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Low-temperature magnetic properties of both classical and quantum dimerized ferromagnetic spin chains are
studied. It is shown that at low temperatures the classical dimerized model reduces to the classical uniform
model with the effective exchange integral J0 = J (1 − δ2), where δ is the dimerization parameter. The partition
function and spin correlation function are calculated by means of mapping to the continuum limit, which is
justified at low temperatures. The quantum model is studied using the Dyson-Maleev representation of the spin
operators. It is shown that in the long-wavelength limit the Hamiltonian of the quantum dimerized chain reduces
to that of the uniform ferromagnetic chain with the effective exchange integral J0 = J (1 − δ2). This fact implies
that the known equivalence of the low-temperature magnetic properties of classical and quantum ferromagnetic
chains remains for the dimerized chains. The considered model is generalized to include the next-neighbor
antiferromagnetic interaction.
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I. INTRODUCTION

The Peierls instability plays an important role in quasi-one-
dimensional materials. The Peierls metal-dielectric transition
originated from the coupling between electrons and phonons
occurs, as a rule, in organic solids.1 Such transition can take
place in the quantum spin chains coupled to phonons as well
[so-called the spin-Peierls transition (SP)]. In particular, the
SP transition has been observed in the antiferromagnetic spin
chain CuGeO3.2 Currently there is a growing interest in the
quasi-one-dimensional magnets with ferromagnetic exchange
interactions,3–5 and the possibility of the Peierls instability in
them is widely discussed.6 It is argued that the possible real
system where this instability takes place is monatomic chains
of Co on the Pt surface.7 As it is proposed,7 these chains have
the effectively ferromagnetic spin-spin interaction and very
weak elastic constants. Recently, another mechanism of the
Peierls instability in spin systems has been proposed.8,9 It is
based on the coupling of the spins with an electronic subsystem
(spin-orbital mechanism). It is expected that this mechanism is
relevant to the transition metal oxide YVO3. The properties of
this compound is described by the spin-orbital model.10 The
mean-field treatment of this model leads to the 1D dimerized
spin model with the ferromagnetic sign of the interaction.6

Therefore, the study of the dimerized ferromagnetic (FM)
chains is important from both theoretical and experimental
points of view. The spin chains with the spin-phonon interac-
tion are often described in the adiabatic approximation which
is valid if the phonon energy is smaller than the Peierls gap.
The Hamiltonian of this 1D spin model has the form

H = Hspin + Eelastic, (1)

where

Hspin = J

N∑
n=1

(1 − (−1)nδ)Sn · Sn+1 (2)

Eelastic = Nκδ2

2
, (3)

where S is the spin operator, J is the exchange integral, δ is the
dimerization parameter characterizing lattice distortion, and κ

is the effective elastic constant.
There is an essential difference between the antiferromag-

netic (AF) and ferromagnetic (FM) chains with respect to the
coupling to the lattice distortions. For the AF model (J > 0)
the ground state energy of model (2) is ∼ − Nδ4/3 (Ref. 11),
and the gain in this energy exceeds the loss in Eelastic and the
SP transition takes place. Contrary to the AF model the ground
state of Hspin at J < 0 does not depend on δ, and the ground
state of model (1) has the uniform lattice δ = 0. However, as
was shown in Ref. 6, the thermal fluctuations can activate the
dimerization. It was shown in Ref. 6 that the free energy of the
FM chain at T > 0 is −NT 3/2δ2, and the dimerized phase is
stable at finite temperature for small enough elastic constant
κ. Such a situation can occur in the system Co chains on the
Pt surface where the Co atoms can be easily moved on the
surface.

The dimerized FM chain can not been solved by the Bethe
ansatz in contrast with the uniform model with δ = 0. The
thermodynamics of this model has been studied in Ref. 12
using both numerical TMRG simulations and the analytical
modified spin-wave theory.13 In particular, the phase diagram
of the model has been determined and the behavior of spin
correlation functions and the zero-field susceptibility are
studied.

It is interesting to consider the influence of the external
magnetic field on the thermodynamics of the dimerized FM
chain. The aim of the present paper is to study the low-
temperature magnetic properties of model (2) independent of
the dimerization mechanism. Therefore, we will consider the
model with the Hamiltonian having a form

H = −J
∑

(1 − (−1)nδ)Sn · Sn+1 − h
∑

Sz
n, (4)

where h is the dimensionless magnetic field and J > 0.
Before we study this model it is instructive to note the

remarkable fact related to the uniform FM chain, δ = 0. It
was claimed in Ref. 14 that the normalized magnetization
M = 〈Sz〉/s of this model at T → 0 is the universal function
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of the scaling variable g = s3Jh/T 2. That is, the dependence
on spin value s is totally captured in the scaling variable g

and the universal function M(g) is valid for any s. In other
words, this function is valid for both quantum and classical
ferromagnetic chains.

In this paper we show that in the low-temperature limit,
when the continuum approximation is valid, the classical
dimerized FM chain reduces to the classical uniform FM
model with the effective exchange integral. Then, we show
that the spin-wave expansion for the quantum dimerized FM
chain coincides with that for the uniform quantum model with
the same exchange integral as in the classical case. Using the
arguments of Ref. 14 we conclude that the universality holds in
the scaling limit for the dimerized model as well. To support
these arguments we show the equivalence of the spin-wave
expansion for the quantum model with the large g expansion of
the classical magnetization. We show also that the universality
survives in case of the presence of the frustrated next-nearest
neighbor (nnn) antiferromagnetic interaction.

We calculate the spin correlation functions for the classical
dimerized FM spin chain and argue in favor of the universality
of their behavior on large distances. We show that the
correlation functions are generally different for the dimerized
and uniform models. In particular, the even-odd asymmetry of
the correlation functions takes place.

The paper is organized as follows. In Sec. II we consider
the partition function of the dimerized classical ferromagnetic
chain in the magnetic field. We show that the field-dependent
part of the free energy coincides in the scaling limit with
that for the uniform model with the renormalized scaling
parameter. In Sec. III it is demonstrated that the spin-wave
expansion of the dimerized quantum ferromagnetic chain
reproduces the expansion of the magnetization of the classical
model. In Sec. IV the effect of the frustrated nnn interaction
on the magnetic properties of the dimerized model is studied.
In Sec. V the summary of the results is given.

II. CLASSICAL DIMERIZED SPIN CHAIN IN THE
SCALING LIMIT

In this section we show that the low-temperature magnetic
properties of the classical dimerized spin model are reduced
to that of the FM spin chain with the renormalized exchange
integral. It is convenient to represent the Hamiltonian function
of the considered classical model (4) in a form

H = −J1

N/2∑
i=1

�S2i−1 · �S2i − J2

N/2∑
i=1

�S2i · �S2i+1 −
N∑

i=1

�h · �Si,

(5)

where J1 = J (1 + δ), J2 = J (1 − δ), and �Si are spin vectors
of the fixed length s and the magnetic field is directed along
the Z axis: �h = (0,0,h).

We represent spin vectors on odd and even sites as follows:

�S2i−1 = s�ni
(6)�S2i = s�ni + s �mi,

where �ni are unit vectors and �mi are vector differences between
neighbor spins (we will assume | �mi | to be small at low
temperatures).

Then, the scalar products of spins on odd and even bonds
become

�S2i−1 · �S2i = s2 − 1

2
(�S2i−1 − �S2i)

2 = s2 − s2

2
�m2

i

(7)
�S2i · �S2i+1 = s2 − s2

2
(�n′

i − �mi)
2,

where we denoted

�n′
i ≡ �ni+1 − �ni. (8)

After simple algebra the Hamiltonian function can be trans-
formed to the form (we omit here the unimportant constant
term)

H = − h2N

4(J1 + J2)
+ s2 J1 + J2

2

N/2∑
i=1

(
�mi − sJ2�n′

i + �h
s(J1 + J2)

)2

+ s2J1J2

2(J1 + J2)

N/2∑
i=1

�n′2
i − 2s

N/2∑
i=1

�h · �ni. (9)

Then, the partition function of the system reads

Z =
∫

. . .

∫ N/2∏
i=1

d �mid �ni exp

(
−H { �mi,�ni}

T

)
. (10)

We stress that up to here we did not make any assumption,
and Eqs. (9) and (10) are the exact expressions. Now we notice
that for low temperature T 	 s2J1 the neighbor spin vectors
�S2i−1 and �S2i coupled by strong FM interaction J1 are almost
parallel, which means that all vectors �mi are small and directed
in plane perpendicular to the corresponding vectors �ni . Then,
we can integrate over vectors �mi in the infinite limits. That
gives

Z = e
h2N

4T (J1+J2)

(
2πT

s2(J1 + J2)

)N/2 ∫
. . .

∫ N/2∏
i=1

d �ni exp

×
(

s2J1J2

T (J1 + J2)

∑
(�ni · �ni+1 − 1) + 2sh

T

∑
nz

i

)
.

(11)

The first factor in Eq. (11) gives a constant contribution to
the magnetic susceptibility ∼1/J . As will be shown below, in
the low-temperature limit the main contribution is given by the
integral in Eq. (11) and it is much higher (∼J/T 2). Therefore,
we neglect the first factor in Eq. (11). The second factor does
not influence on the magnetic properties of the system, and
will be omitted. Thus, we reduced the partition function of
the dimerized chain to that of the uniform ferromagnetic chain
with the effective exchange integral

J0 = 2J1J2

J1 + J2
= J (1 − δ2). (12)

The partition function of the classical FM chain was
calculated in Ref. 14 by taking the continuum limit of the
model. The continuum limit is justified when the direction
of vectors �ni changes smoothly along the chain, so that
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the neighbor vectors are almost parallel to each other. This
condition is satisfied in the low-temperature limit T 	 s2J0.
We will follow this method. Partition function (11) in the
continuum approximation takes the form

Z ∝
∫

D[�n(x)] exp

(
−

∫ L

0

dx

2a

[
s2J0a

2

T

(
d �n
dx

)2

− 2hs

T
nz

])
,

(13)

where L = Na and we notice that the distance between
neighbor vectors �ni and �ni+1 is two lattice spaces 2a, so that
the vector �ni corresponds to the vector field �n(x) at the point
x = 2ia in the continuum limit.

It is useful to transform Eq. (13) to dimensionless variables.
We rescale the spatial coordinate x = ys2aJ0/T and obtain

Z ∝
∫

D[�n(y)] exp

(
−

∫ λ

0
dy

[
1

2

(
d �n
dy

)2

− γ nz

])
, (14)

where λ = LT/as2J0 is the scaled system length, which is
assumed to be infinite in the thermodynamic limit L → ∞,
and

γ = s3J0h

T 2
= g(1 − δ2). (15)

Here γ and g are the scaling variables of the dimerized and
uniform models.

Taking advantage of the well-known equivalence of the
one-dimensional statistical field theory with the quantum
mechanics, the calculation of the partition function (14)
reduces to the eigenvalue problem of the quantum rotator
in the “gravitational” field.14 The corresponding Schrödinger
equation in the spherical coordinates has the form(

−1

2

d2

dθ2
− cot θ

2

d

dθ
− m2

2 sin2 θ
− γ cos θ

)
ψnm = εnmψnm,

(16)

where we used an axial symmetry of the model and introduced
the azimuthal quantum number m.

Then, the partition function is expressed through the ground
state energy of Eq. (16) as Z ∝ exp(−λε00) and the normalized
magnetization M = 〈nz〉 is

M = −∂ε00(γ )

∂γ
. (17)

The solution of the Schrödinger equation (16) has been found
analytically for small and large scaling parameter in Ref. 14.
On the other hand, this equation can be solved numerically
for all values of γ and the magnetization curve can be found.
It is shown in Fig. 1. To demonstrate δ-dependence of the
magnetization we represent it as a function of the scaled
magnetic field g rather than γ . As follows from Fig. 1 the
increase of the dimerization leads to the decrease of the
magnetization for all values of the magnetic field.

We notice that for reduction of the dimerized FM chain
to the uniform one [Eq. (11)] it is sufficient to satisfy
only the condition T 	 s2J1 so that the temperature can
be higher than the weak bond interaction s2J2. However,
the following continuum approximation requires T 	 s2J0,
which implies that the partition function in the form of Eq. (13)

FIG. 1. Dependence of the normalized magnetization M on
the scaled magnetic field g = s3Jh/T 2 for several values of the
dimerization parameter δ.

is valid when the temperature is lower than both exchange
couplings T 	 s2J1 and T 	 s2J2. These conditions impose
the corresponding restrictions on the value of dimerization:
T 	 s2J (1 − δ). Therefore, in the limit of strong dimerization
δ → 1, when the system reduces to decoupled dimers, the
reduction to the uniform lattice model (11) is valid for
T 	 s2J , but the continuum approximation is restricted to
very low temperatures T 	 s2J (1 − δ). In the case δ = 0 the
original model becomes uniform one and effective exchange
integral (12) correctly reduces to J0 = J .

A. Spin correlation functions

The low-temperature magnetization of the dimerized FM
chain coincides with that for the uniform model and only the
scaling parameter γ is renormalized. But the spin correlation
functions of the dimerized and uniform models are different.
The dimerized spin chain in contrast with the uniform
one contains alternating “strong” J1 and “weak” J2 bonds.
Obviously, the nearest-neighbor correlation functions are
different for strong and weak bonds at T > 0: 〈�S2i−1 · �S2i〉 =
∂F/∂J1 and 〈�S2i · �S2i+1〉 = ∂F/∂J2. Their ratio depends on
the dimerization parameter as

〈�S2i−1 · �S2i〉
〈�S2i · �S2i+1〉

= (1 − δ)2

(1 + δ)2
. (18)

Similarly, the behavior of the spin correlation function 〈�Si ·
�Sj 〉 depends on the number of strong and weak bonds between
the sites i and j . When the distance between the sites i and
j is an odd number of the lattice spacing, 2r + 1, then the
numbers of strong and weak bonds differ by one and which
number is greater depends on whether the site i is even or odd.
As a consequence, in this case the correlation function depends
on i. When the distance between the sites i and j is an even
number of the lattice spacing 2r , then the number of strong and
weak bonds are equal and there is no such even-odd difference.

The longitudinal and transverse correlators are different for
the nonzero magnetic field, and we will consider both types of
correlators. At first we consider the correlators 〈Sz

i S
z
i+2r〉 and
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〈Sx
i Sx

i+2r〉 = 〈Sy

i S
y

i+2r〉 for distances of even number of lattice
spacing 2r . As explained above the correlation functions in
this case do not depend on i and are defined by the reduced
uniform model (11):〈

Sα
i Sα

i+2r

〉 = s2
〈
nα

0 nα
r

〉
. (19)

The correlator 〈nα
0 nα

r 〉 can be expressed through the eigenval-
ues and the eigenfunctions of the Schrödinger equation:15

〈
nα

0 nα
r

〉 =
∑
nm

|〈ψ00|n̂α|ψnm〉|2 exp

(
−T (εnm − ε00)

s2J (1 − δ2)
2r

)
.

(20)

We expect that the universality in the long distance behavior
of the correlation functions holds, so we are interested in
the asymptotic of the correlation function r � 1. In this
limit only the lowest level(s) having nonzero matrix element
makes a contribution to Eq. (20). The operator nz has nonzero
expectation value over the ground state 〈ψ00|n̂z|ψ00〉, which
is the normalized magnetization of the system M . Therefore,
the main contribution to sum (20) is given by n = m = 0 term
and equals M2. The decaying correction to this main term
is given by the lowest excited state with the same azimuthal
number m = 0, ε10. Thus, the long-distance asymptotic for the
correlation function 〈nz

0n
z
r〉 is

〈
nz

0n
z
r

〉 = M2 + |〈ψ00|nz|ψ10〉|2 exp

(
−2r

ξ‖

)
, (21)

with the correlation length defined by the energy of the lowest
excited states as

ξ‖ = s2J (1 − δ2)

T (ε10 − ε00)
. (22)

The operator nx changes the azimuthal number m, therefore
the lowest level for correlator 〈nx

0n
x
r 〉 is ε01. This implies that

the transverse correlation function does not show the long
range order and exponentially decays on large distances:

〈
nx

0n
x
r

〉 = |〈ψ00|nx |ψ01〉|2 exp

(
− 2r

ξ⊥

)
(23)

ξ⊥ = s2J (1 − δ2)

T (ε01 − ε00)
.

The correlation lengths ξ‖ and ξ⊥ and the pre-exponential
factors can be found analytically in the limits γ → 0 and
γ → ∞. At γ = 0 the Schrödinger equation (16) reduces to
the equation for the operator of angular momentum with well-
known spherical eigenfunctions and the spectrum l(l + 1)/2.
So the correlation functions for large r are

〈
Sz

i S
z
i+2r

〉 = 〈
Sx

i Sx
i+2r

〉 = s2

3
exp(−2r/ξ ), (24)

where ξ‖ = ξ⊥ = ξ and

ξ = s2J (1 − δ2)

T
. (25)

FIG. 2. Dependencies of ξ̃ = ξ⊥T/s2J on the scaled magnetic
field g = s3Jh/T 2 for dimerization parameters δ = 0,0.5,0.8.

In the limit of high magnetic field (γ � 1) the correlation
functions are

〈
Sz

i S
z
i+2r

〉 = s2M2+ s2

4γ
exp(−2r/ξ‖), ξ‖ = 1

2

√
sJ (1 − δ2)

h

〈
Sx

i Sx
i+2r

〉 = s2

√
γ

exp(−2r/ξ⊥), ξ⊥ =
√

sJ (1 − δ2)

h
. (26)

According to Eqs. (24) and (26) the correlation lengths are
changed from ξ ∼ 1/T at γ = 0 to ξ ∼ h−1/2 for γ → ∞.
The crossover between two types of the behavior of ξ occurs
at γ � 1. The dependencies of ξ⊥ on g for some values of δ

are shown in Fig. 2.
Now we study the spin correlation function on “odd”

distances. In this case the correlation function 〈Sα
i Sα

i+2r+1〉
is different for odd and even i. Therefore, we distinguish two
types of “odd” correlators: 〈Sα

2j−1S
α
2j+2r〉 and 〈Sα

2j S
α
2j+2r+1〉.

The longitudinal correlators 〈Sz
i S

z
i+2r+1〉 has nonzero asymp-

totic M2 at r → ∞ and the calculation of the small corrections
caused by the dimerization to this value is not important.
On the contrary, the transverse correlator 〈Sx

i Sx
i+2r+1〉 decays

exponentially and it is a more interesting object for the
calculation of subtle effects like difference on odd and even
distances.

According to Eq. (6), the transverse correlator on odd
distances is represented as

〈
Sx

2j−1S
x
2j+2r

〉 = s2
〈
nx

0

(
nx

r + mx
r

)〉
. (27)

The correlator 〈nx
0n

x
r 〉 was found above in Eq. (23). For the

correlator 〈nx
0m

x
r 〉 we use the following identity:

∫ ∞

−∞
xe−α(x−y)2

dx = y

∫ ∞

−∞
e−α(x−y)2

dx. (28)

Therefore, the integration over �mr in the multiple integral

〈
nx

0m
x
r

〉 =
∫

. . .

∫ ∏
d �mid �nin

x
0m

x
r exp

(
−H { �mi,�ni}

T

)
(29)
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can be transformed as

∫
mx

r exp

⎡
⎣−J1 + J2

2T

(
�mr − sJ2�n′

r + �h
s(J1 + J2)

)2
⎤
⎦ d �mr

= J2n
′x
r

J1+J2

∫
exp

⎡
⎣−J1 + J2

2T

(
�mr− sJ2�n′

r + �h
s(J1 + J2)

)2
⎤
⎦ d �mr

(30)

so that 〈
nx

0m
x
r

〉 = J2

J1 + J2

〈
nx

0n
′x
r

〉
. (31)

Using the definition n′x
r = nx

r+1 − nx
r and Eq. (23) we obtain〈

Sx
2j−1S

x
2j+2r

〉
= s2|〈ψ00|nx |ψ01〉|2e−2r/ξ⊥

(
1 − J2(1 − e−2/ξ⊥ )

J1 + J2

)
. (32)

Here we note that for ξ⊥ � 1, which is always assumed
for low-temperature limit, the last factor in Eq. (32) can be
expanded and the correlator takes the form

〈
Sx

2j−1S
x
2j+2r

〉 = s2|〈ψ00|nx |ψ01〉|2e−(2r+1)/ξ⊥

(
1 − δ

ξ⊥

)
.

(33)

Similarly, for the correlator 〈Sx
2j S

x
2j+2r+1〉 we need merely to

exchange J2 ←→ J1, which gives

〈
Sx

2j S
x
2j+2r+1

〉 = s2|〈ψ00|nx |ψ01〉|2e−(2r+1)/ξ⊥

(
1 + δ

ξ⊥

)
.

(34)

Let us consider an alternation correlation function:12

�⊥(r) = ∣∣〈Sx
nSx

n+r

〉 − 〈
Sx

nSx
n−r

〉∣∣. (35)

It equals zero for even r . But for large odd r it becomes

�⊥ = s2|〈ψ00|nx |ψ01〉|2 2|δ|
ξ⊥

e−r/ξ⊥ . (36)

For the small and large γ we obtain

�⊥ = 2T |δ|
3J (1 − δ2)

e−r/ξ⊥ , γ 	 1

(37)

�⊥ = 2T |δ|
J (1 − δ2)

e−r/ξ⊥ , γ � 1.

The comparison of correlation functions (24) and (37)
for γ = 0 with those for the quantum dimerized FM model
obtained in Ref. 12 shows that they coincide in the leading
terms in T . Therefore, we claim that these correlation functions
for r � 1 obtained for the classical model are valid in the
scaling limit for the quantum model as well.

Comparing Eqs. (33) and (34) one can see that the
corrections δ/ξ⊥ annihilate each other and give no contribution
to the spin structure factor

S⊥(q) = 1

N

∑
j,r

〈
Sx

j Sx
j+r

〉
eiqr , (38)

FIG. 3. Dependencies of the normalized spin structure factor
S̃(q) = S⊥(q)T/s4J0 on the scaled wave vector q̃ = qs2J0/T for
γ = 0,1,3.

which is the sum of these equations. This is valid in the linear in
δ/ξ⊥ terms in the low-temperature limit. The terms ∼(δ/ξ⊥)2

can introduce this dimerization effect into S⊥(q), but this effect
is out of the scope of the used continuum approximation. Thus,
in the leading term in δT /J the spin structure factor for the
dimerized model coincides with that of the FM model with
the renormalized exchange coupling. Using Eq. (20) for the
correlator 〈Sx

j Sx
j+r〉 we obtain the spin structure factor in the

form

S⊥(q) = s4J (1 − δ2)

T

∑
n

|〈ψ00|nx |ψn1〉|2(εn1 − ε00)

(εn1 − ε00)2 + q̃2
,

(39)

with q̃ = qs2J0/T . The dependencies of the normalized spin
structure factor S̃(q) = S⊥(q)T/s4J0 on q̃ for several values
of γ is demonstrated in Fig. 3.

III. SPIN-WAVE EXPANSION OF THE QUANTUM MODEL

According to the results of Sec. II the magnetization of the
classical dimerized model in the scaling limit M(γ ) coincides
with that found in Ref. 14. In Ref. 14 a method of the
computation of the expansion of M(γ ) for small and large
values of γ was developed and several leading terms were
presented. However, it is not clear whether the function M(γ )
is universal in the sense that it is valid for both the classical
and the quantum dimerized FM chains. Below we will produce
arguments in favor that such universality is the case.

The first argument is that the zero-field susceptibility
calculated from the leading term of expansion of M(γ ) for
small γ found in Ref. 14 coincides with the asymptotic of
χ (0) at T → 0 obtained in Ref. 12 for the quantum dimerized
FM chain:

χ (0) = 2

3

s4J (1 − δ2)

T 2
. (40)

Thus, the function M(γ ) correctly describes the limit γ →
0 for the magnetization of the quantum model. In connection
with Eq. (40) we note that it is not applicable for the case
of full dimerization, δ = 1. In this case the system consists
of decoupled dimers and the susceptibility follows the Curie
law χ (0) ∼ 1/T . Thus, our approach is valid when J (1 −
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δ2) � T . Another check of the hypothesis of the universality
is the comparison of the spin-wave expansion for the quantum
model with the expansion of M(γ ) for large γ (strong effective
magnetic field).

In order to apply the spin-wave expansion we use the Bose
representation of the quantum Hamiltonian (4). It is usually
carried out by expressing the spin operators using either
the Holstein-Primakoff or the Dyson-Maleev transformations.
Here we use the latter which is

S+
n =

√
2s

(
1 − 1

2s
a+

n an

)
an

S−
n =

√
2sa+

n (41)

Sz
n = s − a+

n an,

where a+
n and an are the Bose operators.

Using Eq. (41) we can write Hamiltonian (4) in terms of
the Bose operators. The Bose analog of the spin Hamiltonian
(4) contains terms which are quadratic and quartic in the
Bose operators. The Fourier transform to the momentum space
operators leads to the Hamiltonian in the form

H = H0 + Hint − Ns2J − Nsh, (42)

where

H0 =
∑

k

[2sJ (1 − cos k) + h]a+
k ak + 2iδsJ

∑
k

sin ka+
k ak+π

(43)

Hint =
∑

V (k′
1,k

′
2,k2,k1)a+

k′
1
a+

k′
2
ak2ak1δ(k′

1 + k′
2 − k2 − k1)

− iδ
∑

W (k′
1,k

′
2,k2,k1)a+

k′
1
a+

k′
2
ak2ak1

× δ(k′
1 + k′

2 − k2 − k1 − π ) (44)

V (k′
1,k

′
2,k2,k1) = −J

4
[cos(k1 − k′

1) + cos(k2 − k′
1)

+ cos(k1 − k′
2) + cos(k2 − k′

2)

− 2 cos(k′
1) − 2 cos(k′

2)] (45)

W (k′
1,k

′
2,k2,k1) = −J

4
[sin(k1 − k′

1) + sin(k2 − k′
1)

+ sin(k1 − k′
2) + sin(k2 − k′

2)

+ 2 sin(k′
1) + 2 sin(k′

2)]. (46)

Hamiltonian (43) can be diagonalized by a standard way.
Let us rewrite the Hamiltonian H0 using the transformation of k

sums to those over the reduced Brillouin zone and introducing
the new Bose operators αk and βk by the relation

a+
k = ukα

+
k + vkβ

+
k

(47)
a+

k+π = −ivkα
+
k + iukβ

+
k ,

where |k| < π/2 and

u2
k = 1

2
+ cos k

2ε(k)

v2
k = 1

2
− cos k

2ε(k)
(48)

ε(k) =
√

1 − (1 − δ2) sin2 k.

Then, the Hamiltonian H0 takes the form

H0 =
∑

|k|<π/2

[Eα(k)α+
k αk + Eβ(k)β+

k βk], (49)

where

Eα(k) = 2J s[1 − ε(k)] + h
(50)

Eβ(k) = 2J s[1 + ε(k)] + h.

Hamiltonian (49) describes the noninteracting bosons. At
T → 0 the main contribution to the free energy from H0 is
given by the small k region. The expansion for k → 0 results
in

Eα(k) � sJ (1 − δ2)k2 + h
(51)

Eβ(k) � 4sJ

so that the thermal occupation numbers of α and β particles
are

nα(k) = 1

eEα (k)/T − 1
� T

Eα(k)
(52)

nβ(k) � exp

(
−4sJ

T

)
→ 0.

According to Eq. (52) we can omit in Eq. (49) the
β terms giving the exponentially small contribution to the
thermodynamics at T → 0. Then the Hamiltonian H0 takes
the form

H0 =
∑

[sJ (1 − δ2)k2 + h]α+
k αk. (53)

Equation (53) has a standard form of the Hamiltonian H0

obtained in the frame of linear spin-wave theory for the
uniform FM model with the renormalized exchange integral
J0 = J (1 − δ2).6,12

Now, let us consider the Hamiltonian Hint, which is more
complicated. First of all, we need to express the operators ak

in Eq. (44) by the operators αk and βk using Eq. (47). As was
noted above, for sufficiently low temperatures we can neglect
the terms in Hint containing β+

k and βk operators. Besides,
we can replace the Dyson-Maleev vertices V and W by their
long-wavelength limits. Carrying out some algebra for both
terms in Eq. (44) we obtain Hint in the form

Hint = −1

2
J (1 − δ2)

∑
k1k2α

+
k′

1
α+

k′
2
αk2αk1

× δ(k′
1 + k′

2 − k2 − k1). (54)

A remarkable fact is that Eq. (54) is nothing but the quartic
in the Bose operators part of the Hamiltonian of the uniform
FM chain with the renormalized exchange integral J0 = J (1 −
δ2). In other words, the Dyson-Maleev vertex of the dimerized
chain is the renormalized one of the uniform model.

Thus, we established that in the long-wavelength limit,
which is justified at low temperatures, the Hamiltonian of the
quantum dimerized chain (42) reduces to that of the uniform
FM chain with the effective exchange integral J0 = J (1 − δ2).
That is exactly as was found in Sec. II for the classical spin
chains. This fact implies that the known equivalence of the
low-temperature magnetic properties of classical and quantum
FM chains remains for the dimerized chains. It means that if
the universality relative to the spin value holds for the uniform
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model then this property remains valid for the dimerized FM
chain as well. Nevertheless, it is interesting to compare the
large γ expansion for the quantum and the classical models.

The calculation of the spin wave expansion for the free
energy and the magnetization in all orders in 1/γ is a
complicated problem. But the leading terms can be found
analytically. In the zeroth order in Hint, which corresponds
to the linear spin-wave approximation, the magnetization in
the scaling limit is

M (0) = − 1

2
√

γ
. (55)

It is easy to check that the contribution of the first order
M (1) vanishes by a symmetry. The two-loop correction M (2)

was calculated in Ref. 16 and it is given by

M (2) = − 1

128γ 3/2
. (56)

Thus, the spin-wave expansion of the quantum dimerized FM
chain is

M = 1 − 1

2
√

γ
− 1

128γ 3/2
+ O(γ −2). (57)

Equation (57) exactly reproduces three leading terms of the
expansion of M(γ ) in large γ limit for the classical model.14

Though we can not calculate the spin-wave expansion in all
orders, coincidence of the nontrivial terms in Eq. (57) with
those for M(γ ) is a strong argument that the function M(γ )
gives the low-temperature magnetization of both the classical
and the quantum dimerized FM chains.

It is worth making the following remarks concerning the
accuracy of the obtained spin-wave results. We used the long
wavelength limit for derivation of the spin-wave expansion of
magnetization (57). In fact, taking into account next terms in
small-k expansion in Eq. (51) leads to the correction terms
to magnetization (57) of the form

√
T/J0f (γ ) [f (γ ) is some

function of γ ] and higher orders in small parameter T/J0.
These terms are small in the scaling limit and can be omitted.

IV. FRUSTRATED DIMERIZED SPIN CHAIN

The considered dimerized ferromagnetic model can be
generalized by including in Hamiltonian (4) the next-nearest-
neighbor (nnn) antiferromagnetic exchange interaction

H = −J1

∑
S2i−1 · S2i − J2

∑
S2i · S2i+1

+ J13

∑
Si · Si+2 − h

∑
Sz

i . (58)

This term leads to the frustration. It is known17 that the ground
state of the quantum uniform chain with nnn interaction (so-
called zigzag spin chain) has the ferromagnetic ground state for
α = J13/J < 1

4 (α is the frustration parameter) and the singlet
ground state with the helical spin correlations for α > 1

4 . For
the classical model the transition from the ferromagnetic to the
helical phase occurs at the same value α = 1

4 . In this section
we study the influence of the nnn interaction on the dimerized
FM chain.

The classical dimerized FM chain with the frustration can
be studied in a similar way as presented in Sec. II, though
with the following modification. Direct use of representation

(6) for spin vectors results in appearing of terms �mi · �mi+1

in the resulting Hamiltonian function H ({�ni, �mi}), which sub-
stantially complicates the subsequent calculations. Therefore,
it is convenient to modify the representation of spin vectors on
odd and even sites as follows:

�S2i−1 = s�ni − μs �mi
(59)�S2i = s�ni + s �mi.

The parameter μ is chosen so to remove terms �mi · �mi+1

from the resulting Hamiltonian function H ({�ni, �mi}):

μ =
√

J 2
2 − 4J 2

13 − J2

2J13
. (60)

Then, assuming low-temperature limit T 	 s2J1 and follow-
ing the steps made in Sec. II, we integrate over vectors �mi in
the infinite limits. That yields

Z ∝
∫

. . .

∫ N/2∏
i=1

d �nie
−Heff ({�ni })/T , (61)

where the reduced Hamiltonian function (up to unimportant
constant) has a form:

Heff = −1

2
s2Jnn

∑
�ni · �ni+1 + 1

2
s2Jnnn

∑
�ni · �ni+2

− 2sh
∑

nz
i (62)

with the effective exchange couplings

Jnn = J (1 − δ2 − 4α + 4α2)
(63)

Jnnn = Jα2.

As follows from Eq. (62) the Hamiltonian function of the
dimerized frustrated FM model reduces to that of uniform
model with the nnn interaction. This model describes well-
known zigzag spin chain. According to results of Ref. 18
the transition point of uniform model (62) Jnn = 4Jnnn is
translated to the equation 4α = 1 − δ2 for original dimerized
zigzag spin chain. Thus, we stated that the classical dimerized
spin chain with frustrated nnn term has the ferromagnetic
ground state for 4J13 < J (1 − δ2) and the helical phase for
4J13 > J (1 − δ2). The low-temperature magnetic properties
of model (62) in the vicinity of the transition point was studied
in Ref. 19.

Taking the continuum limit of the reduced model (62) we
obtain the same expression for partition function (13) with the
effective exchange integral

J0 = J (1 − δ2 − 4α). (64)

Thus, the low-temperature magnetic properties of the frus-
trated dimerized model (58) for 4J13 < J (1 − δ2) are de-
scribed by the uniform ferromagnetic chain with the scaling
parameter

γ = g(1 − δ2 − 4α). (65)

The spin-wave expansion for the quantum frustrated model
(58) is carried out similar to Sec. IV. The nnn interaction
added some terms into bosonic Hamiltonian (42). In particular,
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Eqs. (50) and (45) are modified as

Eσ (k) → Eσ (k) − 2sαJ (1 − cos(2k))

V (k′
1,k

′
2,k2,k1) → V (k′

1,k
′
2,k2,k1)

+ αJ

4
[cos(2k1 − 2k′

1) + cos(2k2 − 2k′
1)

+ cos(2k1 − 2k′
2) + cos(2k2 − 2k′

2)

− 2 cos(2k′
1) − 2 cos(2k′

2)]. (66)

In the long wavelength limit the bosonic Hamiltonian of
the dimerized frustrated FM chain reduces to Eqs. (53)
and (54) with renormalized exchange coupling J (1 − δ2) →
J (1 − δ2 − 4α).

Therefore, we believe that the magnetization of frustrated
dimerized spin chain (58) is described by the universal
function, which is valid for both classical and quantum model
if the frustration parameter α is not too close to 1−δ2

4 . The
behavior of the magnetization and the susceptibility near
the transition point α = 1−δ2

4 is radically different.15,20 For
example, the zero-field susceptibility χ (0) ∼ T −4/3 in contrast
with T −2 behavior for α < 1−δ2

4 .

V. SUMMARY

We studied the low-temperature magnetic properties of the
classical and quantum dimerized ferromagnetic spin chain.
It is shown that at low temperatures the classical dimerized
model reduces to the classical uniform model with the effective
exchange integral J0 = J (1 − δ2), where δ is the dimerization
parameter. The partition function and spin correlation function
of the classical model are calculated with use of the mapping
to the continuum limit, which is justified at low temperatures.
In the continuum limit the field-dependent thermodynamics
depends on one scaling parameter γ = hs3J (1 − δ2)/T 2.
The calculation of the partition function and spin correlation
function reduces to the solution of the Schrödinger equation
for the quantum rotator in the “gravitational” field γ .

We have studied the influence of the dimerization on the
magnetic properties of the classical spin model. In particular,
we have shown that the magnetization decreases with the
increase of the dimerization. We found the dependence of
the spin correlation functions on both the magnetic field
and the dimerization parameter. In contrast with the uniform
model the correlation functions as a function of the distance
r are different for the even and odd r . Though the correlation
lengths of the spin correlations are the same for even and odd
r , the pre-exponential factors are different.

It was argued in Ref. 14 that the magnetization M of the
uniform classical FM chain at T → 0 is the universal function
of the scaling variable g = s3Jh/T 2, i.e., the universal
function M(g) is valid for any spin value s and the dependence
on spin s is captured in the scaling variable g only. It
implies that the magnetization curve M(g) is valid for both
quantum and classical FM chains and can be determined by
the computation of the magnetization of the classical FM chain
in the so-called scaling limit, when T → 0 and h → 0 but the
value of g is finite.

We have shown that this universality holds for the dimerized
chain as well. To confirm this fact we studied the quantum
dimerized spin model with the use of the Dyson-Maleev
representation of spin operators. It is shown that in the
long-wavelength limit, which is justified at low temperatures,
the Hamiltonian of the quantum dimerized chain reduces to
that of the uniform quantum FM chain with the effective
exchange integral J0 = J (1 − δ2). That is exactly the same
renormalization of the exchange coupling as was found for
the classical dimerized spin chains. This fact implies that
the known equivalence of the low-temperature magnetic
properties of classical and quantum FM chains remains valid
for the dimerized chains.

The physical reason of the equivalence of the low-
temperature magnetic properties of quantum and classical
models is that the de Broglie wavelength of spin waves
λB is less than the ferromagnetic correlation length ξ .14

Indeed, for the spectrum Jk2 the de Broglie wavelength
λB ∼ 1/k ∼ √

J/T , while ξ ∼ J/T . This implies that the
physical properties defined by the long-distance asymptotics
like magnetization are equal for quantum and classical models.
But on the short distances the equivalence failed. For example,
the short-distance correlation function behaves as 〈Sz

i S
z
i+r〉 ∼

s2 − ar2 in the quantum case,12 while the classical model has
〈Sz

i S
z
i+r〉 ∼ s2 − br .

The considered dimerized ferromagnetic model was gen-
eralized by including in Hamiltonian (4) the next-nearest-
neighbor antiferromagnetic exchange interaction. It was shown
that the free energy and the magnetization are equal to those
for the uniform FM chain with the renormalized exchange
integral J0 = J (1 − δ2 − 4α). Therefore, we believe that the
magnetization is described by the universal function, which is
valid for both the classical and quantum model if the frustration
parameter α is not too close to the transition point α = 1−δ2

4 .
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