature is of topical interest in the context of spin
pumping, i.e., the generation of a spin current by a precessing
magnetization at a normal metal/ferromagnet interface that can
be detected by the inverse spin Hall effect in the normal metal,
e.g., a Pt layer.29–33 Since any ac electric fields which may
be present at the position of the ferromagnet in a conventional
FMR cavity can hamper the interpretation of the spin-pumping
signal,31–33 it is important to separate electric and magnetic
fields, which is naturally achieved by magnetoelastic driving,
as demonstrated recently.34,35 To date, however, a thorough
theoretical modeling of SAW based FMR in combination with
an extensive experimental study is still missing.

In this work, we present a theoretical framework for
SAW-FMR based experiments starting from the Landau-
Lifshitz-Gilbert (LLG) equation and the elastic wave equation,
providing expressions that can be used to analyze SAW-FMR
and acoustic spin-pumping experiments and are applicable to
various types of SAWs (Sec. II). In a first approach, referred
to as the “effective field approach,” we show that a magnetoe-
lastic driving field can be formally treated equivalently to a
conventional, external “tickle” field (Sec. II A). An expression
for the magnetization dynamics upon magnetoelastic driving
is found, with which it is straightforward to account for the
particular type of SAW employed by including the relevant
strain tensor components in the magnetoelastic contribution
to the free-enthalpy density. Based on this expression, the
power absorbed in FMR is calculated (Sec. II A1) as well as
the spin current generated by the magnetization precession
at a ferromagnet/normal metal interface (Sec. II A2). In a
second approach, referred to as the “backaction approach,”
we solve the LLG equation and the elastic wave equation
simultaneously to obtain a intuitive physical picture of the

134415-11098-0121/2012/86(13)/134415(13) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.134415


L. DREHER et al. PHYSICAL REVIEW B 86, 134415 (2012)

backaction of the FMR on the elastic wave (Sec. II B). With the
obtained analytical solutions, both phase shift and attenuation
of the elastic wave can be calculated. In addition, we present
an extensive experimental study of SAW-FMR where the
external magnetic field is rotated within three different planes
employing three different SAW frequencies. We compare the
experimental results with simulations based on the “effective
field approach” and the “backaction approach” to discuss the
advantage of each particular method (Sec. III). We demonstrate
that the experimental data can be modeled using a single set of
simulation parameters for all measurement configurations and
both simulation methods. Finally, we summarize our results
and give an outlook on to further experimental and theoretical
investigations (Sec. IV).

II. THEORETICAL CONSIDERATIONS

In this section, we provide the theoretical framework for
the SAW-FMR experiments presented in Sec. III. In the exper-
iment discussed,26 the SAW propagates through a delay line
with a ferromagnetic film deposited between two interdigital
transducers (IDTs) as schematically depicted in Fig. 1 and
explained in more detail in Sec. III. We thus consider a two-
layer system, consisting of a piezoelectric, single-crystalline
substrate and a polycrystalline, metallic ferromagnet. Rather
than treating this problem numerically, we will make the
following physical assumptions and simplifications to obtain
analytical expressions for the acoustic wave attenuation and
phase shift upon FMR as discussed in the following. The
SAW penetrates the piezoelectric by a length δ,27 of the order
of the acoustic wavelength (cf. Fig. 1), which is typically
a few microns at GHz SAW frequencies.36 The thickness
d = 50 nm of the ferromagnetic thin film on the other hand
is much smaller than the acoustic wavelength. Therefore, we
assume the elastic strains within the ferromagnetic film to be
homogeneous within the yz plane (cf. Fig. 1), thus treating the
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FIG. 1. (Color online) (a) Schematic illustration of the SAW delay
line/ferromagnet hybrid device used in the experiment. The aluminum
interdigital transducers (IDTs) launch and detect a SAW, which
traverses the delay line, periodically straining the ferromagnetic
thin film. (b) The gray shading illustrates the SAW penetrating the
piezoelectric by a length δ, which is of the order of the acoustic
wavelength. The thickness d of the ferromagnet is much smaller than
the wavelength, justifying the assumption that the elastic strain within
the ferromagnet is homogeneous across its thickness.

x||kSAW

y

z

φ0

Θ0

1

2

3

Nickel

m2

m1
m3≈1

m

FIG. 2. (Color online) Relation between the coordinate systems
employed. The (x,y,z) frame of reference is spanned by the
propagation direction of the SAW, the transverse in-plane direction,
and the normal of the ferromagnetic film. To solve the LLG equation,
the (1,2,3) coordinate system is employed, with its 3-direction
corresponding to the equilibrium magnetization orientation. The inset
shows the precession cone of the magnetization, with the transverse
magnetization components m1 and m2.

acoustic wave traversing the ferromagnet as a bulk acoustic
wave, with strain components identical to the ones at the
surface (z = 0) of the piezoelectric substrate. We focus on
the acoustic wave propagation and magnetization dynamics
exclusively within the ferromagnet, rather than solving the
acoustic wave equation and LLG equation for a two-layer
system. We thus consider a ferromagnetic slab as depicted in
Fig. 2 and employ a right-handed coordinate system (x,y,z),
where x is the propagation direction of the SAW, y a transverse
direction, and z the film normal.

In the absence of further perturbations, the direction of
the magnetization m = M/M is determined in a macrospin
approach37 by the static free-enthalpy density (normalized to
the saturation magnetization M) of the nickel film, given by38

G = −μ0 H · m + Bdm
2
z + Bu(m · u)2 − μ0 Hex · m, (1)

where H denotes an externally applied magnetic field, μ0 is
the vacuum permeability, Bd = μ0M/2 represents the shape
anisotropy of the thin film, Bu is an anisotropy parameter
defining a uniaxial in-plane anisotropy along the unit vector
u, and mx , my , and mz are the components of the unit vector
m; μ0 Hex = Ds�m is the exchange field with the exchange
stiffness Ds and � = ∂x2 + ∂y2 + ∂z2 is the Laplacian operator
with respect to the spatial variables x,y,z.

In harmonic approximation, the elastic energy density W is
given by15,39

W = 1
2Cijklεij εkl, (2)

where we make use of the Einstein summation conven-
tion. Cijkl denotes the tensor of the elastic constants and
εij = ( ∂ui

∂xj
+ ∂uj

∂xi
)/2 with i,j ∈ {x,y,z} are the strain tensor

components where ui are the components of the mechanical
displacement field. The dynamic, magnetoelastic contribution
to the free-enthalpy density reads as38

Gd = b1
[
εxx(x,t)m2

x + εyy(x,t)m2
y + εzz(x,t)m2

z

]
+ 2b2[εxy(x,t)mxmy + εxz(x,t)mxmz

+ εyz(x,t)mymz], (3)
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with the magnetoelastic coupling constants b1 and b2 and the
SAW induced dynamic strain tensor components ε. Equation
(3) holds for cubic symmetry of the ferromagnetic layer; for
a polycrystalline film, it is further simplified by b1 = b2.38

Depending on the particular type of SAW (e.g., Rayleigh
wave39 or Love wave40), some of the strain tensor components
derived from the mechanical displacement field components39

are zero as discussed in the following. The total free-enthalpy
density normalized to the saturation magnetization of the film
thus reads as

Gtot = G + Gd + W/M. (4)

Starting from this expression, we will in the following
sections solve the LLG equation to obtain expressions for the
magnetization dynamics and its backaction on the elastic wave
in ferromagnetic resonance.

A. Landau-Lifshitz-Gilbert approach

The equation of motion for the magnetization direction m
under the influence of an effective magnetic field Heff is the
LLG equation41,42

∂t m = −γ m × μ0 Heff + αm × ∂t m, (5)

where γ and α are the gyromagnetic ratio and a phenomeno-
logical damping parameter, respectively. In equilibrium, the
magnetization orientation is parametrized by the polar angles
θ0 and φ0 for which the static free-enthalpy density G [Eq. (1)]
is minimal. We introduce a new Cartesian frame of reference
(1,2,3) in which m points along the 3-axis and the 2-axis is in
the film plane as shown in Fig. 2. The transformation matrix
relating the two coordinate systems depicted in Fig. 2 is given
in the Appendix.

Allowing for small deviations from the magnetization
equilibrium direction m0, we write for the magnetization
direction

m =

⎛
⎜⎝ 0

0

1

⎞
⎟⎠

︸ ︷︷ ︸
m0

+

⎛
⎜⎝m1

m2

0

⎞
⎟⎠ + O

(
m2

1,m
2
2

)
, (6)

where m1,m2 � 1 in the (1,2,3) coordinate system. The
effective magnetic field is given by

μ0 Heff = −∇mGtot, (7)

where ∇m = (∂m1,∂m2,∂m3) is the vector differential operator
with respect to the components of m. By definition of the
(1,2,3) coordinate system, the static effective field is parallel
to the 3-direction in the equilibrium. Following the ansatz of
Baselgia et al.,43 we expand ∇mG at the equilibrium position
of m, considering terms up to the first order in m1 and m2.
For the dynamic component of the effective field, we consider
only terms that are of zeroth order in m1 and m2. We thus find
for the total effective field

μ0 Heff = −

⎛
⎜⎝G11m1 + G12m2

G12m1 + G22m2

G3

⎞
⎟⎠ −

⎛
⎜⎝Gd

1

Gd
2

Gd
3

⎞
⎟⎠ , (8)

with the abbreviations Gi = ∂mi
G|m=m0 and Gij =

∂mi
∂mj

G|m=m0 and the required explicit expressions for these
derivatives given in the Appendix. Making a plane-wave
ansatz for the transverse magnetization mi = m0

i exp[i(kx −
ωt)] (i = 1,2), ω being the angular frequency, k the wave
number, and considering only the transverse magnetization
components, we find for the LLG(

G11 − G3 − iωα
γ

G12 + iω
γ

G12 − iω
γ

G22 − G3 − iωα
γ

) (
m1

m2

)
= μ0

(
h1

h2

)
.

(9)

μ0hi = −Gd
i = −∂mi

Gd|m=m0 are the components of the
effective driving field

μ0h1 = −2b1 sin θ0 cos θ0[εxx cos2 φ0 + εyy sin2 φ0 − εzz]

− 2b2[(εxz cos φ0 + εyz sin φ0) cos(2θ0)

+ 2εxy sin θ0 cos θ0 sin φ0 cos φ0], (10)

μ0h2 = +2b1 sin θ0 sin φ0 cos φ0[εxx − εyy]

− 2b2[cos θ0(εyz cos φ0 − εxz sin φ0)

+ εxy sin θ0 cos(2φ0)]. (11)

In the derivation of Eq. (9), we have neglected terms quadratic
in mi and products of mi with the effective driving field; the
latter are assumed to be of the same order as m2

i . Equation (9)
can be solved for the transverse magnetization, resulting in(

M1

M2

)
= χ̄

(
h1

h2

)

= μ0M

D

(
G22 − G3 − iωα

γ
−G12 − iω

γ

−G12 + iω
γ

G11 − G3 − iωα
γ

)

×
(

h1

h2

)
, (12)

with

D =
(

G11 − G3 − iωα

γ

)(
G22 − G3 − iωα

γ

)

−G2
12 −

(
ω

γ

)2

. (13)

In Eq. (12), χ̄ is the Polder susceptibility tensor describing
the magnetic response of the ferromagnet to small time-
varying magnetic fields perpendicularly oriented to m0. χ is
a function of the derivatives of the static component of the
free-enthalpy density equation (1), while the driving field is
determined by the dynamic contribution to the free-enthalpy
density equation (3). In a conventional FMR experiment,
the time-varying magnetic “tickle” field is provided, e.g., by
standing electromagnetic waves in a microwave cavity and is
oriented perpendicularly to the external magnetic field. As
long as the magnetization is parallel to the static external
magnetic field, which is the case if the external magnetic field
is large compared to the anisotropy fields, the driving field is
always perpendicular to the magnetization, independently of
the magnetization orientation. This is in stark contrast to SAW
driven FMR experiments, where the driving-field components
h1 and h2 exhibit a pronounced m dependence, characteristic of
the type of the SAW, i.e., of which strain component dominates
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FIG. 3. (Color online) Measurement geometries employed in
the experiment. (a) In the in-plane configuration (IP), the external
field is applied within the film plane. (b), (c) In the out-of-plane
configurations OOP1 and OOP2, the field is aligned in planes
perpendicular to the film plane as indicated in the figure.

the dynamic free-energy contribution (3).26 A Rayleigh wave
contains the strain components εxx , εxz, and εzz,39 while a Love
wave is a horizontally polarized shear wave with the dominant
strain component εxy .40 For the Rayleigh wave, at the surface
the components εxx and εxz are phase shifted by 90◦. We will
now discuss this m dependence of the driving field exemplarily
for the strain components εxx , εxy , and εxz separately, setting all
other strain components equal to zero. To this end, we calculate
the driving field μ0h for each of the three geometries depicted
in Fig. 3 that were used for our measurements. If m lies within
the film plane (i.e., θ0 = π/2), referred to as IP configuration,
we obtain the m-dependent driving-field components given
in the Appendix by Eqs. (A7)–(A9). For m in the xz plane
(i.e., φ0 = 0), referred to as OOP1 configuration, we find
the expressions (A10)–(A12) and for the other out-of-plane
configuration investigated (i.e., φ0 = π/4), referred to as
OOP2 configuration, the driving-field components are given
by Eqs. (A13)–(A15).

The magnitude of the driving fields for the different
measurement configurations and strain components is plotted
in Fig. 4 as a function of the equilibrium orientation m0

parametrized by φ0 and θ0. As Fig. 4 demonstrates, the
magnitude of the magnetoelastic driving field strongly depends
on both the m orientation and the dominant strain component
associated with the particular type of SAW. These character-
istic fingerprints allow for a discrimination of the SAW driven
FMR from other driving mechanisms, such as electromagnetic
crosstalk in free space, and for an identification of the relative
amplitude of the strain components involved in the FMR
excitation. As shown in Fig. 4, for strain amplitudes of
10−6 and magnetoelastic constants of 25 T, typically found
for a SAW delay line/Ni thin film hybrid, the magnitude
of μ0h is 50 μT. Based on Eq. (12), we will in the
following sections quantify the power, which is absorbed by
the ferromagnetic film upon resonance, and the spin-current
density, which is generated by the precessing magnetization at
a ferromagnet/normal metal interface.

1. Absorbed radio-frequency power

If the frequency of the SAW fulfills the ferromagnetic
resonance condition, i.e., if the real part of the determinant
[Eq. (13)] vanishes, the magnetoelastic interaction excites
a resonantly enhanced magnetization precession, which in
turn leads to a change in the SAW amplitude and phase.
In other words, part of the SAW power is used to drive
the magnetization dynamics. This is expressed in terms of

φ0 φ0 φ0

εxx ≠ 0 εxy ≠ 0 εxz ≠ 0

IP
θ0=π/2

OOP1
φ0=0

OOP2
φ0=π/4

v=(x+y)/√2
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y y y

x x x

x x x

v v v

z z z

z z z
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FIG. 4. (Color online) Polar plot of the driving field’s magnitude
|μ0h| for m in the film plane [panels (a)–(c)], out-of plane with φ0 = 0
[panels (d)–(f)], and with φ0 = π/4 [panels (g)–(i)]. The distance
from the origin indicates the magnitude of the driving field. The field
components corresponding to the plots (a)–(i) were calculated by
Eqs. (A7)–(A15) with b1 = b2 = 25 T and εij = 10−6 (see Sec. III);
the scale for the driving field applies to all panels.

a complex change of the transmitted power �P , which we
derive from Eq. (12) as

�P = −ωμ0

2

∫
V0

[
( h∗

1,h
∗
2 )χ̄

(
h1

h2

)]
dV, (14)

where V0 is the volume of the ferromagnetic film.
The real and imaginary parts of �P are the dispersion and

absorption signals associated with the FMR, respectively.26

Even though we have not considered an explicit backaction
mechanism of the FMR on the SAW so far, Eq. (14) allows one
to quantitatively simulate the absorbed radio-frequency power
Im(�P ) in FMR since by energy conservation, the power of
the SAW has to be reduced by Im(�P ) in resonance as will be
shown in Sec. III. The phase change of the SAW upon FMR,
on the other hand, is assumed to be proportional to Re(�P ),
allowing for a qualitative discussion of the dispersion signal
based on Eq. (14). For a quantitative analysis of the phase shift
of the SAW, the backaction of the magnetization dynamics on
the acoustic wave is considered explicitly in Sec. II B.

We will now qualitatively discuss the absorption and
dispersion signals based on Eq. (14) for the IP and OOP2
configurations. In Fig. 5, �P is plotted as a function of the
magnetic field orientation and magnitude with a specific set
of parameters given in the caption. Within the film plane, χ̄

is independent of the field orientation for Bu = 0. Assuming a
purely longitudinal strain along x, for the IP configuration the
signature of the SAW driven FMR directly reflects the fourfold
symmetry of the magnetoelastic driving field [cf. Fig. 4(a)]
with the SAW-FMR signal vanishing at ψ = 0 and π/2 [cf.
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FIG. 5. (Color online) Normalized imaginary and real parts of
the complex power �P calculated using Eq. (14) for a pure strain
along x (εxx �= 0) (a) and (c) and a superposition of εxx and εxz with
εxz phase shifted by π/2 (b). The magnetic field is rotated within
the film plane [(a) and (b)] and perpendicular to the film plane (c);
the measurement configurations and angles ψ are defined in Fig. 3.
The simulation parameters were Bu = 0 T, Bd = 0.4 T, ω = 2π ×
3 GHz, and α = 0.1. All other simulation parameters only affect the
overall intensity of the SAW-FMR signal.

Fig. 5(a)]. For a pure in-plane shear strain εxy (not shown), the
SAW-FMR signature is similar to the one in Fig. 5(a) with the
difference that the SAW-FMR signal vanishes for ψ = π/4
and 3π/4 [cf. Fig. 4(b)]. An out-of-plane shear strain εxz

(not shown) results in a twofold symmetry of the SAW-FMR
signal with the intensity vanishing at ψ = π/2. Depending
on the type of SAW traversing the ferromagnet, various
strain components with different amplitudes may superimpose,
resulting in a more complex μ0 H dependence of the FMR
signal. For a Rayleigh wave traversing an elastically isotropic
material, there are three nonvanishing strain components at
the surface of the half-space, namely, εxx , εxz, and εzz, with
a π/2 phase shift between εxx and εxz.39 If the magnetization
lies within the film plane, only the terms of the driving field
containing εxx and εxz are relevant and superimpose with
a phase factor of π/2; the resulting SAW-FMR signal is
shown in Fig. 5(b), revealing an asymmetry of the SAW-FMR
pattern when compared to Fig. 5(a). This asymmetry has been
observed in SAW-FMR experiments,26,35 and allows one to
experimentally determine the relative amplitudes of the strain
components associated with the SAW. For the discussion of the
out-of-plane orientations, we again focus on the longitudinal
strain component and εxx . In the OOP1 configuration, the
magnetization is oriented within the film plane along the x axis
for Bu = 0, due to the large demagnetization field Bd = 0.4 T
(Sec. III), except for the case where the magnetic field points
exactly along the z axis. We thus expect the SAW-FMR signal
to vanish for m parallel to the x and z axes [cf. Fig. 4(d)].
For the OOP2 configuration, however, the driving field only
vanishes for μ0 H exactly parallel to the z axis [cf. Fig. 4(g)]
and is nearly constant for other field orientations since m
is forced into the sample plane by the magnetic anisotropy,
resulting in the SAW-FMR signal shown in Fig. 5(c).

2. Spin-current generation

At a ferromagnet/normal metal interface, the time-varying
magnetization upon FMR generates a spin-current density,
which can be detected via the inverse spin Hall effect in
the normal metal, e.g., in a Pt layer deposited on top of
the ferromagnet.31–33 It has been demonstrated that such a
spin current can be driven acoustically by means of SAW-
FMR.35 Starting from Eq. (12), we derive the spin-current
density expected at a normal metal/ferromagnet interface in the
presence of magnetoelastic driving. The spin current density
reads as29

js s = h̄

4π
Re(g↑↓)

[
m × ∂m

∂t

]
, (15)

with the unit vector of the spin-current polarization s, the
reduced Planck constant h̄, and the spin-mixing conductance
g↑↓.32 The dc component of the spin current is found by time
averaging Eq. (15) (Ref. 29):

j dc
s = h̄ω

8π
Re(g↑↓)Im(m∗

1m2 − m1m
∗
2), (16)

which for a circular precession m2 = im1 simplifies to j dc
s =

h̄ω
4π

Re(g↑↓) sin2 τ ,29 with the precession cone angle τ . Equation
(16), together with Eq. (12), allows one to quantify the
spin-current density generated in SAW driven FMR, where
it is straightforward to account for the specific type of SAW by
superimposing the relevant strain tensor components when
calculating the magnetoelastic driving field [Eq. (11)]. An
advantage of using Eqs. (16) and (12) for the calculation of
the spin-current density, rather than estimating the precession
cone from the SAW-FMR linewidth, is that this formalism
accounts for the particular SAW-FMR line shape which can
deviate from a Lorentzian due to field-dragging effects and
the m0 dependence of the magnetoelastic driving field. Since
Eq. (16) is proportional to the base area of the precession cone,
the generated spin current is largest in FMR. Thus, we expect
the angle-dependent signature of the dc spin current to be
proportional to the absorption signal of the SAW driven FMR
(cf. Fig. 5). To obtain a numerical value for the spin-current
density that can be achieved in SAW-FMR experiments, we
assume a Ni/Pt bilayer consisting of 7 nm Pt and 10 nm Ni
as used in Ref. 33 with a width of w = 400 μm (cf. Fig. 1).
For the strain amplitude, we assume εxx = 10−5 at a SAW
frequency of 1.55 GHz since this value was achieved in SAW
based acoustic spin-pumping experiments with a nominally
identical SAW delay line.35 Further, we assume an external
magnetic field orientation of ψ = 40◦ (cf. Fig. 7) in in-plane
configuration and use an effective spin-mixing conductance
Re(g↑↓) = 2 × 1019 m−2.33 Using for all other parameters
entering Eq. (12) the values for Ni given in Sec. III, we obtain
a maximal dc spin-current density of 2.4 × 1024 h̄s−1 m−2.
We will now estimate the dc voltage due to the inverse spin
Hall effect that is expected for this spin-current density. The
electric field E = 2eαSHj dc

s n × m0/(σh̄) (Ref. 31) generated
by the inverse spin Hall effect is perpendicular to the
equilibrium magnetization direction. e denotes the elementary
charge, αSH = 0.013 the spin Hall angle of Pt,31 n is the
direction normal to the interface, and σ = 30 000 (� cm)−1

the effective conductivity of the Ni/Pt bilayer.33 For simplicity,
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in the calculation of the electric field, we have ignored a
correction factor of the order of one that accounts for the
finite spin-diffusion length λs in Pt since λs is of the order
of the film thickness.31 For Ni/Pt, we thus obtain a voltage
V = E × w = 0.3 μV along the y direction, which is of the
same order of magnitude as the 0.8 μV reported for SAW
spin-pumping experiments with a Co/Pt bilayer.35

The voltage along the ferromagnet/normal metal bilayer
can be maximized by choosing an appropriate film geometry,
such that the voltage is measured along a direction which is
perpendicular to a direction where the magnetoelastic driving
field is maximal (cf. Fig. 4). For example, for an in-plane
polarized shear wave (with only εxy �= 0), it would be ideal to
measure the voltage, e.g., along the y direction and apply the
magnetic field along the x direction, as evident from Fig. 4(b).

B. Backaction of the ferromagnetic resonance
on the acoustic wave

In Sec. II A, we have discussed the SAW driven FMR
based on the LLG equation, which is the equation of motion
for the magnetization, and used a simple energy conservation
argument to quantify the absorbed SAW power upon magnetic
resonance. In this section, we will consider the propagation
of elastic waves through the ferromagnet and will discuss the
coupling of these waves to the magnetization dynamics. The
equation of motion of an elastic displacement with components
ui is given by the elastic wave equation15

ρ∂t2ui = ∂xk
σik. (17)

The elastic displacement components are given in the (x,y,z)
coordinate system. In Eq. (17), ρ denotes the mass density, and
σik are the components of the stress tensor, which is derived
from the elastic energy density by15

σik = ∂W

∂εik

. (18)

In the absence of magnetoelastic interactions, the elastic wave
equation thus reads as15

ρ∂t2ui = Cikjm

∂2uj

∂xk
∂xm

. (19)

In the presence of magnetoelastic interaction, however, GdM

enters in Eq. (18) in addition to the elastic energy density;
note that Eqs. (1) and (3) have been normalized to M . Thus,
the LLG and the elastic wave equation are coupled via the
magnetoelastic interaction. In the following, we will solve this
coupled system of equations by making a plane-wave ansatz
with the wave vector along the x direction. The magnetization
and the elastic displacement are thus written as M1,2 =
M0

1,2 exp[i(kx − ωt)] and ux,y,z = u0
x,y,z exp[i(kx − ωt)] and

the elastic mode equations linearized in M1, M2 read as

ρω2ux = c11k
2ux + 2ib1k sin θ0 cos φ0

× [sin φ0M2 − cos θ0 cos φ0M1],

ρω2uy = c44k
2uy − 2ib2k sin θ0

(20)
× [2 sin φ0 cos φ0 cos θ0M1 + cos 2φ0M2],

ρω2uz = c44k
2uz

+ 2ikb2[sin φ0 cos θ0M2 − cos 2θ0 cos φ0M1],

where we have assumed cubic symmetry of the film.15 For
elastically isotropic media c11 = (4S2 − ES)/(3S − E), and
c44 = S, where E and S are Young’s modulus and the shear
modulus, respectively.

Together with the linearized LLG from Eq. (9), we thus
obtain a system of five coupled equations with the coefficients
ux , uy , uz, M1, and M2. In order for these equations to be
solved self-consistently, the determinant of the coefficients
has to vanish, yielding a polynomial equation in k. To obtain a
simple physical picture of the backaction of the magnetization
dynamics on the acoustic wave, we treat the acoustic modes
(20) separately and neglect the interaction between these
modes.

(i) First, we consider a purely longitudinal acoustic wave,
i.e., uy = uz = 0. By combining Eqs. (10)–(12) and (20), we
find [

ω2 − v2
l

(
1 − Fb2

1

v2
l μ0ρ

{
χ11w

2
1

+χ22w
2
2 − (χ12 + χ21)w1w2

})
k2

]
ux = 0, (21)

where we have introduced the abbreviations w1 =
2 sin θ0 cos θ0 cos2 φ0 and w2 = 2 sin θ0 cos φ0 sin φ0; vl =√

c11/ρ is the sound velocity of the longitudinal wave in
the absence of magnetoelastic coupling. Furthermore, we
have introduced a filling factor F < 1, which reduces the
coupling of the modes, accounting for the fact that only a
small fraction of the total volume traversed by the SAW is
ferromagnetic, as illustrated in Fig. 1. The cross section A

through which the acoustic power of the SAW is flowing is
given by the penetration depth δ of the SAW times the width
w of the interdigital transducers. Since δ is of the order of the
wavelength λ, F = d/δ will be of the order of d/λ, with the
thickness d of the ferromagnetic film.

(ii) Conversely, we find for a purely transverse, in-plane
shear wave (i.e., ux = 0, uz = 0)[

ω2 − v2
t

(
1 − Fb2

2

v2
t μ0ρ

{
χ11w

2
3

+χ22w
2
4 + (χ12 + χ21)w3w4

})
k2

]
uy = 0, (22)

with the abbreviations w3 = 2 sin θ0 cos θ0 sin φ0 cos φ0, w4 =
sin θ0 cos 2φ0, and the sound velocity of the transverse wave
vt = √

c44/ρ in the absence of magnetoelastic coupling.
(iii) For a pure out-of-plane shear wave (ux = 0, uy = 0),

we find[
ω2 − v2

t

(
1 − F2b2

2

v2
t μ0ρ

{
χ11w

2
5

+χ22w
2
6 − (χ12 + χ21)w5w6

})
k2

]
uz = 0, (23)

with w5 = cos φ0 cos 2θ0 and w6 = cos θ0 sin φ0.
A Rayleigh type of SAW contains a longitudinal component

and an out-of-plane shear component and propagates with the
Rayleigh sound velocity vR.39 To obtain a simple physical
picture, we will ignore the transverse component and assume
the wave to be purely longitudinal with vl = vR. This simplifi-
cation is motivated by the observation that most characteristic

134415-6



SURFACE ACOUSTIC WAVE DRIVEN FERROMAGNETIC . . . PHYSICAL REVIEW B 86, 134415 (2012)

features of the angle-dependent SAW-FMR measurements can
be simulated assuming a magnetoelastic driving field with a
purely longitudinal strain.26

Assuming that the changes of the mode due to magne-
toelastic interactions are small and neglecting the exchange
interaction [Ds = 0 in Eq. (A4)], we find for the wave number
of the perturbed longitudinal wave [Eq. (21)]

k = k0 + �k,
(24)

�k = F
ωb2

1

2v3
Rμ0ρ

{
χ11w

2
1 + χ22w

2
2 − (χ12 + χ21)w1w2

}
,

with the unperturbed wave number k0 = ω/vR. Note that at the
largest SAW frequency employed in this work (2.24 GHz), the
exchange term Dsk

2 with Ds = 2.1 × 10−17 Tm2 (Ref. 44)
results in an isotropic resonance field shift of only 0.4 mT,
justifying the disregard of Ds.

With Eq. (24) we thus find for the longitudinal acoustic
wave in the presence of magnetoelastic interaction

ux(x = x0) = ux(x = 0)eik0x0 exp (i�kx0)︸ ︷︷ ︸
Snorm

21

, (25)

where x0 is the length of the ferromagnetic film. In Eq. (25), we
have defined a normalized complex scattering parameter Snorm

21 ,
which describes the resonant attenuation and phase shift of the
acoustic wave with Snorm

21 = 1 off resonance [cf. Eq. (24)].
The power associated with the acoustic wave can be derived

from its Poynting vector and reads as39

Pac = 1
2AρvRω2ux(x = 0)2︸ ︷︷ ︸

P 0
ac

∣∣Snorm
21

∣∣2
, (26)

where P 0
ac is the acoustic power of the wave out of resonance.

For small deviations of |Snorm
21 |2 = e−2 Im(�k)x0 from unity, the

change of the acoustic power in ferromagnetic resonance
can be shown to be identical to the imaginary part of
Eq. (14) setting all strain components but εxx = ikux to zero.
Accordingly, the real part of Eq. (14) can be related to the
phase arg(Snorm

21 ) = Re(�k)x0. We thus find

�P = −2�kx0P
0
ac, (27)

demonstrating the consistency of the two models discussed
in Secs. II A and II B. We stress that this relation holds
for small perturbations �k of the wave number and for a
purely longitudinal mode. Particularly, larger phase changes
of the order of π/2 as observed in the experiment can not
be accounted for within this modeling approach because they
would lead to Re(�P ) > P 0

ac.

1. Magnetophonon polaritons

To illustrate the coupling of the elastic wave and the
magnetization dynamics, we consider Eq. (21) with the
magnetization oriented within the plane, i.e., θ0 = π/2; for
simplicity, we assume Bu = 0 and α = 0. Equation (21)
simplifies to

ω2 = v2
Rk2

(
1 − 4Fb2

1 sin2 φ0 cos2 φ0(μ0H + 2Bd)μ0M

v2
Rμ0ρ

(
(μ0H + 2Bd)μ0H − (

ω
γ

)2)
)

,

(28)

ω=vRk

ω=γ[(2Bd+μ0H)μ0H]1/2

FIG. 6. (Color online) Dispersion relation of the acoustic wave
and the FMR mode, calculated by solving Eq. (28) with the parameters
given in the text. The dashed lines correspond to the FMR mode and
the acoustic wave for φ0 = 0 and π/2, where the coupling term in
Eq. (28) vanishes. The solid lines represent the modes for φ0 = π/4
where the coupling of the modes is strongest, manifesting itself in the
avoided level crossing.

which can readily be solved for ω. The magnetic field-
dependent part of Eq. (28) is proportional to the square of
the driving field for m within the plane and only εxx �= 0 [cf.
Eq. (A7)]. Considering Fig. 4(a), we expect the strongest in-
teraction of the FMR mode with the elastic wave for φ0 = π/4
and no interaction for φ0 = 0 and π/2. We assume a magnetic
field of μ0H = 6.7 mT and Bd = 0.4 T, corresponding to
a resonance frequency of 2.24 GHz, i.e., the highest SAW
frequency employed in this work, and use typical parameters
for nickel with the references given below; vR = 3440 m/s,
d = 50 nm, b1 = 23 T, ρ = 8900 kg/m3, γ = 2.185μB/h̄ with
Bohr’s magneton μB and the reduced Planck constant h̄. The
wavelength of the acoustic wave at the expected FMR position
is λres = vR/(2.24 GHz) and we therefore assume a filling
factor of F = d/λres. We solve Eq. (28) for ω and plot in Fig. 6
the obtained result against k for φ0 = 0, π/4, and π/2. As long
as the acoustic wave frequency is off-resonant with the FMR
frequency at the given field, we observe a linear dispersion
ω = vRk of the acoustic wave and a k-independent mode at
ω = γ

√
μ0H (μ0H + 2Bd). Because there is no coupling of

these modes for φ0 = 0 and π/2, we observe a mode crossing.
For φ0 = π/4, however, the coupling of the modes is strongest
and we observe a mode hybridization, manifesting itself in an
avoided level crossing, as shown in Fig. 6; these hybridized
modes are referred to as magnetophonon polaritons.45,46 As
it can be seen in Fig. 6, the mode we are referring to
as FMR mode is k independent and exhibits the avoided
level crossing with the acoustic wave mode at k �= 0, which
is why it is more correct to refer to this mode as SWR
mode.

Similar to the modeling of a Rayleigh wave by a longitu-
dinal bulk mode discussed above, the attenuation and phase
shift of other SAW modes in FMR can be modeled taking into
account the transverse bulk modes. A SAW-FMR experiment
with a Love wave, e.g., can be modeled by an in-plane shear
wave [Eq. (22)].
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FIG. 7. (Color online) Experiment and simulation of the angle-dependent SAW-FMR in the IP configuration. The definition of the angle ψ

is given in Fig. 3(a). In the top row, the power absorbed upon FMR is shown for all employed frequencies. For the simulation, the imaginary
part of Eq. (14) was used with all parameters given in the text and in Table I. In the second and third rows, the measured magnitude and phase
of the normalized scattering parameter Snorm

21 are shown together with the corresponding simulation, using Eq. (25).

III. EXPERIMENT AND DISCUSSION

Having established the theoretical framework of SAW-
FMR, we turn to the experiment. We investigate the hybrid
SAW delay line device schematically depicted in Fig. 1,
fabricated from a y-cut z-propagation LiNbO3 substrate.
The 70-nm-thick aluminum transducers with an interdigital
spacing of 5 μm and a metallization ratio of 50% were
fabricated using optical lithography and e-beam evaporation.
This geometry results in a fundamental frequency of 172 MHz,
corresponding to a sound velocity of vR = 3440 m/s,26

and yields a bandpass at odd harmonic frequencies; for the
SAW-FMR experiments, the 5th, 9th, and 13th harmonic
frequencies of the transducer were employed, corresponding
to 0.86, 1.55, and 2.24 GHz, since at these frequencies the
transmission through the delay line was strongest. At the 17th
and higher harmonics, the transmission of the delay line is
much weaker, whereas the fundamental frequency of 172 MHz
is too low to allow for SAW-FMR.26 A polycrystalline Ni
film with dimensions d = 50 nm, w = 400 μm, and x0 =
570 μm was deposited between the transducers by e-beam
evaporation. The complex forward transmission S21 of the
delay line, defined as the voltage ratio of the electromagnetic
wave detected and applied at IDT 2 and 1, respectively,
was measured using vector network analysis with an input
power of P = 0.1 mW. The SAW transmission was isolated
from spurious signals such as electromagnetic crosstalk and
multiple transit signals by Fourier transformation and time
gating.26,28 This is possible since the electromagnetic crosstalk
propagates with the speed of light and the SAW with ≈ 105

times slower speed of sound. Thus, these signals can be
separated in the time domain, and the angle-dependent signals
presented in Figs. 7–9 only stem from the SAW traversing

from IDT1 to IDT2. The delay line was mounted between
the poles of a rotatable electromagnet and measurements were
carried out in the three different measurement configurations
shown in Fig. 3. All experiments were performed at room
temperature. For each harmonic frequency, the power of the
SAW was determined by measuring the scattering parameter
S11, defined as the voltage ratio of the reflected and applied
electromagnetic wave at the transducer. The fraction of the
applied electromagnetic power coupled into the SAW is given
by PSAW = �|S11|2P0/2, where �|S11|2 is the amplitude of the
dip occurring at the corresponding harmonic center frequency
of the transducer and P0 is the input power applied to the
transducer; the factor 1/2 accounts for the transducer bidirec-
tionality. The change of phase and amplitude of the SAW upon
ferromagnetic resonance was determined by normalizing the
scattering parameter Snorm

21 = S21(μ0H )/S21(μ0Hoff), where
the off-resonance field μ0Hoff = 150 mT for the in-plane
measurements and μ0Hoff = 1.2 T for the out-of-plane con-
figurations. The resonantly absorbed power was calculated
from the normalized measured scattering parameter by Pabs =
(1 − |Snorm

21 |2)PSAW.
We will now compare the experimental data obtained

for the absorbed power Pabs with simulations based on the
imaginary part of Eq. (14), which has the advantage that
different strain components can be easily incorporated in
the simulation. Furthermore, we will compare the measured
normalized scattering parameter Snorm

21 with the one simulated
with Eq. (25), i.e., describing attenuation and phase shift of a
purely longitudinal mode.

We start with the in-plane configuration where μ0 H was
rotated within the film plane. Here, ψ denotes the angle
between the SAW propagation direction and μ0 H as defined
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FIG. 8. (Color online) Experiment and simulation of the angle-dependent SAW-FMR in the OOP1 configuration. The definition of the
angle ψ is given in Fig. 3(b). In the top row, the power absorbed upon FMR is shown for all employed frequencies. For the simulation, the
imaginary part of Eq. (14) was used with the same parameters as in the IP configuration. In the second and third rows, the measured magnitude
and phase of the normalized scattering parameter Snorm

21 are shown together with the corresponding simulation, using Eq. (25).

in Fig. 3. For each employed frequency, the measured and
simulated data are shown in a false color plot with the identical
scale for simulation and experiment. The top row shows the
absorbed power, simulated with Eq. (14), i.e., the “effective
field approach.” The best agreement between experiment and
simulation for all frequencies was found for the parameters

α = 0.1, Bd = 400 mT, Bu = 2.5 mT, and Ds = 0; the
exchange stiffness was neglected for reasons discussed above.
The value for α is about a factor of 2 larger than literature
values for polycrystalline nickel thin films.47 We conjecture
that other, non-Gilbert-type, line broadening mechanisms
play a role. These mechanisms could include two-magnon

FIG. 9. (Color online) Experiment and simulation of the angle-dependent SAW-FMR in the OOP2 configuration. The definition of the
angle ψ is given in Fig. 3(c). In the top row, the power absorbed upon FMR is shown for all employed frequencies. For the simulation, the
imaginary part of Eq. (14) was used with the same parameters as in the IP configuration. In the second and third rows, the measured magnitude
and phase of the normalized scattering parameter Snorm

21 are shown together with the corresponding simulation, using Eq. (25).
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TABLE I. Frequency-dependent parameters used for the simula-
tions in Figs. 7–9.

0.86 GHz 1.55 GHz 2.24 GHz

εxx(10−6) 1.8 1.15 0.36
εxz(10−6) 0.09i 0.0575i 0.018i

εzz(10−6) 0.18 0.115 0.036
F (d/λ) 0.26 0.35 0.38
λ (μm) 20/5 20/9 20/13

processes,48 nonuniform excitation due to the small acoustic
wavelength (compared to the sample size),49 nonresolved
standing spin-wave modes,50–53 or excitation of other spin-
wave modes and their damping. The clarification of this issue
would require a systematic, frequency-dependent study of the
SAW-FMR linewidth, ideally accompanied by simultaneous
coplanar waveguide FMR measurements, particularly at higher
SAW frequencies where frequency-independent contributions
to the linewidth are less dominant and where standing spin-
wave modes can be spectrally resolved. This would also
allow for a more reliable determination of the anisotropy
parameters. However, this would require the fabrication of
higher-frequency SAW devices by electron-beam lithography,
which is beyond the scope of this work. Further, a more detailed
simulation including anisotropic magnetization damping54

might be necessary for an improved modeling. The origin of
the uniaxial in-plane anisotropy is most likely the anisotropic
thermal expansion coefficient of the LiNbO3 substrate. During
the evaporation process, the substrate is heated and when
cooling down to room temperature the Ni film is strained,
causing the magnetic anisotropy.

The magnitude of the strain components derived from the
simulations depends on the frequency with the respective
values given in Table I; for higher frequencies, a larger fraction
of the electromagnetic power applied to the transducer is
emitted into the free space and therefore less electromagnetic
power is transferred into the SAW. As further simulation
parameters, the following literature values were used: M =
370 kA/m (Ref. 8), b1 = b2 = −3λsc44 = 23 T (Ref. 38),
with the isotropic magnetostriction constant λs = −38 × 10−6

(Ref. 55) and the elastic shear module c44 = S = 74 GPa
(Ref. 56), ρ = 8900 kg/m3 (Ref. 57), and γ = 2.185μB/h̄

(Ref. 58). As shown by the graphs, the characteristic angle
dependence as well as the absolute value of the absorbed power
of the experimental data are reproduced by the simulation with
one set of parameters.

In the second and third rows of Fig. 7, the magnitude
and phase of the measured normalized Snorm

21 parameter are
shown together with the simulated Snorm

21 using Eq. (25),
i.e., the “backaction approach.” For this simulation, the same
parameters as above were used. The strain components do not
enter in Eq. (25), but F is used as a free parameter, which is of
the order of d/λ and therefore depends on the frequency; the
frequency-dependent parameters used for the simulations are
also summarized in Table I. In the simulation, F was chosen
such that the simulated phase arg(Snorm

21 ) quantitatively agrees
with the experiment. In the SAW-FMR dispersion, the char-
acteristic angle dependence is reproduced in the simulation.
With this set of parameters, the simulated magnitude |Snorm

21 | is

also in reasonably good agreement with the experiment, given
the simplicity of the model.59 The advantage of the backaction
approach is that the phase shift in FMR can be quantitatively
modeled, which was not possible with the qualitative effective
field approach presented in Ref. 26. Note that the nearly field-
orientation-independent change in the magnetotransmission
observed in the absorption and dispersion data at low positive
fields stems from hysteretic magnetization switching,23,26 and
can be included in the modeling by searching for the local
energy minimum of the free-enthalpy density equation (1) with
respect to the magnetization direction rather than the global
minimum. Superconducting quantum interference devices
(SQUID) magnetometry measurements of a comparable Ni
thin film showed comparable coercive fields.8 However, we
here focus on the nonhysteretic SAW-FMR signature and thus
disregard the hysteretic switching in the simulation.

Particularly at 2.24 GHz, the simulated maximum value for
|Snorm

21 | overestimates the acoustic wave attenuation observed
in the experiment. Most likely, the agreement could be
improved by modeling the Rayleigh wave more realistically
by considering the attenuation and phase shift of a coupled
longitudinal and transverse wave. Since |Snorm

21 | substantially
deviates from unity in the experiment, the approximation
discussed in Sec. II B when showing that the change of
acoustic power for the longitudinal mode upon FMR is
identical to the imaginary part of Eq. (14) is not justified.
Nevertheless, the modeling of the absorbed power with
Im(�P ) can reproduce the experimentally observed line shape
of the absorption data better than the modeling with Eq. (25)
since all relevant strain components can easily be accounted
for. As already mentioned in Sec. II B, the experimentally
observed phase shift of more than 90◦, however, can not be
quantitatively modeled with Eq. (14). We note that, within
both approaches, for the magnetic field orientations close
to the SAW propagation direction, i.e., for ψ close to 0◦
in Fig 7, the agreement between experiment and simulation
is less good than for other orientations. This could be a
consequence of the simplifications involved in the modeling
and might be improved by considering nonlinear driving.60,61

As already mentioned in Sec. II, the driving fields obtained in
SAW-FMR are of the order of 50 μT and thus similar to typical
driving fields in cavity-based FMR experiments. In contrast to
conventional cavity-based FMR, however, here, the sensitivity
is not further enhanced by large Q-factors. The advantage
of SAW-FMR is that the entire area between the transducers
can be filled with the ferromagnetic film and thus the filling
factor is large compared to cavity-based FMR. An interesting
experiment would be to quantitatively compare the sensitivity
of SAW-FMR with coplanar waveguide FMR since in both
techniques the signal is measured in transmission geometry
without resonators, making the approaches comparable.

Figures 8 and 9 show the experimental and simulated data
for the OOP1 and OOP2 field orientations, with the angle ψ

defined in Fig. 3 and the panels organized in the same way
as in Fig. 7. For the simulations, the identical parameters as
for the IP configuration were used, resulting again in a good
agreement between experiment and simulation. Due to the
large demagnetization field, the magnetization is forced into
the film plane, except when the magnetic field is oriented out
of plane. This is why the resonances are observed at rather low

134415-10



SURFACE ACOUSTIC WAVE DRIVEN FERROMAGNETIC . . . PHYSICAL REVIEW B 86, 134415 (2012)

magnetic fields, except for magnetic field orientations close
to out of plane. Following the discussion in Sec. II A1, we
note that the reason why a signal is observed at all in the
OOP1 configuration is that the uniaxial in-plane anisotropy
drives the magnetization away from the x axis where no
driving field is expected according to Fig. 4. For the OOP2
configuration, on the other hand, the in-plane component of
the magnetic field lies between the x and y axes where the
driving field is largest (cf. Fig. 4). This is why in the OOP2
configuration for ψ = π/2, a SAW-FMR signal is present in
contrast to the OOP1 configuration. For both configurations, a
slight asymmetry along the ψ axis is observed. It stems from a
misalignment of the sample with respect to the magnetic field
of less than 1◦ and is reproduced in the simulation.

We finally note that the overall agreement between exper-
iment and theory for the absorption data is slightly better in
the effective field approach than in the backaction approach,
particularly, the quantitative value of the absorbed power can
be reproduced very well in this approach, while the backaction
approach is better suitable for describing the phase.

IV. SUMMARY AND OUTLOOK

In summary, we have provided a theoretical framework
for SAW based FMR experiments based on two different
approaches. In the “effective field approach,” we calculated the
magnetization dynamics in the presence of a magnetoelastic
driving field. Based on the obtained analytical expression, the
rf power absorption in the ferromagnetic film can be calculated
under magnetic resonance conditions. The advantage of this
method is that arbitrary types of SAWs or bulk waves which
may drive the ferromagnetic resonance can be modeled
in a rather simple fashion. The modeling is achieved by
superimposing the corresponding strain components in the
magnetoelastic terms of the free-enthalpy density, where
necessary with an additional phase factor. Further, we have
derived an expression for the spin-current generation upon
FMR, which applies to SAW based acoustic spin-pumping
experiments in ferromagnet/normal metal hybrids, again with
the capability of modeling arbitrary acoustic wave modes.

In the backaction approach, we have taken into account
the backaction of the magnetization dynamics on the acoustic
wave by solving the LLG equation and the bulk elastic wave
equation, neglecting the interaction between the longitudinal
and transverse bulk waves. Despite the approximations in-
volved, the analytical results allow a quantitative analysis of
the phase shift and attenuation of the SAW upon FMR, and
we showed that for small perturbations of the longitudinal
elastic wave, the two approaches are consistent. The particular
advantage of this approach is that the SAW phase shift in FMR
can be modeled quantitatively.

Furthermore, we have performed systematic SAW-FMR
experiments using a Ni/LiNbO3 hybrid SAW delay line and
measuring the complex scattering parameter of the device
Snorm

21 as a function of the magnetic field orientation and
magnitude; the field was rotated in the in-plane configuration
and in two different out-of-plane configurations for three
different SAW frequencies each. We have shown that the
absorbed power can be quantitatively described with the
LLG approach with one parameter set for all measurement

configurations and frequencies. Moreover, we have shown that
the phase shift of the SAW upon FMR can be quantitatively
modeled by the backaction model, considering a longitudinal
bulk wave traversing through the hybrid.

This work thus lays theoretical foundations for SAW based
spin mechanics experiments such as SAW-FMR (Ref. 26)
driven acoustic spin pumping35 and is applicable to various
(surface) acoustic wave modes. Further theoretical work could
be directed toward describing the SAW propagation through
the coupled two-layer system consisting of the piezoelectric
substrate and the ferromagnetic layer numerically, i.e., without
the approximations discussed in Sec. II, to obtain an even
more accurate description of the experiment and quantitative
modeling of the SAW attenuation and phase shift. Particularly,
it would be desirable to improve the agreement between
theory and experiment for field orientations close to the
propagation direction of the SAW. A particularly appealing
experiment would be to spectroscopically resolve the avoided
level crossing of the SAW and FMR modes. To this end, a
ferromagnet with a FMR linewidth of the order of 10 MHz
with a similar magnetoelastic coupling as Ni or SAW devices
with higher frequencies and thus larger filling factors would be
required. Therefore, it could be beneficial to intentionally use
standing spin-wave resonances, e.g., by employing magnonic
crystals, and couple these to a SAW resonator. Alternatively,
the coupling of paramagnetic centers to elastic waves,62

e.g., via a crystal field,15 could be exploited to observe a
strong coupling of the spin ensemble to a SAW resonator,
in analogy to the strong coupling of spin ensembles to photon
cavities.63–65
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APPENDIX: COORDINATE TRANSFORMATION AND
FREE-ENTHALPY DERIVATIVES

The transformation between the (x,y,z) coordinate system,
defined by the propagation direction of the SAW x and the
surface normal z, and the equilibrium system (1,2,3) is given
by ⎛

⎜⎝mx

my

mz

⎞
⎟⎠ = U

⎛
⎜⎝m1

m2

m3

⎞
⎟⎠ , (A1)

with

U =

⎛
⎜⎝ cos θ0 cos φ0 −sin φ0 sin θ0 cos φ0

cos θ0 sin φ0 cos φ0 sin θ0 sin φ0

−sin θ0 0 cos θ0

⎞
⎟⎠ . (A2)

The driving fields derived from the derivatives of the
static free-enthalpy density equation (1) with respect to the
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magnetization components are given by

G3 = ∂m3G|m=m0 = −μ0H3 + 2Bd cos2 θ0 + 2Buu
2
3 + Dsk

2,

(A3)

G21 = G12 = ∂m1∂m2G|m=m0 = 2Buu2u1, (A4)

G11 = ∂2
m1

G|m=m0 = 2Bd sin2 θ0 + 2Buu
2
1, (A5)

G22 = ∂2
m2

G|m=m0 = 2Buu
2
2. (A6)

In the following, the derivatives of the dynamic free-enthalpy
density used for the plots in Fig. 4 are stated explicitly for the
strain components εxx , εxy , and εxz separately, setting all other
strain components equal to zero. If m lies within the film plane
(i.e., θ0 = π/2), referred to as IP configuration, we obtain the
m-dependent driving-field components

μ0

(
h1

h2

)
=

(
0

2b1εxx sin φ0 cos φ0

)
, (A7)

μ0

(
h1

h2

)
=

(
0

−2b2εxy cos(2φ0)

)
, (A8)

and

μ0

(
h1

h2

)
=

(
2b2εxz cos φ0

0

)
. (A9)

Conversely, if m is in the xz plane (i.e., φ0 = 0), referred
to as OOP1 configuration, we find

μ0

(
h1

h2

)
=

(−2b1εxx sin θ0 cos θ0

0

)
, (A10)

μ0

(
h1

h2

)
=

(
0

−2b2εxy sin θ0

)
, (A11)

and

μ0

(
h1

h2

)
=

(−2b2εxz cos(2θ0)

0

)
. (A12)

For the other out-of-plane configuration investigated (i.e., φ0 =
π/4), referred to as OOP2 configuration, the driving fields read
as

μ0

(
h1

h2

)
=

(−b1εxx sin θ0 cos θ0

b1εxx sin θ0

)
, (A13)

μ0

(
h1

h2

)
=

(−b2 sin θ0 cos θ0εxy

0

)
, (A14)

and

μ0

(
h1

h2

)
=

(−√
2b2εxz cos(2θ0)

√
2b2εxz cos θ0

)
. (A15)
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