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Plastic dynamics transition between chaotic and self-organized critical states in a glassy metal
via a multifractal intermediate
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Changes in intermittent serrated flow behavior during plastic deformation of Zr64.13Cu15.75Ni10.12Al10, a
representative glassy metal with characteristic ductility, in response to variant strain rates and temperatures
were examined. The influence of strain rates and environmental temperatures on the stress-time sequence of
the plastic strain regime was investigated using comprehensive dynamical, statistical, and multifractal analyses.
Three distinct spatiotemporal dynamical regimes were explored. Under small strain rates or high temperatures,
the time-stress sequence exhibited a chaotic behavior. Conversely, under large strain rates or low temperatures,
a transition to the self-organized critical state was observed. In addition to chaotic time series and statistical
analysis, multifractal analysis was also applied to study the crossover between these two unique plastic dynamic
transitions. This plastic dynamical behavior was elucidated based on the interactions between shear avalanches
in the glassy metal.
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I. BACKGROUND

Serrated flow, also known as repeated yielding of glassy
metals during plastic deformation, has been associated with
shear band formation and propagation.1 The shear banding
processes is characterized by an accumulation of elastic energy
and stress relaxation accompanied by adiabatic heating.2

Various physical parameters and models have been deduced
to quantitatively describe the ductility of glassy metals3–8 in
the framework of continuum theory.9,10 A phenomenological
model, or testing machine-sample system, was schematically
designed for the purpose of serration event elucidation.11

Furthermore, the lack of periodicity in intermittent serrated
flow has necessitated statistical analysis to extract hidden
information from these serration events.12–15 The results of
such studies suggest that glassy metals with different ductilities
may present two distinct dynamical behaviors, a self-organized
critical (SOC) behavior and a chaotic behavior.12,13 The
mechanism of the transition between these two behaviors,
however, has not been documented.

Analysis of dynamic behaviors in crystalline materials has
revealed several common stress serration types. Additionally,
observations of distinct deformation band patterns in various
materials have been linked to certain experimental conditions,
such as temperatures and mechanical treatments.14 Based on
determination of their characteristics, instabilities of plastic
flow at different applied strain rates can be classified into
three primary categories: SOC behavior, chaotic behavior, and
random nucleation. The SOC behavior is characterized by the
continuous propagation of deformation bands near the upper
strain rate boundary of plastic instability. At lower strain rates,
successive formation of distinct and adjacent deformation
bands is described as chaotic behavior.14 Throughout the range
of intermediate strain rates, these bands are thought to nucleate
randomly, which remains a missing connection between SOC
and the chaotic behavior in glassy metals.

In order to provide clear evidence of the mechanism
occurring at intermediate stages between SOC and chaotic

behaviors, a multifractal analysis15 of the stress-time series
in the serrated flow was conducted in order to identify
spatial and temporal shear avalanches in a glassy metal.
The purpose of the present study was not only to provide
an improved understanding of this intriguing spatiotemporal
behavior but also to define the detrimental influence of the
serrated flow behavior on the mechanical properties of glassy
metals. The glassy metal Zr64.13Cu15.75Al10Ni10.12 was selected
as the representative model material due to its significant
ductility at room temperature.16 Through modification of
environmental temperatures and loading rates, the plastic
stress-strain response of this glassy metal was investigated
by statistical, dynamical, and multifractal analysis.

II. EXPERIMENTAL PROCEDURE

Alloy ingots of the glassy metal Zr64.13Cu15.75Al10Ni10.12

were prepared by arc-melting a mixture of pure metal elements
(purity > 99.99%) in a titanium-gettered argon atmosphere.
This treatment was immediately followed by suction casting
into copper moulds to form rodlike samples with a size of
�2 × 70 mm. Compressive test specimens were fabricated
from these rodlike glassy metal samples by means of a diamond
saw using water as a coolant, resulting in test specimens with
a height of 4 mm and a diameter of 2 mm.

Compressive tests were conducted using a legacy dynamics
and fatigue system model 8562 electric actuator (Instron)
equipped with an environmental box with three strain rates,
2.5 × 10−2 s−1, 2.5 × 10−3 s−1, and 2.5 × 10−4 s−1. The
temperature accuracy of the environmental box was
maintained at ± 2 K. To exclude the influence of data
acquisition frequency on stress fluctuation sensitivity, data
acquisition frequencies of 0.5, 1.0, 10.0, and 100.0 points/s
with increasing strain rate were selected. After fracture, the
surfaces of specimens were observed by a JEOL JSM-6335F
scanning electron microscope (SEM).
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FIG. 1. Nominal stress-time curves of the
Zr64.13Cu15.75Al10Ni10.12 glassy metal at different temperatures
and strain rates. (a) Comparative stress-time curves deformed at three
temperatures. (b) Stress-time curve deformed at a temperature of
293 K and strain rate of ∼10−4 s−1. (c) Stress-time curve deformed
at a temperature of 293 K and strain rate of ∼10−2 s−1.

III. RESULTS

At cryogenic temperature, the extensometer cannot directly
yield accurate strain values. Thus, compressive nominal stress-
time (σ − t) curves were plotted to reflect the elastoplastic
behavior of Zr64.13Cu15.75Al10Ni10.12. Figure 1(a) shows the
comparative plot of the σ − t curves at different temperatures
at a common strain rate of 2.5 × 10−3 s−1, demonstrat-
ing linear elastic deformation followed by a plastic flow
plateau. Temperature reduction induces both yield strength
and plasticity in the glassy metal, consistent with previous
findings.1,17,18 The strain rate, however, does not significantly
influence the mechanical properties of the glassy metal. The
compression deformations at 293 K with different strain rates
are representatively shown in Figs. 1(a)–1(c).

The variation in serration events in the plastic regime
of the glassy metal achieved by varying temperature and

strain rate can be characterized by observing the plastic
regime near the fracture region, as shown in Fig. 2. It is
evident that the amplitude of the serration event decreases
with decreasing temperature, as shown in Figs. 2(a), 2(c),
and 2(e). At 293 K, the amplitude of the serration event
was approximately 25 MPa [Fig. 2(a)]. When the temperature
was reduced to 213 K, the amplitude of the serration event
decreased to approximately 5 MPa [Fig. 2(e)]. The serration
event was completely obscured as temperature continued to
decrease. Stress fluctuations resulting from machine vibrations
and sample to cross-head friction are the primary events
obscuring the amplitude of the serration events (not shown).
Increasing strain rates also highlight the decreased serration
event amplitude [Figs. 2(a), 2(g), and 2(i)]. Strain rate increases
from ∼10−4 s−1 to ∼10−2 s−1 result in stress amplitude
reduction from ∼25 MPa to ∼7 MPa.

After fracture, numerous shear bands can be observed
on the surface of glassy metals deformed at different strain
rates and temperatures. Figure 3 comparatively shows the
lateral surface morphologies of the fractured glassy metal
under three test conditions, demonstrating that all specimens
exhibit shear facture (Fig. 3; see insets). With increased strain
rate and decreased temperature, a larger number of shear
bands were apparent on the glassy metal surface compared
with the number observed at the strain rate of 10−4 s−1

and the temperature of 293 K [Figs. 3(b) and 3(c); arrows
indicate banding]. These findings are consistent with previous
results.17,18

IV. DISCUSSION

The hidden information apparent in the stress-time response
of the glassy metal at different temperatures and strain rates
can be determined by dynamic analysis, allowing for fur-
ther characterization of the stress-time sequence: {σ (t), (t =
1,2, . . . ,N)}, where σ (t) is the stress at the time of t

(Figs. 1 and 2). The range of the stress-time sequence in
each stress-time curve is from the yield strain to fracture
strain. Accurate deterministic dynamical system modeling
relies on the phase space concept and the collection of possible
system states. As an experimentally occurring dynamical
system, the phase space and mathematical description of the
plastic dynamical system in the glassy metal are unknown.
A phase space reconstruction for the stress-time sequence of
{σ (t), (t = 1,2, . . . ,N)} is required to build a proxy of the
observed states, as previously described.19 Because the math-
ematical model of the unknown chaotic dynamical system has
equivalent geometrical characteristics with the reconstructed
m-dimensional phase space, the original chaotic dynamics can
be studied through reconstruction of the phase space.

After selecting an appropriate time delay (τ ) by the
mutual information method20 and calculating the embedding
dimension (m) by the Cao method,21 the stress-time sequence
{σ (t), (t = 1,2, . . . ,N)} can be transformed into a set
of {Y (ti), (ti = 1,2, . . . ,[N − (m − 1)])} constituting a
m-dimension vector of Y (ti) = {σ (ti), σ (ti + τ ), . . . , σ (ti +
(m − 1)τ )}. Following this transformation, the reconstructed
m-dimension phase space may be constructed. The delay
time τ and the embedding dimension m changing with the
strain rates and the temperatures are listed in Tables I and II,
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FIG. 2. (Color online) Enlarged stress-
time curves of the Zr64.13Cu15.75Al10Ni10.12

glassy metal at different temperatures and
strain rates, along with a plot of the cor-
responding |dσ/dt | curves. Note that tn in-
dicates the processing time of one serration
event.

respectively. Then, according to these values, take an initial
point Y (t0) and its nearest-neighbor point Y (t∗0 ) in the
reconstructed phase space, and denote Y0 = Y (t∗0 ) − Y (t0).
After a period of time, the points Y (t0) and Y (t∗0 ) will
transit to Y (t1) and Y (t∗1 ), correspondingly, and then denote
Z0 = Y (t∗1 ) − Y (t1). By means of the least-squares method,

the matrix A0 can be constructed to map the evolution
from Y0 to Z0, where Z0 = A0Y0. By repeating the above
steps from Y (t1) to Y (t2) and so forth, a list of Ai (where
i = 1,2, . . . ,p) can be calculated. By applying a standard
QR decomposition for the matrix Ai , where Ai = QiRi ,
the Lyapunov exponent spectrum can be determined:
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FIG. 3. Surface morphologies of the fractured Zr64.13Cu15.75Al10Ni10.12 glassy metal at different temperatures and strain rates. (a) Fracture
at a strain rate of ∼10−4 s−1 and temperature of 293 K. (b) Fracture at strain rate of ∼10−2 s−1 and temperature of 293 K. (c) Fracture at strain
rate of ∼10−4 s−1 and temperature of 213 K.

λk = [1/(tp−1 − t0)]
∑p

i=0 ln(Ri)kk , where k = 1,2, . . . ,m.
Note that different Lyapunov exponents of the dynamic system
are achieved under different deformation conditions. If the
largest Lyapunov exponent is negative, the two adjacent points
in the dynamical system will be convergent (corresponding to
a stable state). Conversely, if the largest Lyapunov exponent
is positive, then the two adjacent points will separately evolve
(the butterfly effect), representative of chaotic dynamics.

The largest Lyapunov exponents observed during the
deformation of the glassy metal at different temperatures
and strain rates are listed in Tables I and II, respectively.
The largest Lyapunov magnitude of exponent variation from
positive to negative occurred as the strain rate increased from
2.5 × 10−4 s−1 to 2.5 × 10−2 s−1 and as the temperature
decreased from 293 K to 213 K. Thus, it is clear that higher
temperatures and lower strain rates are associated with larger
positive Lyapunov exponents, suggesting the occurrence of
chaotic dynamic behavior.

The above stress-time sequence uses the largest Lyapunov
exponent to characterize the chaotic behavior (instable state).
According to previous results from studies of single crystals,22

polycrystals,23 and nanocrystals,24,25 large negative Lyapunov

TABLE I. The time delay τ , the embedding dimension m, and the
largest Lyapunov exponents λ1 vs strain rate at temperature of 293 K.

2.5 × 10−4 s−1 2.5 × 10−3 s−1 2.5 × 10−2 s−1

τ 4 28 4
m 7 7 6
λ1 0.268 0.002 − 0.003

exponents (stable state) are indicative of SOC behavior in the
serrated flow. Thus, further statistical analysis of the stress drop
occurring during each serration event in the current plastic flow
is necessary.

The enlarged stress-time curves shown in the left column
of Fig. 2 represent the transition in serration events with
temperature and strain rates. The corresponding quantity
|dσ/dt | clearly reflects bursts of plastic activity (Fig. 2, right
column). The |dσ/dt | value as the function of time (t) shows
that this burst of plasticity exhibits roughly same periodicity
(time intervals; tn−1, tn, tn+1) between any two neighboring
serration events. Thus, these events are homogeneous (tn−1 ≈
tn ≈ tn+1) at low strain rates (2.5 × 10−4 s−1 and 2.5 × 10−3

s−1) and relatively high temperatures (293 K and 223 K)
[Figs. 2(b), 2(d), and 2(h)]. Decreasing the temperature
to 213 K or increasing the strain rate to 2.5 × 10−2 s−1

causes inhomogeneous (tn−1 �= tn �= tn+1) time intervals (tn)
to appear [Figs. 2(f) and 2(j)], suggesting that serration events
at relatively lower temperatures (<213 K) or higher strain
rates (>10−2 s−1) lack any typical time scale. This finding is
characteristic of SOC behavior.26

TABLE II. The time delay τ , the embedding dimension m, and
the largest Lyapunov exponents λ1 vs the temperature at strain rate
of ∼10−4 s−1.

293 K 273 K 253 K 223 K 213 K

τ 4 14 11 33 26
m 7 10 8 10 8
λ1 0.268 0.198 0.050 0.002 − 0.0008
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FIG. 4. (Color online) Statistic distri-
bution of stress drop [S(�σ )] of the
Zr64.13Cu15.75Al10Ni10.12 glassy metal de-
formed at different temperatures and strain
rates. The power-law distribution of the stress
drop is indicated in the inset.

Therefore, by referring to the largest Lyapunov exponents in
Tables I and II, the inhomogeneous time interval distributions
and largest negative Lyapunov exponents suggest the possible
occurrence of SOC behavior at low temperatures and high
strain rates. To confirm this finding, the statistical distribution
of the stress drop size of serration events was investigated
[Fig. 2(a)]. The plastic flow of glassy metals has been
previously shown to be dominated by shear avalanches.27 From
the stress-time curves (Fig. 1 and 2), a stress drop (�σ ) can
be constructed to characterize the elastic energy relaxation
process. This construct can also reflect the shear avalanche
length of each serration event.10 Noise influences have been
shown to cause small serrations in the elastic stage that emerge
during the plastic deformation stage.10 Due to this effect, the
serration events were removed before the stress drop reached
2 MPa, as deduced by linear fitting of the elastic regime in
the stress-time curve (not shown), prior to statistical analysis
of the stress drops.12 Since plastic strain results in drift of the
stress drop value, stress drop normalization was carried out to
eliminate statistical error.12 Through linear regression fitting,
the plot of stress drop versus time baseline [f (t)] was obtained.
The statistical distribution of the normalized stress drop is
given as S(�σ ) = �σ/f (t), where S(�σ ) is the probability
density at the stress drop of �σ (Fig. 4). Peak distributions are
observed in chaotic behaviors, such as the plastic deformation

occurring at temperatures of 293 K and 223 K and strain rates
of 10−4 s−1 and 10−3 s−1 [Figs. 4(a), 4(b), 4(d), and 4(f)].
At higher strain rates (>10−2 s−1) and lower temperatures
(<213 K), the statistical distribution of the stress drop values
evidences a monotonic decrease [Figs. 4(c) and 4(e)]. These
distributions eventually lead to a power-law relation: S(�σ ) ∼
�σ−α [Figs. 4(c) and 4(e), insets]. The stress drop generates a
shear band pattern following a fractal structure,28 characteristic
of a power-law relation. These observations indicate that
shear banding may self-organize to a critical state.12 Thus,
a power-law distribution of the shear avalanche will occur
spatiotemporally,29 further suggesting a dynamic behavior
transition to the SOC state as the temperature decreases or
strain rate increases.14

Due to the lack of periodic structure, the ductility of the
glassy metal is governed by shear banding rather than by
the motion of crystalline defects.30 Furthermore, this shear
banding is likely to be associated with the serration event.10

Before shear banding occurs, an elastic strain field forms in the
elastic energy accumulation regime of each serration event.31

The size of this elastic strain field is approximately 500 μm,
a value much larger than the 100 μm interspace between
neighboring shear bands (d) [see Fig. 3(a)]. This indicates
interference between neighboring elastic strain fields. As stress
drops during serration events, elastic energy is relaxed and the
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TABLE III. The elastic accumulation time tI and the stress
relaxation time tr in serration events at different strain rates and
temperatures.

Strain Rate (s−1) Temperature (K) TI (s) tr (s) tI /tr

10−4 293 ∼4.321 ∼0.122 ∼40
10−4 273 ∼2.853 ∼0.121 ∼30
10−4 253 ∼2.374 ∼0.123 ∼20
10−4 223 ∼1.322 ∼0.364 ∼4
10−4 213 ∼0.813 ∼0.392 ∼2
10−3 293 ∼0.244 ∼0.096 ∼3
10−2 293 ∼0.020 ∼0.022 ∼1

elastic strain field subsequently disappears. In higher strain
rate ranges (>10−2 s−1), energy accumulation time decreases
and becomes equivalent to relaxation time (tI /tr ≈∼ 1) (see
Table III), suggesting failure of the elastic strain field to totally
relax during this limited time. This promotes the formation
of new shear bands adjacent to existent bands in the temporal
space. Thus, new shear bands are formed in the field of the
unrelaxed elastic strain field. Overlap in the elastic strain
field can result in a hierarchy of length scales,14 leading
to SOC behavior. At lower strain rates, such as 10−4 s−1,
energy accumulation time (tI ) is approximately 40 times
larger than relaxation time (tr ) (Fig. 2; Table III). At this
strain rate, the elastic strain field can be fully relaxed, and
no spatial correlation between shear bands is apparent. This is
characteristic of chaotic behavior.

Dynamic propagation of the shear band is associated with
shear transformation zones (STZs). STZs are usually formed
in the plastic zone in front of the shear band tip.32 Also,
STZ formation and assembly results in shear banding. As
the environmental temperature decreases to the cryogenic
temperature, the size of STZs will expand.17 This observation
indicates that the creation of STZs requires higher activation
energies.5 Thus, the propagation of shear bands may become
more difficult at the cryogenic temperature. The frozen
propagation of shear bands may thus facilitate the nucleation of
an increasing number of subsidiary shear bands, as observed by
direct observation of specimen surfaces [see Fig. 3(c)]. These
subsidiary shear bands are characterized by small serration
events (Fig. 2). The decreased amplitude of these serration
events corresponds to temperature decreases and dispersal of
elastic energy. Cumulatively, these findings indicate that the
system exhibits a dynamic transition between the chaotic state
and the SOC state at intermediate temperatures and strain rates.

In the glassy metal, a plastic dynamic transition from SOC
to chaotic behavior was observed with decreasing strain rate
or increasing temperature. The boundary between these two
dynamical behaviors, however, remains unclear. To clarify this
issue, a multifractal analysis was applied to study the crossover
of the plastic dynamics transition.14

The stress burst sequence was defined as ψt =
{|dσ/dt | ,t = 1,2, . . . ,K} (Fig. 2). This sequence can be di-
vided by time scales (�t) into time intervals N = N (�t). Each
time interval includes m points. The probability in the ith time
interval is measured by pi(�t) = ∑m

k=1 ψim+k/
∑K

j=1 ψj . A
scaleless band exhibits pi(�t) ∼ �tα , where the exponent α

is the singularity strength. At different i values, a series of α
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FIG. 5. (Color online) (a) Multifractal spectrum (α,f (α)) for the
temperature 253 K at the strain rate 2.5 × 10−4 s−1: q ∈ [−5, + 5].
(b) Multifractal spectrum (α,f (α)) for the temperature 293 K at the
strain rate 2.5 × 10−3 s−1: q ∈ [−5, +5].

can be obtained. Denote the range of multifractal spectrum by
�α = αmax − αmin, which reflects the probability distribution
of the whole fractal structure. If �α is equal to zero (in
theory) or small enough to approach zero, the uniformity of
the probability distribution suggests that a single fractal exists.
Conversely, if �α is relatively large compared to the value in
the single fractal case, nonuniformity indicates a multifractal
state. The multifractal spectrum may be calculated using the
previously described partition function method.33 If Nα(�t)
is the number of time intervals (�t) with singularity strength
α, then N (�t) generalizes to Nα(�t) ∼ �t−f (α), where f (α)
is the singularity spectrum. This reflects the fractal dimension
of the subset characterized by the singularity strength α. If
the partition function is defined as χq(�t) = ∑

i p
q

i , where
q is the weighting factor, the fractal scaleless band exhibits
the following scale relations: χq(�t) ∼ �tτ (q), where τ (q)
is the scaling exponent. Then α, f (α) can be evaluated
by α(q) = dτ (q)/dq and f (α) = q α(q) − τ (q), a Legendre
transformation.

The multifractal spectrum [α, f (α)] for the temperature
253 K at the strain rate 2.5 × 10−4 s−1 and the temperature
293 K at the strain rate 2.5 × 10−3 s−1 are shown in
Figures 5(a) and 5(b), respectively. Figure 6(a) shows a
multifractal range of �α as the temperature increases from
203 K to 293 K, at a strain rate of ∼10−4 s−1. The largest �α

value is observed at intermediate temperatures, indicating a
multifractal burst. At a constant temperature of 293 K and an
increasing strain rate from 2.5 × 10−4 s−1 to 2.5 × 10−2 s−1,
a peak �α value also appears in the transition stage [Fig. 6(b)].
This finding indicates a multifractal burst at the strain rate of
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FIG. 6. (Color online) (a) Range of multifractal spectrum �α vs
the temperature at a strain rate of ∼10−4 s−1. (b) Range of multifractal
spectrum �α vs applied strain rate at a temperature of 293 K.

2.5 × 10−3 s −1. Figures 6(a) and 6(b) illustrate multifractal
bursts in the transition region of the spatiotemporal dynamics
of the serrated flow. The plastic dynamics of the glassy
metal transition from a disordered state (chaotic state) to an

intermediate state (multifractal state) and finally to an ordered
state (SOC state) are shown to correlate with increasing strain
rates and decreasing temperatures.

V. CONCLUSIONS

Chaotic time series analysis, statistical analysis, and mul-
tifractal analysis studies indicated that the plastic dynamics
of Zr64.13Cu15.75Ni10.12Al10, a representative glassy metal, are
characterized by a transition from the chaotic state to the SOC
state through an intermediate multifractal state. This transition
was shown to be correlated with both increasing strain rates and
decreasing temperatures. Furthermore, the intermediate state
was characterized by the presence of multifractal bursts, and
disorderly shear branches were observed at small strain rates.
With increasing strain rates and decreasing temperatures, how-
ever, interactions between shear branches were implicated in
the formation of a multifractal structure. The final result of this
plastic dynamic behavior is the transition to a self-organized
state with a complete fractal structure. This represents a natural
transition between the disordered and ordered stages in glassy
metals.
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