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Lumped model for rotational modes in phononic crystals
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We present a lumped model for the rotational modes induced by the rotational motion of individual scatterers
in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts.
The model provides a physical interpretation of the origin of the rotational modes, reveals the important role
played by the rotational motion in determining the band structure, and reproduces the dispersion relations in
a certain range. The model increases the possibilities of manipulating wave propagation in phononic crystals.
In particular, expressions derived from the model for eigenfrequencies at high symmetry points unambiguously
predict the presence of a new type of Dirac-like cone at the Brillouin center, which is found to be the result of
accidental degeneracy of the rotational and dipolar modes.
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I. INTRODUCTION

Phononic crystals, that is, structured materials with periodic
modulations in their density and elastic coefficients,1–18 have
been rapidly developed in recent years due to their applications
in manipulating acoustic and elastic waves. Based on their
constituents, phononic crystals can be categorized into at least
two types. Prominent ones are acoustic crystals, which are
solid/fluid inclusions in fluid hosts.1–8 Another common type
is arrays of solid inclusions embedded in solid hosts.9–18 To
differentiate this type from acoustic crystals, we call them
elastic phononic crystals (EPCs). EPCs are more complex than
their acoustic counterparts because of the shear deformation
and induced shear-restoring force in solids, features that do
not appear in ideal fluids. Here, ideal fluids refer to inviscous
liquids or gases.19 The existence of shear deformation in an
EPC is the underlying reason for many salient phenomena of
this type of phononic crystal. One such phenomenon is the
local rotational motion12,14,17 in an EPC, which does not exist
in an acoustic crystal.

Although rotational motion has been extensively observed
in EPCs,12,14,17 to the best of our knowledge, it has not yet been
modeled. Without a model, it is difficult to accomplish the task
of establishing the relationship between rotational modes and
the microstructure of an EPC, which is crucial in utilizing
the rotational modes to achieve intriguing wave propagation
properties with potential applications. In the past it seems
that research about EPCs was more focused on controlling the
usual longitudinal and transverse modes10,11,13–15 in the crystal
rather than on the physics of the rotational modes. Without a
clear physical picture of the rotational motion, however, it is
difficult to fully understand the wave propagation properties
in an EPC.

In this paper we establish a model that describes the
rotational modes in two-dimensional EPCs. We show that
a simple lumped model captures the essence of the physics
of the rotational modes, as well as offers a reasonably good
estimation of the band structures of EPCs. Our model reveals
the inherent link between the properties of the rotational
modes and the microstructure of the EPC, and allows us to
engineer an EPC that exhibits an unusual Dirac-like cone6,20,21

at the Brillouin center. The newly observed Dirac-like cone
is obtained by exploiting the rotational motion to achieve
accidental degeneracy of a rotational mode and dipolar modes.

II. LUMPED MODEL

The EPC considered in this work is a square array of
cylindrical solid inclusions with radii R embedded in another
solid matrix. The lattice constant is a, which is also the
length unit. The elastic wave propagation in such a system
is characterized by the displacement u(r) of each point in the
EPC. We focus on the wave propagation along the �X direction
and propose the lumped model shown in Fig. 1. m1 and m2 are
the masses of the matrix and the scatterer, respectively, and
the interaction forces between these masses are modeled by
massless “springs” connecting them.22,23 In fact, these springs
are “continuous” springs, but for simplicity and without loss
of generality, we demonstrate in Fig. 1 by using two individual
springs connected to the scatterer at two arbitrary points “A”
and “B” on the boundary of the scatterer. To study the low
frequency rotational modes, where the rotational vibration is
more likely to occur in the scatterer about its axis, the mass
m2 is considered to be a finite-sized cylinder with radius R

and a moment of inertia I2, rather than a point mass like
m1. The finite-size assumption was also used in the study
of granular systems,24,25 where the moment of inertia comes
into play. A rotational mode naturally satisfies ∇ × u �= 0,
which means that the transverse wave is required to excite
the rotational motion as ∇ × ul = 0 for longitudinal waves.
In the low frequency limit it can be shown that along the �X

direction, only transverse waves are coupled with rotational
motion. Therefore, we consider only transverse motion here
as the translational movement. As a result, the displacements of
the centers of masses are confined along the vertical direction
and denoted by u2i−1 and u2i for m1 and m2, respectively,
where i is the index of the unit cell.

The intermass force arises because of the relative distortion
between the adjacent masses. There are two sources for
the restoring force exerted on m1 in the ith unit cell.
One is the translational distortion, that is, the relative
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FIG. 1. (Color online) (a) The unit cell of the EPC. (b) A
schematic of the lumped model. The solid black squares indicate
the point-mass m1 representing the matrix, and the circles indicate
the finite-sized cylindrical scatterer with mass m2. u is the transverse
displacement. A and B are arbitrarily chosen points on the boundary
of the scatterer, whose equilibrium polar angles are ϕ2i,1(ϕ2i,2). They
rotate at an angle of θ2i about the axis of the cylinder from their
equilibrium positions to points A′ and B ′. The springs represent the
restoring force between two adjacent masses.

displacement between the centers of the matrix and the
scatterers nearby, which can be expressed as Ft 2i−1 =
−K[(u2i−1 − u2i) + (u2i−1 − u2(i−1))]ŷ, where K is the spring
constant and is related to both the bulk and shear mod-
uli of the matrix.23 The other source is introduced by
the rotational movements of the two neighboring scatterers
and takes the form Fr 2i−1 = [−K

π

∫ π/2
−π/2 θ2iR cos ϕ2i,1dϕ2i,1 +

K
π

∫ π/2
−π/2 θ2(i−1)R cos ϕ2(i−1),2dϕ2(i−1),2]ŷ, where θ denotes the

rotated angle of the scatterer from its equilibrium position and
ϕ2i,1(ϕ2i,2) is the polar angle before deformation. Similarly, the
total restoring force exerted on m2 can be written as Ft 2i =
−K[(u2i − u2i−1) + (u2i − u2i+1)]ŷ and Fr 2i = 0, which,
respectively, comes from the relative distortion resulting from
the translational and rotational movements of the scatterer.
The rotation of the scatterer would not generate a net total
force on itself, that is, Fr 2i = 0, but it causes a torque on m2

due to the finite size of m2. Analogous to the resorting force,
there are also two sources for the torque, which can be ex-
pressed as Mt 2i = [KR

π

∫ π/2
−π/2 (u2i − u2i−1) cos ϕ2i,1dϕ2i,1 −

KR
π

∫ π/2
−π/2 (u2i − u2i+1) cos ϕ2i,2dϕ2i,2]ẑ for the translational

part, and Mr 2i = −2K(θ2iR)Rẑ for the rotational part.
Newton’s second law gives us the equations of motion for

m1 and m2:

m1ü2i−1 = Ft 2i−1 + Fr 2i−1,

m2ü2i = Ft 2i + Fr 2i , (1)

I2θ̈2i = Mt 2i + Mr 2i .

Supposing time harmonic vibration and invoking Bloch
theorem, Eq. (1) is transformed into the following secular
equation:

det

∣∣∣∣∣∣∣

m1ω
2 − 2K 2K cos(kxa/2) − 4

π
iKR sin(kxa/2)

2K cos(kxa/2) m2ω
2 − 2K 0

4
π
iKR sin(kxa/2) 0 I2ω

2 − 2KR2

∣∣∣∣∣∣∣

= 0, (2)

where kx is the Bloch wave vector along the �X direction.
By solving Eq. (2) we establish the dispersion relations, that
is, ω(k), for which the expression is complicated in general
except for those at the high symmetry points. For example, at

the � point (kx = 0), Eq. (2) gives three eigenfrequencies in
terms of the material parameters: ω1� = 0, ω2� =

√
2KR2/I2,

ω3� = √
2K(m1 + m2)/(m1m2). The corresponding results

at the X point of the reduced Brillouin zone (kx = π/a)
are ω1X = √

2K/m2, ω2X =
√

2K(R2/I2 − �), and ω3X =√
2K(1/m1 + �), where � is a positive quantity and equals

[
√

(I2 − R2m1)2 + 16m1I2R2/π2 − (I2 − R2m1)]/2m1I2.

III. RESULTS AND DISCUSSION

A. Band structure and eigenstates

We test the validity of the lumped model by using a
common EPC: a square array of steel cylinders with radius
R = 0.2a embedded in epoxy. The mass density, longitudinal,
and transverse velocities inside the epoxy are, respectively,
ρ1 = 1180 kg/m3, cl1 = 2540 m/s, and ct1 = 1160 m/s. The
corresponding parameters of the steel are ρ2 = 7900 kg/m3,
cl2 = 5800 m/s, and ct2 = 3200 m/s. We use COMSOL Mul-
tiphysics, a commercial package based on the finite-element
method, to compute the band structure of this EPC and plot
the results in circles in Fig. 2(a). The solid circles highlight
the transverse and rotational branches of interest, and the open
circles represent the longitudinal modes. The band structure
can also be evaluated from the lumped model, that is, the
solution of Eq. (2), in which the masses are m1 = ρ1a(a − 2R)
and m2 = ρ2πR2. Here m1 is chosen to be the mass of the
portion of the matrix that is sandwiched between two adjacent
scatterers, which, as will be shown later, effectively contributes
to the transverse motion. In this case, m2 is about 1.4 times that
of m1. Consequently, the previously derived ω2� is smaller than
ω3� . To solve Eq. (2) we need to know the spring constant K ,
which should be determined from the moduli of the materials,
but the relation is complex and beyond the scope of this work.
Nevertheless, we shall fit its value by choosing one point from
the band structure. Here, for simplicity, we adopt the eigenstate
at the � point on the second branch and let its frequency equal
the lumped model prediction ω2� . Thus, the value of K can
be evaluated from ω2� =

√
2KR2/I2 = √

4K/m2. With m1,
m2, and K , it is straightforward to compute the dispersion
relations from the lumped model. The results are plotted in
Fig. 2(a) in solid red curves, which agree well with the solid
circles, suggesting the lumped model is valid for the lowest
three transverse and rotational branches near the � point.

To gain a deeper understanding of the highlighted branches,
we plot in Figs. 2(b)–2(g) the displacement field patterns
associated with six eigenstates at high symmetry points of the
Brillouin zone. Color represents the normalized magnitude,
with dark red and dark blue corresponding to the maximium
(normalized to 1) and zero, respectively, and the small arrows
indicate the direction of the displacements. The motions of
the cylinder and the matrix can be qualitatively described by
the thick arrows. The upper panel corresponds to states at
the � point and the lower panel shows those at the X point.
From left to right, the corresponding frequency is increasing.
In Fig. 2(a) we mark these numerically simulated eigenstates
in a fashion of “symbol followed by a number” to distinguish
from those subscripts used in identifying the eigenfrequencies
derived from the lumped model. Figures 2(b) and 2(c) show
translational movement along the direction perpendicular to
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FIG. 2. (Color online) (a) Band structures of a square array of steel cylinders embedded in epoxy with radius R/a = 0.2. The solid dots
correspond to the transverse- and rotation-related states. The red curves indicate the dispersion relations predicted by the lumped model. (b)–(g)
The displacement field distributions of the eigenstates marked in (a). The correspondences are: (b) �1, (c) X1, (d) �2, (e) X2, (f) �3, (g)
X3. Dark red and dark blue corresponds to one and zero of the normalized magnitude, respectively, and thin arrows indicate directions. Thick
arrows demonstrate, qualitatively, the movement of the matrix and the scatterer.

the wave vector k. Near the � point, the scatterer and the
matrix move in unison, and at the Brillouin zone boundary
the movement is concentrated in the scatterer. These states
are close to the typical states on the acoustic branch of a
diatomic chain.26 After examining several other states on the
branch calculated by either method, we found it is indeed an
acoustic-type branch coupled with some rotations. Different
from Figs. 2(b) and 2(c), pure rotation of the scatterer is found
in Fig. 2(d), which is in accordance with the lumped model as
frequency ω2� is the natural angular frequency of an oscillating
rotating cylinder and is a function of the moment of inertia. The
state on the same branch but at the Brillouin zone boundary
is exhibited in Fig. 2(e), where the rotational motion of the
scatterer is preserved but is weak compared with the strong
translational displacements of the matrix. The matrices on the
left and right sides are moving in the opposite directions as
if they drive the rotational motion of the scatterer. We call
this type of state “in-phase,” which is a contrast to the state
plotted in Fig. 2(g), where the rotation of the scatterer is not
in line with the translational displacement of the matrix and
we call it the “out-of-phase” mode. Figure 2(f) demonstrates
a state that has a similar pattern of the “optical-type” mode,26

where the scatterer and the matrix are moving both vertically
but in opposite directions. This again agrees with the lumped
model prediction, which gives the typical frequency, that is,
ω3� , of an optical mode of a diatomic chain.26 In fact, this
state is the transverse state of the two degenerated dipolar
modes. The other one depicted in Fig. 2(a) by the open
circles near state �3 is longitudinal with the matrix and
the scatterer moving horizontally, which is not considered
here.

Although Fig. 2(a) displays surprisingly good agreement
between the numerical simulation and the model, we would
like to point out that it does not imply the model is accurate
everywhere for an arbitrary case. It is worth mentioning the
limitation of the current model. In this lumped model, two
types of material parameters, mass and spring constant, play
important roles in computing the dispersion relations. In the
above case we choose relatively easy ways to determine

their values at the expense of losing some accuracy. For
example, Figs. 2(e) and 2(f) indicate that the matrix above
or below the scatterer contributes very little to the transverse
movement so that the choice of m1 is justified, but this is
not true for the states shown in Figs. 2(b) and 2(c), in which
a quite large amount of the matrix that participates in the
vibration together with m2 was not considered or even was
wrongly included as a portion of m1. This example indicates
the selection of the masses may not be universal or exact.
The situation is similar for the determination of the spring
constant K . The real case is far more complex than our
assumption of constant K , which we believe to be frequency
dependent. For instance, for the case we mentioned earlier,
if we choose �1 and �3 as the fitting points to fit for a
K , we would get K�1 : K�2 : K�3 = 0.82 : 1 : 0.99.27 This
implies K is frequency dependent, and it does not vary too
much in this case so that we were able to get a relatively
good agreement between the model with a constant K and
the numerical simulations as shown in Fig. 2(a). In a general
case, to get exact dispersion relations from the lumped model,
one needs to know the accurate information on the masses and
the spring constant, both of which are complicated functions
of frequency. Therefore, using a constant lumped model,
though convenient, is somewhat limited in describing such a
continuous system. In principle, this limitation can be reduced
by adopting different parameters at different frequencies. In
practice, however, it is not easy to do so for some states,
such as the one displayed in Fig. 2(g), in which accurate m1

is hard to get. Among the states at high symmetry points,
those at X points involve higher uncertainty in choosing the
parameters than those at the � point. This would result in some
inaccuracy of the model near the X point. Nevertheless, the
model can still qualitatively describe the vibration behaviors
at the X point. Fortunately, the states at the � point exhibit
pure translational or rotational movements that enable us to
pick up proper parameters for the lumped model much more
easily. Thus, with the proper parameters chosen from the states
at the � point, the model is able to accurately predict the band
structures near the � point.
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FIG. 3. (Color online) (a) Band structures of the same system as
shown Fig. 2, but the radius is changed to R/a = 0.15. (b) and (c)
The displacement field distributions of the eigenstates marked as �2
and �3, respectively.

Figure 2(a) shows a band gap between the second and the
third band. The lumped model suggests that the width of the
gap is determined by the difference between the two masses,
that is, �ω = ω3� − ω2� = √

2K(
√

1/m1 − √
1/m2). For the

EPC we have just studied, m1 is smaller than m2. The rotational
mode is therefore located below the optical-type mode at the
� point. If m1 is greater than m2, these modes will interchange
their positions. Given the materials, the values of m1 and m2

are simply functions of the size of the scatterer. Figure 3(a)
shows the band structure of a similar EPC but the radius of
the steel cylinder is changed to 0.15a. Here, for simplicity, we
adopted the same method we used for the previous example
to obtain the dispersion relations from the lumped model.
Good agreement between the lumped model and the numerical
calculation is seen again, except for the region near the X

point, which is due to the limitation of the model. In this case,
m1/m2 ≈ 1.45 and ω2� > ω3� . Figures 3(b) and 3(c) show the

field patterns of the states marked as �2 and �3, respectively.
Obviously, the one at the lower frequency is an “optical-type”
transverse mode degenerating with a longitudinal mode and
the other is a rotational mode. This is opposite to the case
shown in Fig. 2.

B. Zero gap: A Dirac-like cone

Since the magnitudes of ω2� and ω3� depend on the
scatterer’s size, it is possible to make them equal by carefully
tuning the radius of the cylinder. Thus, an interesting result,
the zero gap width, is achievable as shown in Fig. 4(a),
where the radii of the steel rods are 0.177a, very close to the
lumped model prediction of 0.176a. As expected, we find the
rotational mode and the dipolar modes occur simultaneously at
a dimensionless frequency ω0a/2πct1 = 0.826 at the � point.
A bit surprising result is that in the vicinity of this frequency,
the dispersion relations become linear as plotted in an enlarged
view in Fig. 4(b). An equifrequency surface at a frequency
slightly below ω0, that is, ωa/2πct1 = 0.82, is plotted in
Fig. 4(c), with the blue circles indicating the results calculated
by COMSOL. These circles lie on a perfect and large circle
drawn in a red solid curve, which implies that the dispersion
relation is isotropic. Similar results are also obtained for the
upper branch but are not shown here. The isotropic behavior of
the equifrequency surface somehow contradicts our common
understanding that the dispersion relation of an EPC in a square
lattice is in general anisotropic.15,16,28 In fact, this special
characteristic is a result of accidental degeneracy and ensures
that the dispersion relation near the degenerate frequency can
be described in terms of a linear cone that intersects a flat sheet
in the vicinity of the zone center, which is also called a “Dirac-
like” cone and the vertex of the cone is called a Dirac-like
point.21 This behavior looks similar to the Dirac-like cone of
electromagnetic20 and acoustic waves,6 where the monopolar
and dipolar bands meet at the �point. Dirac-like cones were
also found in an EPC when the accidental degeneracy of the

FIG. 4. (Color online) (a) Full band structures of the same system as shown in Fig. 2, but the radius is changed to R/a = 0.177. (b) An
enlarged view of the band dispersion near the Dirac-like point. (c) The equifrequency surface at the dimensionless frequency ωa/2πct1 = 0.82.
The blue circles indicate the numerical calculations, which form a perfect circle plotted in red curve. (d)–(f) The displacement field distribution
of the eigenstates near the Dirac point along the �X direction. (d) and (e) The real part and the imaginary parts of displacement fields of state
A. (f) The real part of the displacement field of state B. (g)–(i) Corresponding results for states along the �M direction. (g) and (h) The real
part and the imaginary parts of the displacement field of state C. (i) The real part of the displacement field of state D.
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dipolar and quadrupolar modes occurs and was understood
from an effective medium perspective.14 In that case, the
effective mass density ρeff and the effective stiffness 1/C44 are
simultaneously zero at the Dirac-like point. Here we discover
Dirac-like cones for elastic waves, which is a result of the
accidental degeneracy of rotational and dipolar modes. The
occurrence of the Dirac-like point cannot be interpreted by
conventional effective medium theory,11,14 however, because
the wavelength in the steel rods is longer than that in the
epoxy matrix, deeming the conventional effective medium
description inapplicable. It is, on the other hand, well predicted
by the lumped model and the dispersion relation can also be
evaluated by the lumped model as shown by the solid red lines
in Figs. 4(a) and 4(b).

Figures 4(d)–4(i) show the displacement field patterns near
the Dirac-like point with a small k along �X direction (left
panel) and �M direction (right panel). Figures 4(d) and 4(e)
show the real and imaginary parts of the displacement fields of
the state on the lower branch [marked as A in Fig. 4(b), where
kx = 0.05π/a, and ky = 0]. It is clear that this eigenstate is
a linear combination of dipole and rotation excitation. The
real part of the displacement is concentrated within the matrix
along the direction perpendicular to k. Thus, it can be regarded
as a transverse component, which is similar to the transverse
dipolar mode mentioned previously [as shown in Fig. 2(f)].
Similarly, the imaginary part can be viewed as a rotational
component, in which the motion is mainly the rotation of the
steel rod. Because the eigenstates with the same k but on the
upper branch exhibit the same behavior, we do not plot them
here. Figure 4(f) shows the real part of the displacement of
the state on the middle branch [marked as B in Fig. 4(b)].
Interestingly, a longitudinal dipolar mode with its vibration
direction parallel to k is found. The imaginary part of state
B is two orders of magnitude smaller than its real part and
is not presented. The eigenstate along the �M direction is
plotted in Figs. 4(g) and 4(h) for the real and imaginary parts
of the state that belong to the lower branch of the linear cone
[marked as C in Fig. 4(b), whose kx = 0.05π/a and ky =
0.05π/a]. The behavior of the displacement fields is in general
similar to the one along the �X direction, but the rotation and

transverse component interchange their positions, that is, the
real part represents a rotation mode, whereas the imaginary part
represents a transverse mode. Similar eigenstates are found
on the upper branch with the same k. In the middle branch,
the real part of the state marked as D in Fig. 4(b) is plotted
in Fig. 4(i), whose vibration direction is parallel to k. The
imaginary part of this state is, again, very small compared
with the real part. Together these observations suggest the
remarkable properties of this Dirac-like cone: The linear cone
is mainly contributed by the hybrid states of the rotational and
transverse components, and the middle branch is longitudinal.
This means that the isotropic linear cone can only be coupled
with the transverse wave in all directions.

IV. CONCLUSIONS AND OUTLOOK

In this work we propose a simple lumped model that
can account for the local rotation of the scatterer in certain
two-dimensional EPCs. The model is useful for a physical
understanding of the lowest transverse and rotational bands.
It also provides a good estimation of the dispersion relations.
With the model, it is convenient to go beyond the translational
degree of freedom and utilize the rotational mode to achieve
interesting wave propagation properties. As an example, we
demonstrate the occurrence of a new type of Dirac-like
cone, which is a result of the accidental degeneracy of the
rotational and dipolar modes at the Brillouin zone center. This
Dirac-like cone possesses isotropic dispersion relations that
can be excited only by transverse waves in the vicinity of the
Dirac-like point even for a square lattice, which might lead to
interesting elastic wave transport properties.
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