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Phonon anharmonicity of rutile SnO2 studied by Raman spectrometry and first principles
calculations of the kinematics of phonon-phonon interactions

Tian Lan,* Chen W. Li, and Brent Fultz
Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, USA

(Received 13 June 2012; published 11 October 2012)

Raman spectra of rutile tin dioxide (SnO2) were measured at temperatures from 83 to 873 K. The pure
anharmonicity from phonon-phonon interactions was found to be large and comparable to the quasiharmonicity.
First-principles calculations of phonon dispersions were used to assess the kinematics of three-phonon and
four-phonon processes. These kinematics were used to generate Raman peak widths and shifts, which were fit to
measured data to obtain the cubic and quartic components of the anharmonicity for each Raman mode. The B2g

mode had a large quartic component, consistent with the symmetry of its atom displacements. The broadening
of the B2g mode with temperature showed an unusual concave-downwards curvature. This curvature is caused
by a change with temperature in the number of down-conversion decay channels, originating with the wide band
gap in the phonon dispersions.
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I. INTRODUCTION

Rutile tin dioxide (SnO2) is the most common and stable
oxide of tin found in nature. Owing to the wide variety of its
applications for optoelectronics, heterogeneous catalysis, and
gas sensors, rutile SnO2 has been the subject of much recent
research.1 Lattice dynamics, phase transitions, and nanostruc-
tures of SnO2 have been studied by measurements of optical
phonons with Raman, Brillouin, or infrared spectroscopy2–6

and by computation with force field models or density
functional theory.2,7–11 Rutile SnO2 is tetragonal with the
space group P 4/mnm. The modes of symmetry B1g , Eg , A1g ,
and B2g are Raman active (Fig. 1) and comprise motions of
oxygen anions with respect to stationary tin cations, either
perpendicular to the c axis (modes B1g , A1g , and B2g) or along
the c axis (mode Eg).

Nonharmonic effects are known to be important for
understanding the thermodynamic stability and the thermal
transport properties of materials at elevated temperatures, but
the anharmonic lattice dynamics of rutile SnO2 is largely
unknown. Perhaps the most complete experimental results are
from Peercy and Morosin’s work in 1973.3 They reported
frequency shifts of Raman modes with temperature and
pressure, although the temperature range was below 480 K
and no phonon broadening information was reported. The
linewidth broadening of the A1g mode was measured to
973 K by Sato and Asari and compared well with results
from shell model calculations.8 Their results suggest that the
anharmonicity of SnO2 is large.

In our recent study on rutile TiO2, the pure anharmonicity
gave shifts of Raman peaks that were as large as from
quasiharmonicity.12 In that study we developed a rigorous
method of simultaneously fitting Raman peak widths and
shifts with calculations from the kinematics of phonon-phonon
interactions. The effects of cubic and quartic anharmonicity
were separated, and these anharmonic effects were found to
be dominated by phonon kinematics. This previous work on
TiO2 used kinematics calculated with a shell model, but in the
present study on rutile SnO2, inconsistencies in the different
shell model parameters from the literature motivated the use of
ab initio methods to calculate phonon dispersions. The analysis

and comparison of our present results on rutile SnO2 with
previous results on TiO2 provide a better understanding of the
anharmonic phonon dynamics in both.

Here we report high-resolution measurements of Raman
spectra at temperatures from 83 to 873 K. Both phonon
frequency shifts and broadenings are reported. The quasi-
harmonic effects from thermal expansion were separated
from the anharmonic effects of phonon-phonon interactions
by comparing the temperature dependence to the pressure
dependence of the Raman peaks. The data fitting method used
ab initio calculations of two-phonon kinematic functionals
to identify the effects of cubic and quartic anharmonicity.
The peak broadening originates with cubic anharmonicity,
but the peak shifts depend on both cubic and quartic effects.
The phonon-phonon kinematics explains an unusual feature
in the temperature dependence of the broadening of the B2g

mode of rutile SnO2. The large difference in masses of Sn
and O atoms causes a gap in the phonon density of states
(DOS) that produces a peak in the two-phonon DOS (TDOS).
The thermal shift moves the frequency of the B2g mode
away from this peak in the TDOS and reduces the number
of channels available for three-phonon processes, giving a
concave-downwards curvature to the thermal broadening of
the B2g peak. The symmetrical B2g mode was found to have a
relatively large quartic anharmonicity.

II. EXPERIMENTAL PROCEDURES

Measurements were performed on both powder and single-
crystal samples of rutile SnO2. The powder sample was
prepared from commercial SnO2 powder (Alfa Aesar, Ward
Hill, MA) with a grain size of 10 μm. The powder was
compressed into pellets of 1-mm thickness using a pressure of
50 MPa at ambient temperature. Raman spectra were acquired
before and after compression into a pellet and were found to be
identical. A sample of single-crystal casiterite of high optical
quality was provided by the Mineral Museum of the Division
of Geological and Planetary Sciences at the California Institute
of Technology. The sample was cut and polished to a thickness
of approximately 0.3 mm. Samples were mounted on the silver
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FIG. 1. (Color online) Rutile structure and oxygen atom displace-
ments for Raman-active modes.

block of a Linkam thermal stage that provided excellent heat
transfer and temperature stability for both heating and cooling.
The sample chamber was sealed and purged with nitrogen
gas flow. A temperature controller drove a 200-W power
supply for heating. For low-temperature measurements, the
stage was equipped with a coolant pump that injected liquid
nitrogen directly into the silver block. Samples of powder
pellets were measured at temperatures from 83 to 833 K, and
the single-crystal sample was measured from 83 to 873 K. Each
temperature was held stable for 10 min before the spectrum
was taken. The temperature precision was within 1 K.

Raman spectra were measured with a Renishaw micro-
Raman system with an Olympus LMPlanFI microscope lens.
The spectrometer was configured in backscattering geometry,
minimizing issues with the thickness of the sample. A depo-
larized solid-state laser operated at a wavelength of 514.5 nm
excited the sample with the low incident power of 10 mW
to avoid additional thermal heating. The laser spot size was
12 μm in diameter. To test for heating effects this spot size was
varied, but no changes were found. Each Raman spectrum was
accumulated in 10 measurements with 10-s exposure times.

III. RESULTS

Representative Raman spectra of powder samples are
shown in Fig. 2. Three of the four Raman-active modes, Eg ,
A1g , and B2g , have enough intensity for extracting quantitative
information on phonon frequencies and linewidths. The B1g

mode was too weak to obtain quantitative information (its
intensity is about three orders of magnitude lower than that
of the A1g mode).2 The single-crystal sample showed very
similar spectra, but the Eg mode was weaker, primarily because
of orientation effects. Three weak abnormal Raman bands
reported previously13 were also observed at 503, 545, and
692 cm−1 for both powder and single-crystal samples.

After background subtraction, each peak in each spectrum
was fitted to a Lorentzian function to obtain a centroid and
full width at half-maximum (FWHM). FWHM data from
the experiment were corrected for the finite resolution of

FIG. 2. (Color online) Raman spectra of powder samples of rutile
SnO2 at selected temperatures.

the spectrometer.14 At room temperature, the Raman peak
frequencies were 475 cm−1 for Eg , 633 cm−1 for A1g ,
774 cm−1 for B2g . The mode frequencies at 83 K, ω(83 K),
were 476, 636, and 778 cm−1. Figure 3 presents the results on
peak shifts and widths versus temperature. Here the peak shift
�ω is defined as ω(T ) − ω(83 K). We find good agreement
with the frequency shift data reported by Peercy and Morosin
at temperatures below 480 K.3 We also find good agreement
with the linewidth broadening data of the A1g mode reported
by Sato and Asari to 900 K.8

With increasing temperature, the A1g and B2g modes
undergo large shifts to lower frequencies and significant
linewidth broadenings, but the Eg mode undergoes less shift
and broadening. At high temperatures, above 500 K, the broad-
ening of the B2g mode shows an unusual concave-downwards
curvature, while the other two modes broaden linearly. At low
temperatures, the B2g mode has a much larger linewidth than
the other two modes. The linewidth of the B2g mode extrapo-
lated to 0 K is approximately 8 cm−1, whereas the linewidths
of the Eg and A1g modes extrapolate to less than 2 cm−1.

IV. CALCULATIONS

A. First-principles lattice dynamics

Phonon dispersion calculations over the whole Brillouin
zone were performed with the QuantumEspresso package,
within the framework of ab initio density functional per-
turbation theory.15 Vanderbilt ultrasoft pseudopotentials with
the local density approximation (LDA) and nonlinear core
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FIG. 3. Temperature dependence of (a) frequency shifts and
(b) breadths as FWHMs of the Raman modes Eg , A1g , and B2g .
Filled and open symbols represent experimental data from powder and
single-crystal samples, respectively. Solid curves are the theoretical
fittings with a full calculation of the kinematics of three- phonon
and four-phonon processes. The dashed curve was calculated without
considering the frequency dependence of D0↓(�), the number of
decay channels, at elevated temperatures.

corrections were used. The LO / TO splitting was corrected by
adding a nonanalytical part into the dynamical matrix.16 The
calculated dispersion curves are shown in Fig. 4(a), and mode
frequencies at the � point are reported in Table I. Calculations
of the phonon DOS with a uniform 16 × 16 × 16 sampling grid
were also performed, as shown in Fig. 4(b). Our calculations
are in good agreement with prior experimental and theoretical
results.2,7–11 A band gap of width 100 cm−1, centered around
400 cm−1, is evident in Fig. 4. Above the gap, phonon modes
are dominated by the motions of oxygen atoms.

B. The kinematic functionals Dω(�) and Pω(�)

In anharmonic phonon perturbation theory,17 the phonon
linewidth is related to the TDOS, D(�), which is defined as

D(�) =
∑
�q1,j1

∑
�q2j2

D(�,ω1,ω2)

= 1

N

∑
�q1,j1

∑
�q2,j2

�(�q1 + �q2)[(n1 + n2 + 1)δ(�− ω1 − ω2)

+ 2(n1 − n2)δ(� + ω1 − ω2)], (1)
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FIG. 4. (Color online) (a) Calculated phonon dispersion along
high-symmetry directions of rutile SnO2. � (0,0,0), X (0.5,0,0),
M (0.5,0.5,0), Z (0,0,0.5), R (0.5,0,0.5), and A (0.5,0.5,0.5). At the
� point, the frequencies from Table I are presented as upward-
pointing triangles (Raman) and downward-pointing triangles (in-
frared). At the X, M , Z, R, and A points, the mode frequencies
from Ref. 9 (all doubly degenerate) are presented as squares.
(b) Total phonon DOS (black curve) and oxygen-projected DOS
[shaded (green) area].

where � is the frequency of the initial phonon, and phonon
modes {�qiji} have quasiharmonic frequencies {ωi} and oc-
cupancies {ni}. The first and second terms in brackets are
from down-conversion and up-conversion phonon processes,
respectively.18

TABLE I. Comparison of mode frequencies (cm−1) at the � point
for rutile SnO2.

Present Calc. from Calc. from
Mode calc. Ref. 11a Ref. 2b Experimentalc,d

B1g 104 83 100 121d

B1u 147 138 140 –
E(1)

u (TO) 223 200 236 244
E(1)

u (LO) 269 252 268 276
E(2)

u (TO) 285 270 297 293
E(2)

u (LO) 335 307 377 366
A2g 360 320 398 –
A2u (TO) 456 457 512 477
Eg 468 462 476 476d

B1u 564 553 505 –
E(3)

u (TO) 613 584 651 618
A1g 633 617 646 636d

A2u (LO) 670 648 687 705
E(3)

u (LO) 745 712 750 770
B2g 765 734 752 778d

aFirst-principles LDA calculation from Borges et al.11

bForce-field calculation from Katiyar et al.2
cData for infrared active modes at 100 K are from Katiyar et al.2
dData for Raman-active modes at 83 K are from the present
measurements.
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The two-phonon kinematical functional P (�) for the
anharmonic frequency shift is

P (�) =
∑
�q1,j1

∑
�q2,j2

P (�,ω1,ω2)

= 1

N

∑
�q1,j1

∑
�q2,j2

�(�q1 + �q2)℘

[
n1 + n2 + 1

� + ω1 + ω2

− n1 + n2 + 1

� − ω1 − ω2
+ n1 − n2

� − ω1 + ω2

− n1 − n2

� + ω1 − ω2

]
, (2)

where ℘ denotes the Cauchy principal part. The two-phonon
spectra, D(�) and P (�), depend on temperature through the
phonon occupancy factor, n. Both D(�) and P (�) were cal-
culated at various temperatures from the first-principles lattice
dynamics calculations described in the previous subsection,
sampling modes {�qj} with a 16 × 16 × 16 q-point grid over
the first Brillouin zone for good convergence.

V. ANALYSIS

A. Separating anharmonicity from quasiharmonicity

Both quasiharmonicity and pure anharmonicity contribute
to the nonharmonic lattice dynamics of rutile SnO2. In the
quasiharmonic model, phonon modes behave harmonically
with infinite lifetimes, but their frequencies are altered by
the effects of volume on the interatomic potential. Pure anhar-
monicity originates with phonon-phonon interactions, which
increase with temperature. Pure anharmonicity contributes to
shifts in phonon frequencies, but also causes phonon damping
and lifetime broadening of phonon peaks. The large peak
broadenings in SnO2 show that there are large effects from
pure anharmonicity.

To separate the peak shifts caused by pure anharmonicity
from the shifts caused by quasiharmonicity, we treat the
mode frequency ωj = ωj (V,T ) as a function of volume and
temperature19

(
∂ ln ωj

∂T

)
P

= −β

κ

(
∂ ln ωj

∂P

)
T

+
(

∂ ln ωj

∂T

)
V

, (3)

where j is the phonon mode index, β is the volume thermal
expansivity, and κ is the isothermal compressibility. This is
a general method to separate phonon quasiharmonicity from
phonon anharmonicity and is not unique for rutile structures,

for example. The left-hand side gives the directly measurable
temperature-dependent isobaric frequency shift, including
both quasiharmonic and pure anharmonic behavior. The first
term on the right-hand side, the isothermal frequency shift
as a function of pressure, is the quasiharmonic contribution,
which is also measurable. By defining a mode Grüneisen
parameter as the proportionality of the relative change of the
mode frequency to the relative change of volume, i.e., γj =
−∂(ln ωj )/(∂(ln V )), the quasiharmonic term can be written
as γjβ. The second term on the right-hand side of Eq. (3)
is the frequency shift from the pure anharmonicity, which
depends on temperature and not volume. From the difference
between the isobaric and the isothermal frequency shifts, the
pure anharmonicity can be determined experimentally.

To obtain the quasiharmonic contributions to the peak
shifts, we used the mode Grüneisen parameters γj reported
recently by Hellwig et al. from Raman measurements at
pressures to 14 GPa,4 which agreed well with earlier high-
pressure measurements to 4 GPa.20 These results suggest
that Peercy and Morosin overestimated the quasiharmonic
contributions to their data, for which the pressure was only
0.4 GPa.

We also performed first-principles calculations of the mode
Grüneisen parameters by optimizing the enthalpy function to
10 GPa. Our calculated γj values were in good agreement
with the experimental results of Hellwig et al., and both are
listed in Table II. Since the γj are very weakly dependent on
temperature, as is the thermal expansion above 400 K,3,19 the
γj values were assumed to be constants when assessing the
volume-dependent quasiharmonic contribution. The last two
columns in Table II separate the measured isobaric temper-
ature derivatives into the pure volume and pure temperature
contributions as in Eq. (3). These last columns in Table II
are the frequency shifts from quasiharmonicity and pure
anharmonicity at temperatures above 400 K.

By comparing the last two columns in Table II, we see
that, like rutile TiO2, the pure anharmonic contribution is
comparable to the quasiharmonic contribution above 400 K.
Nevertheless, the total anharmonicity of SnO2 is considerably
smaller than that of TiO2. For modes A1g and B2g in SnO2, the
pure anharmonic contribution is larger than the quasiharmonic
one, while the Eg mode is more quasiharmonic. The relative
magnitudes of pure anharmonicities of the three modes derived
from the frequency shift data are consistent with the relative
magnitudes of linewidth broadenings of the modes as shown
in Fig. 3(b).

TABLE II. Frequencies of the three Raman modes, mode Grüneisen parameters, and logarithmic pressure and temperature derivatives of
frequency.

ω(300 K) γj

(
∂ ln ω

∂T

)
P

= −γjβ
a + (

∂ ln ω

∂T

)
V

Mode (cm−1) Expt.b Calc.c (10−5 K−1) (10−5 K−1) (10−5 K−1)

Eg 475 1.45 1.48 −2.6 −1.7 −0.9
A1g 633 1.65 1.81 −4.2 −1.9 −2.3
B2g 774 1.49 1.71 −4.6 −1.7 −2.9

aThermal expansion data from Peercy and Morosin.3
bGrüneisen parameters data from Hellwig et al.4
cFrom the present first-principles calculations.
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B. Cubic and quartic anharmonicity

Anharmonicity tensors describe the coupling strengths for
phonon-phonon interactions, but a prerequisite is that the
phonons in these processes satisfy the kinematical conditions
of conservation of energy and momentum. An anharmonicity
tensor element for an s-phonon process is21

V (j ; �q1j1; . . . ; �qs−1js−1)

= 1

2s!

(
h̄

2N

) s
2

N �(�q1 + · · · + �qs−1)

× [ωj0ω1 . . . ωs−1]
1
2 C(j ; �q1j1; . . . ; �qs−1js−1), (4)

where �(�q1 + · · · + �qs−1) enforces momentum conservation
and the C(.)’s, elements of the s-phonon anharmonic tensor,
are expected to be slowly varying functions of their arguments.
The cubic anharmonicity tensor has been calculated by first-
principles methods,18,22,23 but to our knowledge, the the quartic
anharmonicity tensor has never been fully calculated from first
principles.

Nevertheless, if the anharmonicity tensor or its average does
not vary significantly for different phonon processes, the cou-
pling factor and the kinematic factor are approximately separa-
ble in Eq. (4). The separation of the anharmonic coupling and
the kinematics has been used with success in many studies in-
cluding our recent report on rutile TiO2.12 We consider the term
C(j ; �q1j1; . . . ; �qs−1js−1) to be a constant of the Raman mode j

and use it as a fitting parameter. Although C(j ; �q1j1; �q2j2) and
C(j ; j ; �q1j1; −�q1j1) change with j1 and j2, an average over
modes, 〈C(.)〉 = ∑

1,2 C(j ; �q1j1; �q2j2)/
∑

1,2 1, is needed for
the fitting, where 1, 2 under the summation symbol represent
�qiji . We define the cubic and quartic fitting parameters as

C
(3)
j = 〈C(j ; �q1j1; �q2j2)〉, (5a)

C
(4)
j = 〈C(j ; j ; �q1j1; −�q1j1)〉. (5b)

To the leading order of cubic and quartic anharmonicity, the
broadening of the Raman peaks is 2�(3)(j ; �). The frequency
shift of the Raman peaks is �Q + �(3) + �(3′) + �(4), where
the quasiharmonic part �Q is the integral form of the first
term in Eq. (3). These quantities can be written as functions
of D(�,ω1,ω2) and P (�,ω1,ω2), weighted by the average
anharmonic coupling strengths,12

�(3)(j ; �) = πh̄

64
ωj0

∣∣C(3)
j

∣∣2 ∑
�q1,j1

∑
�q2,j2

ω1ω2D(�,ω1,ω2)

= ωj0

∣∣C(3)
j

∣∣2
Dω(�), (6a)

�(3)(j ; �) = − h̄

64
ωj0

∣∣C(3)
j

∣∣2 ∑
�q1,j1

∑
�q2,j2

ω1ω2P (�,ω1,ω2)

= ωj0

∣∣C(3)
j

∣∣2
P ω(�), (6b)

�(3′)(j ) = − h̄

16N
ωj0

∣∣C(3)
j

∣∣2 ∑
�q2j2

ωj2 (�q2)

(
n�q2j2 + 1

2

)
, (6c)

�(4)(j ) = h̄

8N
ωj0C

(4)
j

∑
�q1j1

ωj1 (�q1)

(
n�q1j1 + 1

2

)
, (6d)

where Dω(�) and P ω(�) are functionals of D(�,ω1,ω2)
and P (�,ω1,ω2) weighted by the kinematics of anharmonic

FIG. 5. (Color online) (a) Two-phonon density of states Dω(�)
for 0 and 800 K. Arrows mark the positions of the three Raman
modes, Eg , A1g , and B2g , respectively. The up-conversion and down-
conversion contributions at 800 K are shown by green and black
dashed curves, respectively. There is no up-conversion process at
0 K. (b) P ω(�) at 800 K.

phonon coupling. Figure 5 shows representative results for
Dω(�) and P ω(�) at 0 and 800 K. The down-conversion and
up-conversion subspectra are also shown.

The �(3′) is an additional low-order cubic term that
corresponds to instantaneous three-phonon processes.17 It is
nonzero for crystals having atoms without inversion symmetry,
as in the case of oxygen atom motions in the A1g mode. It
is much smaller than other contributions, however, owing to
symmetry restrictions.

With Eq. (6) and rigorous calculations of Dω(�) and
P ω(�) at various temperatures, for each Raman mode both its
frequency shift and its broadening were fitted simultaneously
with the two parameters, |C(3)

j |2 and C
(4)
j . The best fits for

the shifts and broadenings are shown in Fig. 3, and the
fitting parameters are listed in Table III. Figure 6 also shows
contributions to the shift from the quasiharmonic and pure
anharmonicity (dashed curves).

With a single parameter |C(3)|2 for each mode, good fittings
to the broadenings are obtained as shown in Fig. 3(b), indi-
cating significant cubic anharmonicity for these Raman-active
modes. Moreover, our fittings also successfully reproduced
the unusual concave curvature of the B2g mode at high
temperatures. The |C(3)

j |2 values do not vary much among
different modes, suggesting that the assumption of slowly
varying properties of C(.) values is reasonable.

Starting with the same cubic fitting parameters used for the
broadenings, the frequency shifts of these modes are fit well
by adding the quasiharmonic and quartic anharmonic effects.

TABLE III. Fitting parameters for the temperature-dependent
Raman modes (units: 1010 erg−1)

Eg A1g B2g

|C(3)|2 0.87 1.6 1.0
−C(4) 1.0 2.6 7.3
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FIG. 6. Fittings of the temperature dependence of the frequency shift of (a) the Eg mode, (b) the A1g mode, and (c) the B2g mode. Solid
curves are the final fittings to �Q + �(3) + �(3′) + �(4). Different contributions are indicated individually.

As shown in Fig. 6, the quartic contribution �(4) is generally of
the same order as the cubic contribution �(3), consistent with
the fact that �(4) and �(3) are both leading-order terms for the
anharmonic frequency shifts. For the Eg and A1g modes, the
pure anharmonicity is mainly from the cubic terms, but for
the B2g mode, the quartic anharmonicity is dominant and is as
large as the quasiharmonic part.

VI. DISCUSSION

We can understand why the B2g mode has a relatively larger
quartic anharmonicity than the A1g mode from the differences
in how the O atoms move towards the Sn atoms. Using a unit
cell with four O atoms and two Sn atoms, as shown in Fig. 1,
the A1g mode has all four O atoms moving directly into one
Sn atom in one-half of the cycle but moving between two Sn
atoms during the other half of the cycle. The B2g mode has
two O atoms moving into a Sn atom and two O atoms moving
between two Sn atoms in both halves of the vibrational cycle,
making for a potential that is an even function of the phonon
coordinate. Table III reports a larger quartic contribution for
the B2g than for the A1g mode. (The Eg mode does not have
similar atom motions for comparison.)

The TDOS function Dω(�) in Fig. 5 shows large variations
with �, which explains a trend in the thermal broadening in
Fig. 3(b). Owing to the high frequency of the B2g mode, at
the temperatures used in this study its phonon-phonon anhar-
monicity comes mostly from down-conversion processes, as
shown in Fig. 5. Ignoring the small up-conversion contribution,
at high temperatures24

Dω(�,T ) ∝ T
∑
�q1,j1

∑
�q2,j2

δ(� − ω1 − ω2) ≡ T D0↓(�), (7)

where D0↓(�) is the number of two-phonon down-conversion
channels. Usually the line broadening is linear in T because
D0↓(�) does not vary much with temperature. However, the
B2g mode at 774 cm−1 lies on a steep gradient of Dω(�,T )
in Fig. 5. Because the B2g mode undergoes a significant shift
of frequency with temperature, it moves down the gradient
of Dω(�,T ), and its broadening is less than linear in T . The
temperature dependence of the broadening of the B2g mode

has an unusual concave-downwards shape. For comparison,
the dashed line in Fig. 3 was calculated without considering
the frequency dependence of D0↓(�) at elevated temperatures,
and it deviates substantially from the experimental trend.

The unusual temperature dependence of the linewidth of the
B2g mode comes from the sharp peak in Dω(�,T ) centered at
800 cm−1. This feature in the TDOS originates with the phonon
DOS of SnO2 shown in Fig. 4, which has a band gap between
360 and 450 cm−1 associated with the mass difference between
Sn and O atoms. The shape of the TDOS can be understood
as the convolution of the phonon DOS with itself. With two
approximately equal regions above and below the gap, the
result is a peak at 800 cm−1, with steep slopes on both sides.
For comparison, although the TDOS of rutile TiO2 is shaped
as a broad peak,12 it does not have the sharp features shown in
Fig. 5(a) because the mass difference between Ti and O atoms
does not cause a band gap in the phonon DOS of TiO2.

Especially with more up-conversion processes at higher
temperatures, there is another peak in the SnO2 TDOS, at
400 cm−1. The up-conversion channels are primarily from the
pairs of sharp peaks in the phonon DOS at 100 and 500, 200
and 600, and 350 and 750 cm−1. Although the Eg mode at
475 cm−1 is on the slope of this peak in the TDOS, the Eg

mode does not show anomalous broadening with temperature
because it undergoes only a small thermal shift in frequency.

In the low-temperature limit, up-conversion processes are
prohibited because n → 0. The peak linewidth extrapolated
to 0 K is determined entirely by down-conversion processes,
quantified by the down-conversion TDOS.24 The B2g mode
has a significant broadening because its frequency is near a
peak in the down-conversion TDOS, as shown in Fig. 5. On
the other hand, the Eg and A1g modes are not broadened at
low temperatures because their frequencies are at low values
of the TDOS. The phonon-phonon kinematics accounts for the
significant difference in linewidths between the B2g and the
other two Raman modes at low temperatures.

VII. CONCLUSIONS

Raman spectra were measured on rutile SnO2 at temper-
atures from 83 to 873 K, and large anharmonic shifts and
broadenings were found for the three measurable Raman
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peaks. Individual assessments of the cubic and quartic con-
tributions to the anharmonicity were performed by calculating
the kinematics of three-phonon and four-phonon processes
with ab initio methods and varying the anharmonic coupling
parameters to fit the peak shifts and broadenings simultane-
ously. The quartic anharmonicity of the B2g mode was found
to be large, unlike the Eg and A1g modes, for which cubic
anharmonicity is dominant. The quartic behavior of the B2g

mode can be understood from the symmetry of the oxygen
atom displacements.

The phonon DOS of SnO2 has a band gap around 400 cm−1

owing to the mass difference of Sn and O atoms, with a similar
structure above and below the gap. This causes a sharp peak
in the TDOS at 800 cm−1. The frequency of the B2g mode
is on the slope of this peak in the TDOS, and its frequency
shift with temperature reduces the number of down-conversion

channels for its broadening. The thermal broadening of the B2g

mode consequently shows an anomalous concave-downwards
curvature. At 0 K, the large TDOS around 800 cm−1 explains
the large linewidth of the B2g mode. The anharmonic peak
shifts and broadenings were well accounted for by the
kinematics of phonon-phonon interactions, suggesting that,
on average, the anharmonicity tensors for rutile SnO2 are not
rich in structure.
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