
PHYSICAL REVIEW B 86, 134112 (2012)

Phase-field crystal modeling of early stage clustering and precipitation in metal alloys
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A phase-field crystal model is used to investigate the mechanisms of formation and growth of early clusters in
quenched/aged dilute binary alloys, a phenomenon typically outside the scope of molecular dynamics time scales.
We show that formation of early subcritical clusters is triggered by the stress relaxation effect of quenched-in
defects, such as dislocations, on the energy barrier and the critical size for nucleation. In particular, through
analysis of system energetics, we demonstrate that the growth of subcritical clusters into overcritical sizes occurs
due to the fact that highly strained areas in the lattice locally reduce or even eliminate the free energy barrier for
a first-order transition.
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I. INTRODUCTION

Clustering in metal alloys is known as the very early stage of
first-order transformations within a bulk crystal, which largely
influences the mechanical properties of quenched/aged mate-
rials. Coherent with the matrix, small clusters of solute atoms
have a significantly lower nucleation barrier than the terminal
second phase of a completely different crystal structure. Early
clusters nucleate and grow in size forming the so-called GP
zones known to be a metastable precursor of the equilibrium
phase.1 The formation and growth mechanisms of the early
clusters are poorly understood presently due to the lack of
direct atomistic observations of structural changes during
the transition process. However, inspired by the observations
made on the quenched structures using transmission electron
microscopy (TEM),2–6 3D atom probe,2,3,7–9 and positron
annihilation3,6,10,11 techniques, the formation of early clusters
has been empirically associated with so-called quenched-in
defects. Formed within the bulk crystal upon quenching, excess
vacancies and/or dislocation loops have been presumed to
decrease the energy barrier for nucleation facilitating cluster
formation.2,3,5,6,8,11

Understanding solute clustering mechanisms is of crucial
importance to design an effective age-hardening process
producing desired mechanical properties in alloys.1 To our
knowledge, no systematic study of the clustering mechanisms
has been done using atomic-scale simulation methods such as
molecular dynamics (MD) and Monte Carlo (MC) simulations,
due to their main restrictions of accessing the relevant time
scales of diffusional transformations. Dynamical calculations
using classical density functional theory (CDFT) are also
inefficient due to the high spatial resolution required to resolve
the sharp density spikes in solid phases.12

The recently developed phase-field crystal (PFC)
method13–17 has shown promise for simulating structural
transformations on diffusive time scales. This new formalism
carries the essential physics of CDFT without the need to
resolve the sharp atomic density peaks. In the most recent
PFC formalism developed by Greenwood et al.,16–18 various
crystal symmetries can be easily stabilized by construction
of relevant correlation kernels. This approach preserves the

numerical efficiency of the original PFC model and is able to
dynamically simulate the precipitation of solid phases within
a parent phase of different crystal symmetry16 and/or chemical
composition.18

This paper proposes a new approach to study the clustering
phenomenon that relies on atomic-scale simulations using the
previously developed alloy PFC model of Ref. 18. We explore
the formation and growth mechanisms of early clusters in a
quenched bulk lattice of a supersaturated Al-Cu alloy initially
containing quenched-in defects such as dislocations.

II. MODEL STRUCTURE

We start with the free energy functional in the binary PFC
model,18
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where n and c represent reduced dimensionless atomic number
density and solute concentration fields, respectively. η and χ

are coefficients added to fit the ideal energy to a polynomial
expansion (η = χ = 1 describes a Taylor series expansion of
the bulk free energy around the reference density) and

�Fmix = ω

{
c ln

(
c

co

)
+ (1 − c) ln

(
1 − c

1 − co

)}
(2)

represents the energy density associated with the entropy of
mixing. The coefficient ω is introduced to fit the entropic
energy away from the reference composition c0. The parameter
α is a coefficient that sets the energy of compositional
interfaces (taken as 1 in this study). These parameters are
discussed further in Ref. 18.

For a binary alloy, Greenwood et al.18 introduced the
correlation function,

Cn
eff = X1(c)CAA

2 + X2(c)CBB
2 , (3)
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where X1(c) = 1 − 3c2 + 2c3 and X2(c) = 1 − 3(1 − c)2 +
2(1 − c)3, while CAA

2 and CBB
2 are correlation functions rep-

resenting, respectively, contributions to the excess free energy
for the situations where A atoms are in the preferred crystalline
network of B atoms and B atoms which are in a structure
preferred by A atoms. The correlation functions Ĉii

2 (�k) are
defined to have reciprocal space peaks (i.e., kj , corresponding
to the inverse of interplanar spacings) determined by the
main families of planes in the equilibrium crystal unit cell
structure for the i th component. Each peak is represented
by the following Gaussian form of width αj , modulated for
temperature by a Debye-Waller prefactor which accounts for
an effective transition temperature σMj .18

Ĉii
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− σ2

σ2
Mj e

− (k−kj )2

2α2
j . (4)

The equations of motion of the total density and con-
centration fields follow dissipative dynamics.19 The total
mass density and total reference density per unit volume
are defined as ρ = ρA + ρB and ρo = ρo

A + ρo
B , respec-

tively. Thus, the equations of motion can be written for
n(=ρ/ρo − 1) and c(= ρB/ρ) as ∂n

∂t
= �∇ · {Mn

�∇( δ�F
δn

)} +
ηn(σ,t) and ∂c

∂t
= �∇ · {Mc

�∇( δ�F
δc

)} + ηc(σ,t), respectively.18

Mn and Mc are dimensionless kinetic mobility parameters
(equal to 1 in this study). ηn(σ,t) and ηc(σ,t) are stochastic
noise variables subsuming the role of fast atomic vibrations
in density and concentration fields, respectively. The noise
variable follow the usual fluctuation-dissipation statistics.
Noise is not employed in our simulations.

III. RESULTS

A. Phase diagram reconstruction

To examine the equilibrium properties of this binary
PFC model for a two-dimensional (2D) Al-Cu system, we
construct the phase diagram for the coexistence of two square
phases. The coexistence lines between the respective phases
are obtained by a common tangent construction of the free
energy curves of solid and liquid at the reference density
(n̄ = 0). Following Greenwood et al.,18 the free energy curves
of the square phases are calculated using the two-mode
approximation of the density fields which is defined by

ni(�r) =
Ni∑

j=1

Aj

Nj∑
l=1

e2π i�kl,j .�r/ai , (5)

where the subscript i denotes a particular solid phase with a
lattice spacing ai , and the index j counts the Ni modes of the i

phase. Aj is the amplitude of mode j and l is the index over the
group of reciprocal space peaks corresponding to mode j , Nj .
Accordingly, �kl,j is the reciprocal lattice vector normalized to a
lattice spacing of 1, corresponding to each index l in the family
j . The free energy curve for each phase can be calculated as a
function of the composition c by substituting the above density
field approximation into Eq. (1) and integrating over the unit
cell.20 The resulting crystal free energy is then minimized for
the amplitudes Aj . For the liquid phase, the amplitudes Aj are
set to zero and the density is considered as the reference density

FIG. 1. The constructed phase diagram for a square-square
system with the inset showing the Al-rich side of the experimental
phase diagram of Al-Cu system taken from Ref. 21. The parameters
for ideal free energy contribution were η = 1.4 and χ = 1, while
ω = 0.005 and c0 = 0.5 for entropy of mixing. Widths of the
correlations peaks are α11Al = 2.4, α10Al = √

2α11Al (the required
ratio to introduce isotropic elastic constants in a square phase18),
α11θ = 2.4, and α10θ = √

2α11θ . The peak positions for pure Al
correspond to k11Al = 2π , k10Al = √

2k11Al , k11θ = (81/38)π , and
k10θ = √

2k11θ . The effective transition temperatures are set to
σM11Al = 0.55, σM10Al = 0.55, σM11θ = 0.55, and σM10θ = 0.55; the
concentration c is rescaled considering the Cu content in the θ phase.

(n̄ = 0). A more detailed description of this methodology is
provided in Ref. 18.

In the Al-rich side of the experimental Al-Cu phase
diagram, shown in the inset of Fig. 1, there is a eutectic
transition between the Al-rich α-fcc phase and an intermediate
phase θ (containing ≈ 32.5at.% Cu) with a tetragonal crystal
structure. For 2D simulations, we approximate these equilib-
rium properties, by constructing the binary phase diagram of
Al and θ , both with a square symmetry but differing in Cu
content. The lattice constant (and thus the reciprocal space
peaks) of θ is approximated by interpolating between those of
pure Al and Cu. The solid phase free energy is calculated with
a variable lattice constant weighted by concentration c using
the interpolation functions X1 and X2. The polynomial fitting
parameters in Eq. (1) (namely η, χ , and ω) and width of various
peaks (αj ) in the correlation kernel Ĉii

2j are then chosen so as
to obtain the same compositions for α-phase solubility limit
and eutectic point as those in the experimental phase diagram.

B. Simulation of clustering

With the equilibrium properties obtained above, simula-
tions of clustering were performed on a rectangular mesh with
grid spacing dx = 0.125 and time step dt = 1. Considering
the lattice parameter of 1, each atomic spacing is resolved by
eight mesh spacings. The dynamical equations were solved
semi-implicitly in Fourier space for higher efficiency. The
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FIG. 2. (Color online) PFC simulation of clustering phenomena
on a system of 256×256 atoms after 225 000 time steps containing
clusters with various sizes and concentrations; (a) the developed
structure of a long-lived cluster; (b) the initially distorted structure; for
graphical illustration, the concentration field is superimposed on the
density field, and ranges from dark blue to dark red as the Cu content
increases. The black symbols denote positions of dislocations.

initial conditions were chosen to study the proposed dominant
role of quenched-in dislocation-type defects in the bulk
crystal during the early stage precipitation in dilute Al-Cu
alloys quenched from a solutionizing temperature.4,5,10,11,22

According to this hypothesis, dislocation loops, generated by
excess vacancies, are responsible for local lattice distortions
facilitating segregation and diffusion of Cu atoms, while
also driving the system towards a more thermodynamically
stable state.2–5,11 Therefore, as initial conditions, we use a
crystal lattice of uniform composition distorted by introducing
dislocations.

PFC simulations are performed for quench/aging of Al-
2at.%Cu from the solutionizing temperature of σ = 0.17 to
σ = 0.04 with the initial conditions shown in Fig. 2(b).
During the simulation, first, small clusters form with a slightly
higher Cu content than that of the matrix. As time progresses,
some of these clusters shrink in size and concentration and
a few get stabilized [e.g., the cluster shown in Fig. 2(a)]. In
contrast, as expected, quenching the same initial structure from
the solutionizing temperature of σ = 0.17 to a temperature
within the single-phase Sq-Al region (i.e., σ = 0.16), leads to
complete removal of distortion.

IV. DISCUSSION

A. Evolution of clusters

The dislocation-induced cluster structure shown in Fig. 2(a)
is consistent with TEM observations in Al-1.7at.%Cu4 and

Al-1.1at.%Cu-0.5at.%Mg alloys,2,3 where dislocation loops
appear in the bulk lattice of the quenched structures. Using
resistometric measurements and TEM techniques for Al-
1.2at.%Si alloy, Ozawa and Kimura5,23 have associated the
formation of dislocation (or vacancy) loops upon quenching
to the coalescence of excess vacancies. They have further
suggested that the solute atoms segregate towards the loops
stabilizing them into solute clusters. In addition, tracing va-
cancy clusters by positron annihilation, Somoza et al.10,11 have
proposed that vacancy-Cu pairs are present at the quenched
state in Al-1.74at.%Cu alloy. To our knowledge, our PFC
simulations are the first atomic-scale simulations to support
the above hypothesis of dislocation-mediated solute clustering
and nucleation mechanisms of early stage precipitation.

B. Analysis of work of formation

We investigated the above mechanisms of cluster formation
and growth by analyzing the system energetics for a long-lived
cluster. To avoid possible finite size effects, a test with the same
conditions as those of the above simulation was performed on
a larger system (e.g., 512×512 atoms). The strain field caused
by the dislocation displacement fields is evaluated by

ε =
Ntri∑
i=1

3∑
j=1

(
aij − ao

ao

)
, (6)

which is calculated over triangulated density peaks using the
Delaunay triangulation method. Ntri is the number of triangles
in the field, ao is the dimensionless equilibrium lattice parame-
ter (the number of grid points resolving one lattice spacing, i.e.,
eight), aij is the length of the j th side of the i th triangle. Small
clusters, each accompanied by at least one dislocation, appear
to be in local equilibrium with the matrix shown in Fig. 3(a).
During the simulation, following Figs. 3(b) and 3(c), cluster
“a” continues to grow while, simultaneously, its accompanying
dislocation climbs up towards nearby dislocations, creating
larger local strain fields [i.e., ε = 0.001, 0.0016, and 0.014 for
cluster “a” in Figs. 3(a)–3(c), respectively]. This mechanism
of stress relaxation through solute segregation has been shown
through phase-field studies by Leonard and Haataja24 to be
the main cause of alloy destabilization by structural spinodal
decomposition in the presence of dislocations. In addition, PFC
studies of thin layer deposition by Muralidharan and Haataja25

indicated that, due to the above mechanism, some immiscible
alloys exhibit a miscibility gap around the interlayer interface
in the presence of coherency stresses.

The effect of dislocations on the nucleation of clusters is
investigated by considering the following form of work of
formation:

W = 2πRγ + πR2(−�f + �Gs) − �Gsr + �Gd, (7)

where R is the cluster radius in terms of number of lattice
spacings and

γ =
∫

Area α| �∇c|2dr

L
(8)

is a Cahn-Hilliard-type interfacial free energy per unit length
of the interface in 2D. “Area” represents an area of the surface
containing the cluster, and L is the circumferential length
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FIG. 3. (Color online) (a)–(c) Snapshots taken at three different times showing the structural changes during formation of cluster “a”;
(d) work of formation [evaluated from Eq. (7)] vs R for increasing dislocation strain fields (i.e., increasing �b2

i ); the dashed curve represents
the work of formation for direct homogeneous nucleation of clusters in the absence of dislocations (i.e., when �b2

i = 0); (e) the variation of
numerically evaluated grand potential, �Gtot, and weighted average burger’s vectors, �b2

i , due to the formation of cluster “a” in the above
box.

of a round cluster of radius R. Assuming low dislocation
density in the system, the interfacial free energy is taken to
be solely chemical, neglecting the structural contributions.26

The expression

�f = f b − μb
c

∣∣
cb (cb − ccl) − f cl (9)

is the bulk driving force for nucleation of a cluster at a
given concentration, where superscripts b and cl denote the
bulk matrix and cluster “phase” quantities, respectively. The
expression

�Gs = 2GAδ2 KB

KB + GA

(10)

represents the strain energy for a coherent nucleus,27 where δ is
the misfit strain and GA and KB are 2D shear and bulk moduli,
respectively, calculated from PFC 2D mode approximation.18

The expression

�Gsr = η2χdEA ln(R) (11)

is defined as the stress relaxation term due to segregation of

solute into dislocations,28 where A = GA�b2
i

4π(1−ν) , ν = E
2GA

− 1,

η = 1
a

∂a
∂c

is the linear expansion coefficient with respect
to concentration, E is the 2D Young’s modulus,18 χd =
( ∂2f

∂c2 )−1, a is the lattice parameter, and we introduce �b2
i to

represent a weighted average of the burger’s vectors around
the dislocations accompanying the cluster. The prefactor of
the logarithm term, η2χdEA, approximates how strain energy
is reduced due to solute segregation around a dislocation.29

The expression

�Gd = ζA (12)

accounts for the increase in the total system energy due
to the presence of dislocations, where ζ is a prefactor of
order 10 giving the average amount of energy per dislocation
core.30 Figure 3(d) plots the evaluation of the above form
of work of formation [Eq. (7)] for cluster “a” at different
mean concentrations up to that of the largest cluster shown in
Fig. 3(c). The mean concentration of each cluster is estimated
within a radius of R, defined by radially averaging the radius
of the concentration field bound by a threshold of [cb +∑N

c−cb

N
]. The dashed curve in Fig. 3(d) represents the work

of formation for direct homogeneous nucleation of clusters in
the absence of dislocations (i.e., �b2

i = 0). The energy barrier
for homogeneous nucleation seems to be smaller than that of
the dislocation-assisted clustering by a single dislocation (i.e.,
�b2

i = 1). However, according to the plots shown in Fig. 3(d),
as Cahn28 also pointed out, the barrier for formation of clusters
on dislocations can be significantly reduced or even completely
eliminated by increasing the magnitude of strain field around
the dislocations (i.e., increasing �b2

i ). Notably, the local
minimum also shifts to larger nucleus sizes until it vanishes
(i.e., work of formation continuously slops down vs R).

It is noteworthy that, in the absence of quenched-in defects,
nucleation of the second phase requires introduction of a ther-
mally activated noise to produce fluctuations in both density
and concentration fields. Assuming dislocations are present in
the bulk matrix of a supersaturated quenched alloy, this study
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demonstrates how elasticity itself can drive the system into a
phase transition. The influence of a thermally activated noise
on the transformation kinetics will be investigated in a future
study through use of a well-defined noise algorithm. We have,
however, observed in our simulations that in the case of a
mismatch between the two species, such as in Al-Cu alloys,
introducing a Gaussian noise to both density and concentration
fields will not have a major impact on the overall path of the
transformation. This is because the phase transformation is
mainly driven by the interactions between the elastic fields of
the dislocations and the solute atoms, which interact to reduce
or even remove the nucleation barrier for precipitation.

The total work of formation in the system, �Gtot, is
also estimated numerically by measuring the change in the
grand potential within a box engulfing cluster “a” during its
formation and growth in the bulk matrix, that is,

�Gtot =
∫

V

� −
∫

V

�b =
∫

V

[f − μcc − μnn]

−
∫

V

[
f b − μb

cc
b − μb

nn
b
]
. (13)

Here, μc = ∂f

∂c
and μn = ∂f

∂n
are diffusion potentials of con-

centration and density fields, respectively, and V is the total
volume. The above work of formation has contributions from
the interfacial energy and driving force for the formation of
clusters (i.e., �Gtot = �Gγ − �Gv), both of which include
elastic effects. Since the above box contains only one cluster,
the calculated change in the grand potential accounts for the
structural and compositional changes during the formation
and growth of only cluster “a”. While the growth of cluster
“a” raises the local free energy, other parts of the system
can undergo a process of annihilation and/or shrinkage
of subcritical clusters and their accompanying dislocations
leading to an overall decrease in the free energy of the system.
As can be seen in Fig. 3(e), the total work of formation
increases with the growth of cluster “a” until a maximum
value, after which it starts to decrease. In addition, as can
be seen in this figure, the estimated values of �b2

i at various
sizes of cluster “a” closely correspond to the analytical value
in Fig. 3(d) associated with a minimum cluster size roughly
equal to the dynamical cluster size in Fig. 3(e). Like the work
of formation, during formation and growth of cluster “a”, the
value of �b2

i reaches a maximum at the critical size of the
cluster.

According to our data, cluster “a” continuously grows in
the presence of dislocations implying that, at each subcritical
cluster size, the system is sitting at a local energy minimum.
Since cluster “a” at each subcritical size is in a local
equilibrium with the matrix we call it a metastable precursor
to the cluster “a” with a critical size. This is analogous to
previous PFC studies of crystal solidification which show that
metastable amorphous precursors emerge first due to their
lower nucleation barrier than that of a crystalline solid.31,32

In our case, the nucleation barrier is lowered by the effect
of locally straining a subcritical cluster [as a result of local
accumulation of dislocation burger’s vectors, as illustrated
in Fig. 2(a)], making it thermodynamically favorable for the
cluster to receive more solute atoms from the matrix and grow
in size.

FIG. 4. Common tangent construction using mean-field free
energy curves of unstrained (solid curve) and strained solid phases
(dashed curves).

C. Metastable phase coexistence

The metastable coexistence between a subcritical cluster
“a” and the matrix at the quench/aging temperature is
elucidated by evaluating the mean-field free energy of a
system comprising an unstrained matrix phase and strained
solid phases with different magnitudes of distortion (i.e., a
uniform strain). The free energy-concentration curve of a
strained solid phase, at a given temperature, can be achieved
by calculating the peaks of correlation kernel Ĉii

2j , at locations
slightly off those of the equilibrium density peaks, kj , for a
square structure. The introduced amount of strain is defined in
Fourier space by

ε = |k − kj |/kj , (14)

where index j denotes one family of planes in reciprocal space.
As can be inferred from Fig. 4, increasing the amount of strain
from 0.0016 to 0.014 [corresponding approximately to the
average strain within the cluster “a” shown in Figs. 3(b) and
3(c), respectively], raises the free energy in the strained solid.
The free energy wells also shift to different concentrations of
solute. Such a configuration admits a common tangent between
the free energy curves of the unstrained matrix (e.g., the solid
curve) and the distorted ones (e.g., dashed curves),29 leading
to a (metastable) multiphase coexistence with a lower free
energy (as demonstrated in Fig. 4). In other words, at each
level of local strain, there is a thermodynamic driving force
for a transformation from a single-phase structure of a strained
matrix to a phase coexistence between a strained cluster and
an unstrained matrix. On the other hand, despite the fact that
the above transformation is thermodynamically favorable, the
configuration of energy plots in Fig. 4 implies that the driving
force for nucleation is lower for the strained cluster [i.e.,
using the definition of �f in Eq. (7)]. However, since the
energy curves in this figure are derived from a mean-field PFC
approximation, the illustrated phase coexistence does not carry
the effect of interfacial energy and only includes a mean-field
sense of the misfit strain. These factors have a significant
impact on the thermodynamics of phase coexistence at cluster
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sizes smaller than that of the critical nucleus. In fact, the previ-
ously described stress relaxation term in the definition of work
of formation [Eq. (11)], �Gsr, overcompensates for the effect
of reduced driving force for formation of strained clusters.

D. Clustering mechanism

Based on our PFC simulations, we propose the following
mechanism of clustering: (1) stress relaxation by segregation
of solute atoms into highly strained areas in the matrix, such
as around dislocations, (2) strain-aided growth of subcritical
clusters at concentrations higher than that of the matrix, and
(3) subsequent growth and enrichment of subcritical clusters
locally into overcritical sizes, only if a sufficient strain field
is preserved, to overcome the nucleation barrier. The above
mechanism is consistent with the experimentally observed
formation and enrichment of highly strained coherent GP
zones in quenched-aged dilute Al-Cu alloys,9 proposed as
the initial step before precipitation of the semicoherent and
incoherent equilibrium θ -phases.1 GP zones in dilute binary Al
alloys are normally known as coherent/semicoherent particles
often with a crystal structure different than that of the matrix
and a composition similar to that of the final equilibrium
precipitate.1,27 Our clusters possess the same chemical compo-
sition and lattice parameter as those of the equilibrium θ -phase
preset by the relevant peaks in our correlation functions. Thus,
they would represent an early-stage evolution of the so-called
GP zones. An investigation on the transformation of GP zones
into the subsequent metastable and equilibrium precipitates
will be followed in a future study in three dimension (3D)
with more complex crystal structures. We expect to observe
a gradual loss of coherency as GP zones grow in size, as

dictated by the energy arguments. We also note that, based on
preliminary work, we expect our results to hold qualitatively
in 3D, since the same type of elastic effects are expected to
appear around the dislocations regardless of their dimension
and any possible partial splitting of dislocations around the
clusters.

V. SUMMARY

In summary, we showed that the alloy phase-field crystal
model of Ref. 18 which stabilizes different crystal structures
can be used to simulate and analyze the mechanisms of
clustering phenomenon in bulk lattice of quenched/aged alloys.
In accordance with the existing experimental observations, our
simulations suggest that quenched-in defects, such as disloca-
tions, significantly lower the energy barrier for nucleation of
clusters. Furthermore, analysis of overall system energy and
local energy changes reveal that the formation and growth
of subcritical clusters are thermodynamically favorable in
conjunction with quenched-in mobile dislocations. Consistent
with existing experiments, our simulations shed significant
light on the elusive energetic mechanism of the growth and
enrichment of early clusters which are the precursors of bulk
precipitation.
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