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Oscillatory tunneling magnetoresistance in magnetic tunnel junctions
with inserted nonmagnetic layer
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Oscillatory tunneling magnetoresistance (TMR) as a function of spacer thickness is investigated theoretically
for a magnetic tunnel junction with a nonmagnetic layer inserted between the tunnel barrier and the ferromagnetic
layer. TMR is characterized in an analytical form, that is expressed with the transmission and reflection amplitudes
of single interfaces at the Fermi level, and by the extremal wave vectors. Electronic structures with multiple bands
are taken into account in the derivation characterizing the TMR, and the proposed analytical expression can be
directly applied to real junctions. Based on our model, the features of TMR dependence on spacer thickness
are discussed, including selection rules for the oscillation period. Numerical calculations are performed using
an envelope-function theory for several cases, and we show that our model is in good agreement with the exact
result.
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I. INTRODUCTION

Since high tunneling magnetoresistance (TMR) was first
observed at room temperature,1 magnetic tunnel junctions
(MTJs) have been a focus of interest. Extensive research has
been carried out to understand and improve the properties of
MTJs. A huge increase in TMR with lower junction resistance
was achieved when AlOx tunnel barriers were replaced by
MgO, and this was followed by realizations of memory devices
based on MTJs with MgO barriers.2 Tunneling current in
the MTJ is spin polarized, which adds another dimension
to the tunneling effect, and scientific attention has thus been
drawn to the spin-dependent tunneling phenomenon. When a
nonmagnetic (NM) layer is inserted between a ferromagnetic
(FM) layer and the insulating (I) tunnel barrier of the MTJ,
the spin polarization of the tunneling current changes and the
TMR is directly affected. An early theoretical work predicted
the oscillatory TMR as a function of the NM thickness due
to the quantum well states inside the NM layer.3 In sputtered
samples, it has been shown that an NM layer between the
tunnel barrier and FM layer could be detrimental to TMR, and
the TMR decreases as a function of NM thickness.4,5 These
experimental results have been explained theoretically with
a free electron model, and the decay of TMR was attributed
to a loss of coherence in the electron propagation.6 Different
experimental results have been obtained for a crystalline NM
layer inserted between the tunnel barrier and the FM layer.
Yuasa et al.7 experimentally investigated the dependence of
TMR on Cu thickness in NiFe/AlOx /Cu/Co junctions with
samples grown by molecular beam epitaxy. They found that
the TMR decayed but oscillated as a function of Cu thickness.
The oscillation period was determined by the nesting feature
of the Cu Fermi surface. This oscillatory TMR has been
investigated theoretically based on a single-band tight-binding
model, a free-electron model, and full-band calculations.8–19

Many features have been explained with calculations using
simple models, but direct comparisons with the experimental
data are difficult because realistic electronic structures were
not considered. The full-band calculations are very useful
for the description of real systems. However they are time
consuming, and sometimes it is not easy to understand the

underlying physics. Furthermore, full-band calculations are
usually carried out for an ideal situation, and significant
discrepancies often occur between theory and experiments.

We introduce an analytical expression that describes the
dependence of TMR on NM thickness for FM/I/NM/FM
junctions based on full-band structures. Our approach uses the
generalization of a previously described single-band case19

to a multiple-band case that considers the real materials. The
TMR is expressed with transmission and reflection amplitudes
of single interfaces at the Fermi level, and extremal wave
vectors. The full-band structures of the materials are taken
into account in our proposed model, and the calculation of
several transmission and reflection amplitudes with real band
structures can make a direct comparison with experimental
results possible. Based on our model, selection rules for
the oscillation period are discussed, and we suggest that
very few oscillation periods will be observed in experiments
even when there are many extremal spanning vectors of
the NM Fermi surface. This situation is very different than
the interlayer exchange coupling in magnetic multilayers.
Our model explicitly shows that TMR dependence on NM
thickness is affected by the thickness of the tunnel barrier, and
predicts that the TMR will go to zero as the NM thickness
increases. To check the validity of our model, we carried out
numerical calculations using an envelope-function theory for
several cases including NM material with a Fermi surface
similar to the Cu(001) case. Although our model is calculated
using the parameters at the Fermi level and the extremal wave
vector, it is in good agreement with the exact numerical results.

II. THEORETICAL MODEL

Figure 1(a) shows a schematic diagram of an MTJ with an
NM layer inserted between the tunnel barrier and the right
magnetic layer [FM(R)]. The growth direction is taken as
the z axis, and d is the thickness of the NM layer. We used
a frozen potential approximation, and the eigenstate of the
MTJ is expressed with linear combinations of the bulk states
for each layer. We assumed that the wave-vector component
parallel to the interface (k‖) is conserved throughout the MTJ.
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A two-channel model was adopted and spin-flip scattering was
ignored. The normalized bulk solution of the material for the
left magnetic layer [FM(L)] is denoted as |ε,k‖,kL+(−)

z,nσ 〉 for a
given energy ε and k‖, where kz is the z component of the wave
vector, n is the band index, σ is the spin index, and the + (−)
sign is for the state traveling to the right (left). Similarly, the

bulk solutions of the FM(R) and NM materials are expressed as
|ε,k‖,kR+(−)

z,nσ 〉 and |ε,k‖,kN+(−)
z,n 〉, respectively. Multiple bands

are taken into account, and 2NL(R)σ is the number of bulk states
in the left (right) FM layer for a given ε, k‖, and spin σ . The
number of bulk states in the NM layer for a given ε and k‖ is
denoted as 2NN . The eigenstate of the MTJ is written as

∣∣ψσ (ε,k‖)
〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑NLσ

n=1 A+
nσ

|ε,k‖,kL+
z,nσ 〉√

|vL+
z,nσ |

+ ∑NLσ

n=1 A−
nσ

|ε,k‖,kL−
z,nσ 〉√

|vL−
z,nσ |

, z < 0,

∑NN

n=1C
+
nσ

|ε,k‖,kN+
z,n 〉√

|vN+
z,n |

+ ∑NN

n=1C
−
nσ

|ε,k‖,kN−
z,n 〉√

|vN−
z,n |

, b < z < b + d,

∑NRσ

n=1 B+
nσ

|ε,k‖,kR+
z,nσ 〉√

|vR+
z,nσ |

+ ∑NRσ

n=1 B−
nσ

|ε,k‖,kR−
z,nσ 〉√

|vR−
z,nσ |

, z > b + d,

(1)

where vz is the z component of the group velocity [vz = (1/h̄)(∂ε/∂kz)] for the corresponding bulk eigenstate, and A±
nσ ,

C±
nσ , and B±

nσ are coefficients to be determined from the boundary conditions. Note that the bases in Eq. (1) are adjusted
so that the current is normalized. The eigenstate inside the tunnel barrier is not shown here. We define vectors A±

σ and B±
σ

as A±
σ ≡ (A±

1σ ,A±
2σ , . . . ,A±

NLσ σ )T and B±
σ ≡ (B±

1σ ,B±
2σ , . . . ,B±

NRσ σ )T . Then, A−
σ and B+

σ are related to A+
σ and B−

σ by the S

matrix,20 (
A−

σ

B+
σ

)
=

(
rσ t′σ
tσ r′

σ

) (
A+

σ

B−
σ

)
. (2)

Matrix element tσ,nn′ (rσ,nn′ ) is a kind of transmission (reflection) amplitude for an incoming wave from the left |ε, k‖, kL+
z,n′σ 〉

to be transmitted (reflected) to |ε, k‖, kR+
z,nσ 〉 (|ε, k‖, kL−

z,nσ 〉). The transmission (reflection) amplitude for the opposite direction is
given by t ′σ,nn′ (r ′

σ,nn′ ). We calculated the conductance G for low bias and zero temperature from the Landauer-Büttiker formalism
as follows:

G = e2

h

∑
k‖,σ

Tr[t†σ (εF ,k‖)tσ (εF ,k‖)], (3)

where εF is the Fermi energy. As shown in Figs. 1(b) and 1(c), we considered the FM(L)/I/NM and NM/FM(R) interfaces
separately, and expressed tσ of the MTJ with the transmission and reflection amplitudes of each separated interface. The
eigenstate of the FM(L)/I/NM system shown in Fig. 1(b) is expressed as

∣∣ψL
σ (ε,k‖)

〉 =

⎧⎪⎪⎨
⎪⎪⎩

∑NLσ

n=1 AL+
nσ

|ε,k‖,kL+
z,nσ 〉√|vL+

z,nσ | + ∑NLσ

n=1A
L−
nσ

|ε,k‖,kL−
z,nσ 〉√|vL−

z,nσ | , z < 0,

∑NN

n=1C
L+
nσ

|ε,k‖,kN+
z,n 〉√|vN+

z,n | + ∑NN

n=1C
L−
nσ

|ε,k‖,kN−
z,n 〉√|vN−

z,n | , z > b,

(4)

where AL±
nσ and CL±

nσ are coefficients. We define AL±
σ ≡ (AL±

1σ ,AL±
2σ , . . . ,AL±

NLσ σ )T and CL±
σ ≡ (CL±

1σ ,CL±
2σ , . . . ,CL±

NNσ )T , and the
relation between the coefficients is expressed as

(
AL−

σ

CL+
σ

)
=

(
rL
σ t′Lσ

tLσ r′L
σ

)(
AL+

σ

CL−
σ

)
. (5)

Similarly, for the NM/FM interface shown in Fig. 1(c), the eigenstate is given by

∣∣ψR
σ (ε,k‖)

〉 =

⎧⎪⎪⎨
⎪⎪⎩

∑NN

n=1 CR+
nσ

|ε,k‖,kN+
z,n 〉√|vN+

z,n | + ∑NN

n=1 CR−
nσ

|ε,k‖,kN−
z,n 〉√|vN−

z,n | , z < 0,

∑NRσ

n=1 BR+
nσ

|ε,k‖,kR+
z,nσ 〉√|vR+

z,nσ | + ∑NRσ

n=1 BR−
nσ

|ε,k‖,kR−
z,nσ 〉√|vR−

z,nσ | , z > 0.

(6)
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FIG. 1. (a) Schematic diagram of a magnetic tunnel junction
(MTJ) with a nonmagnetic (NM) layer inserted between the insulating
(I) tunnel barrier and the right ferromagnetic layer [FM(R)]. d is the
thickness of the NM layer. A+, A−, B+, and B− are coefficient vectors
[see Eq. (1)]. The transmission in the MTJ can be expressed with the
reflection and transmission amplitudes of the separated interfaces
shown in (b) and (c).

The vectors CR±
σ = (CR±

1σ ,CR±
2σ , . . . ,CR±

NN σ )T and BR±
σ =

(BR±
1σ ,BR±

2σ , . . . ,BR±
NRσ σ )T are related as follows:

(
CR−

σ

BR+
σ

)
=

(
rR
σ t′Rσ

tRσ r′R
σ

) (
CR+

σ

BR−
σ

)
. (7)

r and t of the MTJ in Eq. (2) can be expressed with rL, tL,
r′L, and t′L in Eq. (5) and rR , tR , r′R , and t′R in Eq. (7)
by considering the multiple reflection inside the NM. We
introduce the mean free path λ due to scattering inside the NM
layer. For simplicity, we assumed that λ is constant, although
the dependence of λ on other parameters can be included in
our calculation. Then, the phase-coherent part of the reflection
amplitude rc is given by

rc = rL
σ + t′Lσ ρR

σ τL
σ e−2d/λ +

∞∑
n=1

t′Lσ
(
ρR

σ ρ ′L
σ

)n
ρR

σ τL
σ e−(2d/λ)(n+1),

(8)

where the matrix elements ρR
σ,nn′ , τL

σ,nn′ , and ρ ′L
σ,nn′ are

ρR
σ,nn′ = e−ikN−

z,n d rR
σ,nn′ , τL

σ,nn′ = eikN+
z,n d tLσ,nn′ , and ρ ′L

σ,nn′ =
eikN+

z,n d r ′L
σ,nn′ . The phase-coherent part of the transmission

amplitude tc can be obtained in a similar way. Because of the
scattering inside the NM layer, we have Tr[tc†tc] + Tr[rc†rc] <

1 and we need to include the diffusive part of the transport.
We assume that the transmission back to the FM(L) layer
through the tunnel barrier is much smaller than that through
the NM/FM(R) interface. Then, the 1 − Tr[tc†tc] − Tr[rc†rc]
portion contributes to the sequential transmission.12 Adding
the coherent and sequential transmissions, we have Tr[t†t] =
1 − Tr[rc†rc]. Finally, using the properties of the S matrix and
taking the first-order term in e−2d/λ, we obtain

Tr[t†t] ∼= Tr[tL
†
tL] + 2Re Tr

[
tLσ

†
r′L

σ ρR
σ τL

σ

]
e−2d/λ. (9)

Even when λ is very large, this is a reasonable approximation
because the magnitude of the matrix element rR

σ,nn′ is less
than 1, and the higher-order terms are more rapidly oscillating
as functions of d and consequently contribute less to the

conduction. The conductance is given by

G = G0 + 2e2

h
e−2d/λRe

∑
k‖,σ

Tr
[
tLσ

†
r′L

σ ρR
σ τL

σ

]
, (10)

where G0 is the conductance of the FM(L)/I/NM junctions and
the energy is set to the Fermi level (ε = εF ). The conductance
depends on the magnetic configurations, and we denote the
conductance for parallel (antiparallel) magnetization of two
magnetic layers as GP(AP). The TMR is given by 	G/GAP,
where 	G is 	G = GP − GAP. Here, we will show the
calculation of 	G, and GP(AP) − G0 can be obtained in the

same way. We define 	T L
nn′ and 	rR

nn′ as 	T L
nn′ = (tL↑ tL↑

†r′L
↑ −

tL↓ tL↓
†r′L

↓ )nn′ = |	T L
nn′ |eiφL

nn′ and 	rR
nn′ = (rR

↑,nn′ − rR
↓,nn′ )/2 =

|	rR
nn′ |eiφR

nn′ , where ↑ (↓) is the majority (minority) spin. 	G

is expressed as

	G = 4e2

h
e−2d/λRe

∑
n,n′

∑
k‖,σ

∣∣	T L
nn′

∣∣ ∣∣	rR
nn′

∣∣ ei(qnn′d+φnn′ ),

(11)

where qnn′ and φnn′ are qnn′ = kN+
n − kN−

n′ and φnn′ = φL
nn′ +

φR
nn′ .

The summation over k‖ can be performed in a manner
similar to the calculation of the interlayer exchange coupling
in magnetic multilayers.21,22 |	T L

nn′ | and eiqF
nn′d are rapidly

changing as functions of k‖. We assume the exponen-
tial dependence of |	T L

nn′ | such that |	T L
nn′ | ∝ e−b χnn′ (k‖).

Suppose that (kαx,kαy) is an extremal point, which means
∇k‖[−b χnn′ + i(qnn′d + φnn′)] = 0 at k‖ = (kαx,kαy). Since
the main contribution to the integral comes from the vicinity
of the extremal point, we expand −b χnn′ + i(qnn′d + φnn′ )
around the extremal point as follows:

−b χnn′ + i(qnn′d + φnn′ )

≈ −bχα + i(qαd + φα) −
(

b

κb
αx

− i
d + dαx

κd
αx

)
(kx − kαx)2

−
(

b

κb
αy

− i
d + dαy

κd
αy

)
(ky − kαy)2, (12)

where new parameters 1
κb

αx
= 1

2
∂2χnn′
∂k2

x
, 1

κb
αy

= 1
2

∂2χnn′
∂k2

y
, 1

κd
αx

=
1
2

∂2qnn′
∂k2

x
, 1

κd
αy

= 1
2

∂2qnn′
∂k2

y
, dαx = 1

2κd
αx

∂2φnn′
∂k2

x
, and dαy = 1

2κd
αy

∂2φnn′
∂k2

y

are evaluated at ε = εF and k‖ = (kαx,kαy). Then, the sum-
mation over k‖ is carried out analytically and 	G is given by

	G = e2

hπ
e−2d/λRe

∑
α

nα

∣∣	T L
α

∣∣ ∣∣	rR
α

∣∣ ei(qαd+φα )√
b

κb
αx

− i d+dαx

κd
αx

√
b

κb
αy

− i
d+dαy

κd
αy

,

(13)

where nα is the number of the extremal points of the same
kind. The phase of the square root is taken from −π/2 to π/2.
The parameters in Eq. (13) are evaluated at the Fermi level
and the extremal point. Suppose we have ∇k‖ χ = 0 at kb

‖ =
(kb

x,k
b
y ) and ∇k‖(qd + φ) = 0 at kd

‖ = (kd
x ,kd

y ). In general, kb
‖

is different from kd
‖ and the corresponding extremal point

(kαx,kαy) is a complex number. This makes other parameters
such as qα complex numbers, and the situation is rather
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complicated. However, when kb
‖ and kd

‖ are far apart, the
contribution is negligible because of small |	T L

α |. The most
important case is when kb

‖ and kd
‖ coincide. This is expected

to happen often at k‖ = 0 due to symmetry. In this case, kαx

and kαy are real and 	G becomes

	G = e2nα

2hπ
Re

(|tL↑ |2 − |tL↓ |2)|rR
↑ − rR

↓ |e−2d/λei(qαd+φα )√
b

κb
αx

− i d+dαx

κd
αx

√
b

κb
αy

− i
d+dαy

κd
αy

,

(14)

where we used r ′L
↑ ∼= r ′L

↓ with |r ′L
↑ | ∼= 1, which is expected

for a typical thickness of the tunnel barrier. In this case, qα is
exactly the extremal spanning vector of the NM Fermi surface.

The extremal spanning vector qα of the NM Fermi surface
gives rise to the period of the TMR oscillation. In principle,
multiple periods are possible depending on the shape of
the NM Fermi surface. However, the extremal spanning vectors
of the NM Fermi surface are the necessary condition for TMR
oscillation, and the period would be observed only when the
corresponding |	T L

α | is large enough. Except for the symmetry
point in k‖ space, the extremal points of the NM Fermi surface
hardly coincide with the maxima point of |	T L

α | of the tunnel
barrier. Thus, only few periods would be observable among
the possible periods from the extremal spanning vectors.
Compared with the oscillation of the interlayer exchange
coupling for a corresponding spacer, fewer periods would
be observed in TMR oscillation. Moreover, as b increases,
|	T L

α | decreases rapidly as a function of k‖ away from the
maxima. Thus, the multiple periods would be more difficult to
observe for a thicker tunnel barrier. Since |	T L

α | is material
dependent, the period of TMR oscillation could change for a
different tunneling barrier. In Eq. (14), the extra phase factor
arises from the square root in the denominator. This extra
phase factor is d dependent, and the measured oscillation
period will be slightly different from 2π/qα . For instance,
the period of TMR oscillation for NiFe/AlOx /Cu(001)/Co is
expected to be slightly smaller than 2π/qα , which is the period
of the interlayer exchange coupling for fcc Co/Cu(001)/Co
multilayers.

We considered the observable periods with the assumption
that the tunneling probability is maximum at k‖ = 0. Then,
only the oscillation for the extremal spanning vector at k‖ =
0 would be observed. In NiFe/AlOx /Cu(001)/Co junctions,
there are two possible periods from the Fermi surface of
Cu along the (001) direction. The long period is from the
extremal spanning vector at k‖ = 0, and the extremal vector
for the short period is far away from k‖ = 0. Thus, the
short period is intrinsically invisible, and only the long
period could be observed. There are four possible oscillation
periods in NiFe/AlOx /Cu(110)/Co junctions from the Cu
Fermi surface along the (110) direction.21 Among them,
the only observable period is the extremal spanning vector
corresponding to k‖ = 0. This period is very short and would
be easily wiped out by the interface roughness. Thus, it would
be difficult to observe a TMR oscillation in this system.
There is only one possible period for Cu(111),21,22 and this
period has been observed experimentally in the interlayer
exchange coupling of Co/Cu(111)/Co multilayers.23 However,
this period would not be observed in NiFe/AlOx /Cu(111)/Co

junctions because the corresponding extremal spanning vector
is far from k‖ = 0. Therefore, except for the long period
of NiFe/AlOx /Cu(001)/Co junctions, it would be difficult to
observe a TMR oscillation as a function of Cu thickness.
The situation for the Au and Ag spacers will be same as
in the case of Cu because the shapes of the Fermi surfaces
are similar. In the Fe/Cr/Fe multilayers, the long periods
of interlayer coupling oscillation have been observed as a
function of the Cr thickness for the (100), (110), and (211)
orientations.23 However, these long periods would not be
observed experimentally in Fe/AlOx /Cr/Fe or Fe/MgO/Cr/Fe
tunnel junctions because the long periods are from the N

point of the Cr Fermi surface,24,25 which is away from
k‖ = 0 for any orientation. In experiments, this long period
has not been observed for Fe/AlOx /Cr(001)/Fe (Ref. 26) and
Fe/MgO/Cr(001)/Fe (Ref. 27) tunnel junctions. Usually, the
long period is clearly observed because it is not eliminated
by the interface roughness. Although we discussed the case
that the tunneling is dominated by perpendicularly incident
electrons, the analysis is similar when the tunneling probability
is maximum or high away from k‖ = 0. If the dependence
of the tunneling probability on k‖ changes with a different
tunnel barrier, the TMR dependence on the NM spacer will
be altered accordingly. Still, the crucial criterion is whether
the tunneling probability is significant or not at the point of
the extremal spanning vectors of the NM Fermi surface in
the k‖ space. Except special points, the chances are that the
point of the maximum tunneling probability does not coincide
with the position of the extremal spanning vectors of the
NM Fermi surface in the k‖ space. Thus many oscillations
inferred from the NM Fermi surface would not be observed.
When the tunnel barrier is extremely thin, the situation can be
much different because the tunneling probability dependence
on k‖ may change significantly. More oscillation periods can
be observed with thinner tunnel barriers. Even in this case, the
oscillation periods associated with relatively high tunneling
probability will be observed.

Without the scattering effect, 	G and TMR decays as
1/d for a thick NM layer. However, for thin NM layers, the
decay rate is slower than 1/d and is affected by the tunnel
barrier thickness b, and also by dαx and dαy (k‖ dependence of
the reflection-amplitude phase factors). The amplitude decays
much more slowly than 1/d for coherent transport when d

is of the same order of magnitude as b. In experiments, the
TMR oscillation decays much faster than 1/d, which seems
to be due to scattering. As the NM thickness increases, our
model predicts that 	G and TMR go to zero even when the
mean free path (λ) is very long. We will address this point
in Sec. III C.

III. NUMERICAL CALCULATION WITH AN
ENVELOPE-FUNCTION THEORY

To test the validity of our model, we carried out numerical
calculations based on an envelope-function theory for several
cases. We used the same material for FM(L) and FM(R), and
ignored scattering. The continuity of the wave function and
the conservation of current at the interface were taken as the
boundary conditions.
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Fε

ε

FIG. 2. Dispersion relation for the FM, I, and NM materials. 	

is the spin splitting inside the FM layer, VI is the bottom energy for
the tunnel barrier, and εF is the Fermi energy.

A. Effective-mass approximation

First, we considered the case that the dispersion relation
of the NM material is the same as that of the FM material
for majority spin. The dispersion relations of the FM material
and the insulator are given by ε(k) = h̄2k2/2m∗

σ + Vσ and
ε(k) = h̄2k2/2m0 + VI , respectively, where m∗

σ is the spin-
dependent effective mass of the FM material, m0 is the bare
electron mass, and VI is the height of the tunnel barrier. We set
V↑ = 0 [V↓ = 	] for the majority (minority) spin in the FM
layer using the spin-splitting energy 	. The effective mass
of the FM material is m↑ = m0 for the majority spin and
m∗

↓ = m0εF /(εF − 	) for the minority spin. Schematics for

FIG. 3. TMR as a function of d for the effective-mass band. The
barrier thicknesses are (a) b = 1 and (b) b = 2 nm. The parameters
used in the calculation are εF = 4 eV, VI = 6 eV, and 	 = 2.5 eV. The
effective mass of electrons with minority spin in the FM material is
m∗

↓ = m0εF /(εF − 	) and other effective masses are the bare electron
mass m0. The solid line is the exact result, and the dotted line is based
on the proposed analytical formula.

the dispersion relations of the FM, I, and NM materials are
shown in Fig. 2. Under these conditions, all the traveling states
in the NM layer have corresponding traveling states in the
FM layer, and total reflection does not occur at the NM/FM
interface for any k‖. The parameters used in the calculation are
εF = 4 eV, VI = 6 eV, and 	 = 2.5 eV. The TMR is plotted as
a function of NM thickness d for the tunnel-barrier thicknesses
of b = 1 nm and b = 2 nm in Figs. 3(a) and 3(b), respectively.
The solid line represents the exact calculation, which was
obtained using Eq. (3). The dotted line is the result of our
analytical simple model described by Eq. (14). Note that the
extremal point for the NM Fermi surface coincides with the
maximum transmission point of the tunnel barrier at k‖ = 0.
When the NM layer is thin, there is some discrepancy between
the exact result and our analytical model, but the agreement
improves as the NM thickness increases. The overall trend
of the NM thickness dependence is well depicted by our
analytical model. The TMR oscillates and goes to zero as
the NM thickness increases. It is also shown that the TMR
dependence on d is affected by the thickness of the tunnel
barrier. The peak points of TMR do not coincide for different
tunnel barrier thicknesses. The decay of TMR as a function
of d is faster for a thinner tunneling barrier. It is essential to
consider the k‖ dependence of the transmission coefficient in
the calculation. The effect of the tunnel barrier thickness on
the NM thickness dependence of TMR is well described by
our proposed analytical formula Eq. (14).

B. Spacer with nonparabolic dispersion relation

Second, to investigate the case of the multiple extremal
spanning vectors in the NM layer, we assumed the following
effective dispersion relation for the NM layer:

ε = 1

1 − a2

[(
h̄2k2

‖
2m0

− a2εF

)2

+
(

h̄2k2
z

2m0

)2]1/2

, (15)

where the constant a is set to a = 0.68. Except for the NM layer
and b = 1.5 nm, the dispersion relations and parameters for the
FM and tunnel barrier are the same as in the previous case. The
effective mass and kz in the NM layer were determined using
Eq. (15). In Fig. 4(a), the cross section of the Fermi surface
for bulk NM is plotted as a function of k‖. There are two kinds
of extremal spanning vectors: one at k‖ = 0 and the other at
k‖ = 0.68kF , where kF = √

2m0εF /h̄ is the magnitude of the
Fermi wave vector for the FM with majority spin. The extremal
spanning vector at k‖ = 0 (k‖ = 0.68kF ) is shorter (longer) and
can give rise to a long (short) period of the TMR oscillation,
which is similar to the Cu(001) case. The TMR as a function of
d is shown in Fig. 4(b). The solid line is the exact calculation
and the dotted line is based on Eq. (14). The agreement
is fairly good, and only oscillation with a long period was
observed. For the analytical model calculation, we included
only the extremal spanning vector at k‖ = 0 and ignored the
contribution from the extremal point at k‖ = 0.68kF . This is
because the tunneling probability decreases rapidly away from
k‖ = 0 and the spin asymmetry of the transmission coefficient
(|tL↑ |2 − |tL↓ |2) is very small at k‖ = 0.68kF . The observed
behavior clearly shows that even though there are two possible
periods of the TMR oscillation from the Fermi surface of the
NM, only the period with significant spin asymmetry of the
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FIG. 4. (a) Cross section of the Fermi surface for the NM spacer
with the dispersion relation given in Eq. (15). kF = √

2m0εF /h̄ is the
Fermi wave vector for the majority spin of the FM layer. It is similar
to the Cu(001) case. (b) TMR as a function of the NM layer thickness
d . Except for the NM spacer, the other parameters are the same as
those used in the previous case. The solid line is the exact result, and
the dotted line is based on the proposed analytical formula.

transmission coefficient would survive. The case of multiple
extremal spanning vectors in the NM layer is also described
well by our analytical formula.

C. Tunnel barrier with nonparabolic dispersion relation

Third, we studied the case that the point for the maximum
tunneling probability does not coincide with the position of
the extremal spanning vector of the NM Fermi surface in k‖
space. We assumed that the dispersion relation of the tunnel
barrier is given by

ε =
[

h̄4
(
k2
x − a2k2

F

)2

4m2
0

+ h̄4
(
k2
y − a2k2

F

)2

4m2
0

+ V 2
‖

]1/2

+ h̄2k2
z

2m0
+ VB − V‖, (16)

where VB is the bottom energy of the tunnel barrier, V‖ is
an energy parameter, and kF is the magnitude of the Fermi
wave vector for the NM material. With this tunnel barrier,
the tunneling probability is highest at k‖ = (akF ,akF ). For the
calculation, we used b = 1.5 nm, VB = 6 eV, V‖ = 0.7 eV, and
a = 0.566. The other materials are assumed to be the same
as in Sec. III A. The dispersion relation of the FM material
is given by ε(k) = h̄2k2/2m∗

σ + Vσ with V↑ = 0, V↓ = 	,
m↑ = m0, and m∗

↓ = m0εF /(εF − 	). The dispersion relation
of the NM material is the same as that of the FM material for

FIG. 5. TMR as a function of the NM layer thickness d when the
point for the maximum transmission coefficient of the tunnel barrier
does not coincide with the extremal point of the NM Fermi surface
in k‖ space. The dispersion relation of the tunnel barrier is given in
Eq. (16), and the FM and NM materials are assumed to be the same
as in Fig. 3. The inset is the transmission coefficient as a function of
k‖ along the [110] orientation for the FM/I/NM system.

majority spin. Note that the extremal spanning vector of the
NM Fermi surface is located at k‖ = 0. The parameters used
in the calculation are εF = 4 eV and 	 = 2.5 eV. The TMR
dependence on the thickness of the NM layer is displayed in
Fig. 5. The solid line is the exact result and the dotted is the
result of our analytical formula. As expected, the TMR decays
faster and it is almost negligible when the NM layer is thicker
than about 2 nm. The inset is the transmission coefficient as
a function of k‖ along the [110] direction for the FM/I/NM
system. It has the maximum value around k110 = 0.8kF , at
which we have ∇k‖(χ ) = 0. On the other hand, the spanning
vector (q) of the NM Fermi surface has the longest at k‖ = 0.
The maximum point of the tunneling probability does not
coincide with the extremum of the NM Fermi surface, and the
extremal point is determined from ∇k‖[−b χ + i(qd + φ)] =
0. The extremal point is d dependent and a complex number. It
is not easy to calculate the d-dependent extremal point exactly
and we used the following approximation. At the Fermi level,
kz in Eq. (16) is an imaginary number (kz = iκ). We used
a parabolic function of κ which was expanded in a Taylor
series around k‖ = (akF ,akF ). The calculation became much
simpler, and the extremal point and the corresponding vector
qα in Eq. (13) were obtained immediately as functions of d.
In the range of thin NM layers with significant TMR, qα is
shorter than 2kF , the extremal spanning vector of the NM
Fermi surface. Thus, the oscillation period in this region is
longer than what is expected from the NM Fermi surface.
Whenever the extremal spanning vectors of the NM Fermi
surface are significantly away from the point of the maximum
transmission coefficient in the k‖ space, we expect rapid decay
of TMR as a function of the NM thickness.

D. Free-electron model

Finally, we investigated the free-electron model case, where
all the effective masses are simply the bare electron mass m0.
The NM band is assumed to be the same as the majority-spin
band of FM, which is commonly adopted in the theoretical
calculations. The parameters used in the calculation are
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FIG. 6. TMR as a function of the NM layer thickness d for the
free-electron band. The parameters used in the calculation are εF =
4 eV, VI = 6 eV, 	 = 3.5 eV, and b = 1 nm. The solid line is for the
1-nm FM layer and the dotted line is for the infinite FM layer.

εF = 4 eV, VI = 6 eV, 	 = 3.5 eV, and b = 1 nm. A plot of
the TMR dependence on NM thickness is displayed by a dotted
line in Fig. 6. In this case, the TMR reaches a finite value when
the NM thickness becomes infinite. At first sight, this seems
to contradict our analytical formula Eq. (14) given in Sec. II.
The reason for finite TMR at infinite d can be explained as
follows. We obtained kz =

√
2m0(εF − 	)/h̄2 − k2

‖ from the
dispersion relation at the Fermi level. When the magnetizations
of the FM layers are antiparallel, electrons with the majority
spin in the FM(L) layer do not penetrate to the FM(R) layer
for k‖ >

√
2m0(εF − 	)/h̄ because kz becomes imaginary in

the FM(R) layer. The electrons with the majority spin for
k‖ >

√
2m0(εF − 	)/h̄ in the FM(L) layer are totally reflected

at the NM/FM(R) interface due to the potential step and do
not contribute to conduction. Thus, GAP is underestimated
and gives rise to a finite 	G and consequently a finite TMR,
even when the NM layer is infinite, as long as the transport
is coherent. This is more pronounced for a larger 	, lower
barrier height, and thinner tunneling barrier because a larger
portion of electrons with the Fermi energy will be completely
reflected at the NM/FM(R) interface. When deriving Eq. (13)
in Sec. II, we considered multiple reflection inside the NM
layer to calculate the transmission, and we assumed that once
the electrons tunnel through the tunnel barrier, most of them
flow to the FM(R) layer after multiple reflections. However, in
the AP magnetizations of FM layers of the free-electron model,
the electrons with majority spin for k‖ >

√
2m0(εF − 	)/h̄

in the FM(L) layer cannot penetrate into the FM(R) layer
after tunneling because of the potential step, resulting in a
finite TMR for the infinite NM layer. To clarify this point,
we calculated the TMR for the finite FM(R) layer; namely,
the FM(L)/I/NM/FM(R)/NM junctions. The FM(R) layer is
1 nm thick, and the result is shown by the solid line in
Fig. 6. The FM(R) layer behaves like a potential barrier for
electrons with the majority spin and k‖ >

√
2m0(εF − 	)/h̄

in the FM(L) layer. However, the TMR goes to zero as the NM
thickness increases. When the FM(R) layer is not too thick,
the tunneling probability through this potential barrier is larger
than that through the tunnel barrier (I), and most of electrons
with majority spin and k‖ >

√
2m0(εF − 	)/h̄ in the FM(L)

layer eventually flow to the NM(R) layer once they tunnel

through the insulating barrier. Even for the infinite FM(R)
layer, the TMR for the infinite NM layer becomes negligible
as 	 increases, the thickness of the tunnel barrier increases,
and the barrier height increases. This is because only a small
portion of electrons with the Fermi energy will be completely
reflected at the NM/FM(R) interface. Also, if the minority
spin band of the FM layer is set to be the same as the NM
band, the TMR goes to zero as the NM thickness increases
because there is no total reflection at the NM/FM(R) interface.
The finite TMR for the infinite NM layer is possible when
a significant portion of electrons with the Fermi energy have
less transmission probability into the FM(R) layer than that
through the tunnel barrier. Complete reflection of electrons at
the interface between two metals may occur for some given k‖
at the Fermi level due to the mismatch of the electronic states.
However, even slight scattering would lead to the penetration
of electrons into the FM(R) layer. In this sense, we do not
expect that a large portion of electrons with Fermi energy are
reflected completely, in reality, at the NM/FM interface. Thus,
it is unrealistic to expect a finite TMR as the NM thickness
increases in experiments.

IV. CONCLUSION

We calculated the TMR of FM/I/NM/FM tunnel junctions.
The TMR was calculated as a function of NM thickness using
the Landaur-Büttiker formula. Multiple band structures were
included and an analytical form describing the TMR was
obtained. Conductance was calculated from the summation
of the transmission over k‖. The transmission was obtained
by considering multiple reflections between the I/NM and
NM/FM interfaces. The summation over k‖ was carried out an-
alytically. The contribution was mainly from the extremal point
in k‖ space that was determined from the combination of the
NM Fermi surface and the k‖ dependence of the transmission
coefficient of the FM/I/NM junction. The TMR was expressed
with the transmission coefficient of the FM/I/NM junction,
reflection amplitudes at the NM/I and NM/FM interfaces at the
Fermi level, and the extremal wave vector. Many oscillation
periods can be inferred from the shape of the NM Fermi
surface, but they can be observed only when the corresponding
spin asymmetry of the transmission coefficient is significant.
We suggest that only few oscillation periods are likely to be
observed in real experiments. When the NM spacer is thin,
our proposed model indicates that the decay of the TMR was
slower than the inverse of the space thickness for coherent
transport.

Numerical calculations were performed to investigate the
accuracy of the proposed formula. An envelope-function
theory was adopted, and our model was compared to the exact
result. We showed that the results of the proposed formula
are in good agreement with the exact calculations. The TMR
dependence on the thickness of the NM spacer was affected by
the tunnel barrier thickness, which was well described by our
formula. The numerical calculation was extended to the case
with multiple extremal spanning vectors in the Fermi surface
of the NM spacer. Our proposed formula is in good agreement
with the exact result, and only the oscillation period with
significant spin asymmetry of the transmission coefficient was
observed as predicted using our formula. When the tunneling
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probability associated with each extremal spanning vectors
of the NM Fermi surface is low, the TMR decays very fast
as the NM thickness increases. A free-electron case was also
considered. The NM band was assumed to be the same as the
majority spin band of the FM layer, and spin splitting in the FM
layer was assumed to be rather large. The TMR approached a
finite value as the NM thickness increased. This was because a
large portion of electrons with the majority spin in the left FM
layer were reflected completely at the right NM/FM interface.
When the semi-infinite FM layer on the right side was replaced
by a finite layer, the TMR decayed to zero as the NM thickness
increased. As long as the transmission into the FM layer was

higher than that through the tunnel barrier, the TMR became
zero as the thickness of the NM spacer increased. We suggest
that finite TMR for the infinite NM spacer is unrealistic in real
experiments.
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