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High-resolution Fourier spectroscopy is used to study the low-temperature (3–10 K) optical absorption spectra
of Cs2NaYF6 and Cs2NaScF6 crystals doped with rare-earth ions, which substitute for Y3+ or Sc3+ ions at sites
with cubic Oh symmetry. Splitting of some absorption lines corresponding to doublet (�6 or �7)–quadruplet
(�8) transitions in the Kramers Yb3+, Er3+, and Sm3+ ions and a singlet (�1)–triplet (�4) transition in the
non-Kramers Tm3+ ion is observed. In the vicinity of these lines, additional spectral satellites with intensities
depending nonlinearly on the concentration of the rare-earth ions are present. We argue that the observed splitting
is caused by low-symmetry components of the crystal field induced by random lattice strains. An explicit
expression for the generalized distribution function of local strains produced by random point defects in the
elastic continuum is derived and used to simulate the line shapes. A satisfactorily agreement with the measured
spectra is achieved. The observed satellite transitions are ascribed to pairs of the nearest-neighbor rare-earth ions
interacting through the dynamic lattice deformations.
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I. INTRODUCTION

Zero-phonon optical intraconfiguration 4f -4f transitions
of rare-earth (R) ions in real crystals are always inhomoge-
neously broadened. Sometimes, a fine structure of a spectral
line can be resolved. It may originate from an isotopic
disorder1–4 or hyperfine interactions.5 When an optical transi-
tion involves at least one degenerate electronic energy level,
the resolved fine structure can be a result of random lattice
strains.4 The observed spectral profile is characterized by the
specific distribution of intervals and intensities of individual
components of the structure. A theoretical analysis of the
measured fine structure can provide information about random
perturbations of the crystal lattice, as recently demonstrated
in Ref. 4 on the example of the spectra of a non-Kramers
ion Tm3+ residing in the S4 point symmetry positions of the
LiYF4 crystal lattice. As for Kramers ions (i.e., ions with an
odd number of electrons), all degeneracy except the twofold
Kramers one is lifted for site symmetries lower than the cubic
one. Thus, only in a cubic environment, where their energy
spectrum contains fourfold degenerate levels, Kramers R ions
can serve as probes of lattice strains. For non-Kramers R ions,
two- and threefold degenerate energy levels are present in the
case of a cubic environment, which also gives a possibility to
probe random lattice strains. To our knowledge, the influence
of random lattice strains on the spectra of the R ions residing
at sites of a cubic symmetry has not been previously studied.

In the present work, we measured high-resolution absorp-
tion spectra of R-doped cubic fluoride crystals Cs2NaYF6

and Cs2NaScF6 with the elpasolite structure Fm3m. In these
crystals, impurity R ions substitute for Y3+ or Sc3+ at sites with
point Oh symmetry (the first coordination shell is the fluorine
octahedron). Optical spectra of Cs2NaYF6 and Cs2NaScF6

crystals doped with samarium, erbium, thulium, and ytterbium,
as well as spectra of stoichiometric elpasolites Cs2NaErF6,
Cs2NaTmF6, and Cs2NaYbF6, in the infrared, visible, and

ultraviolet regions were studied in Refs. 6–13. However, the
previously measured spectra were taken with resolution not
high enough to detect small splitting of spectral lines induced
by random low-symmetry components of the crystal fields,
by hyperfine interactions, or both. Accordingly, we decided
to perform high-resolution spectral measurements with the
aims to register true profiles of the spectral lines and to study
quantitatively the dependence of lattice strains in cubic crystals
on the type and concentration of impurity ions by comparisons
between the simulated spectra and the experimental data.

This paper begins with a description of the measured spec-
tral lines demonstrating a pronounced fine structure (Sec. II).
Section III A puts forward a model to calculate the spectral
envelopes, generated by lattice strains in a cubic crystal,
for transitions involving degenerate crystal-field levels. A
possible contribution of the hyperfine interactions is analyzed
in Sec. III B, which shows that the hyperfine structure of
transitions in the odd R isotopes cannot be responsible for the
observed spectral profiles. At the next step of the theoretical
analysis, a generalized distribution function of lattice strains is
derived (Sec. III C), electron–deformation coupling constants
are estimated (Sec. III D), and lattice strains in Cs2NaYF6 and
Cs2NaScF6 crystals with different concentrations of impurity
R ions are characterized (Sec. III E). A semiphenomenological
model of satellites in the spectra of samples containing
enlarged concentrations of the Yb3+ and Er3+ ions is proposed
at the end of this last section. Section IV summarizes the main
results and conclusions.

II. EXPERIMENTAL RESULTS

Crystals of cubic elpasolites Cs2NaYF6 and Cs2NaScF6

doped with optically active R ions were grown under hy-
drothermal conditions. For hydrothermal experiments, copper-
insert lined autoclaves with a volume of ∼40 cm3 were utilized,
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TABLE I. Parameter values used in simulations of the absorption line shapes in fluoroelpasolites (column 1) with different concentrations
(column 2) of R ions. Crystal-field parameters are given in columns 3 and 4. Columns 6 and 7 contain effective constants of interaction with
the �3g and �5g strains, respectively, for the degenerate final (initial for Er3+) level (column 5) of an optical transition. Widths of the strain
distribution and the line form function are in columns 8 and 9, respectively.

c B4 B6 Degenerate v(�3g) v(�5g) γ �

(at.%) (cm−1) (cm−1) level (cm−1) (cm−1) (10−5) (cm−1)

1 2 3 4 5 6 7 8 9
Cs2NaYF6:Yb3+ 0.01 313 − 8.5 �8(2F5/2) 6665 876 3.2 0.0025

1 4.1
Cs2NaScF6:Yb3+ 0.1 314 − 7.5 �8(2F5/2) 6665 876 5.3 0.0025

2 29
Cs2NaYF6:Tm3+ 0.1 321.4 16.6 �4(3H5) 953 536 6 0.0050

1 15
Cs2NaYF6:Er3+ 0.3 337 18.4 �8(4I15/2) 311 188 3.2 0.0096
Cs2NaYF6:Sm3+ 3 409 21.9 �8(6H13/2) 57 560 28 0.0450

and the inserts were separated by perforated diaphragms into
synthesis and crystallization zones. The fluoride crystals were
synthesized by a direct temperature-gradient method as a
result of the reaction of the aqueous solutions containing 35–
40 mol.% CsF and 8–10 mol.% NaF with oxide mixtures
(1 − x)Y2O3 − xLn2O3 or (1 − x)Sc2O3 − xYb2O3 at a
temperature of ∼750 K in the synthesis zone, a temperature
gradient along the reactor body of up to 3 K/cm, and a
pressure of ∼100 MPa. Under these conditions, spontaneously
nucleated crystals of up to 0.5 cm3 were grown in the upper
crystallization zone of the autoclave for 200 h. The purities
of the utilized oxides were 99.99% for R oxides and 99.9%
for Sc2O3. Nominal concentrations of impurity R ions in the
studied crystals are given in Table I.

Absorption spectra were measured in a broad spectral range
from 5000 to 23 000 cm−1 at a resolution up to 0.01 cm−1

using an infrared Fourier spectrometer Bruker IFS 125 and a
closed-cycle cryostat Cryomech ST 403 at temperatures from
3 to 10 K. At these temperatures, the recorded spectral lines
correspond to transitions taking their origin from the lowest
crystal-field sublevel of the ground multiplet, i.e., �6(2F7/2)
of Yb3+, �8(4I15/2) of Er3+, �7(6H5/2) of Sm3+, or �1(3H6)
of Tm3+ (�i is the corresponding irreducible representation of
the Oh point symmetry group), separated by a rather large gap
� from the first excited sublevel (in particular, � = 327, 286,
and 113 cm−1 for the Yb3+,11 Sm3+,12 and Tm3+6 impurity
ions, respectively, in Cs2NaYF6 and 65 cm−1 for the Er3+ ions
in Cs2NaErF6

10).
In crystals with a low concentration c of impurity ions (c �

0.1 at.%), the absorption lines correspond to transitions in
isolated optical centers. For several transitions between the
doublet (�6 or �7) and the quadruplet (�8) states of the
Kramers ions Yb3+, Sm3+, and Er3+, a specific narrow dip
is observed at the center of the line when the upper state of
a transition is the lowest crystal-field sublevel of an excited
multiplet (the phonon broadening is not effective for these
sublevels at low temperatures, and correspondingly, they have
minimal widths). In particular, the doublet structure of such
a type is observed for the transitions �6(2F7/2) → �8(2F5/2)
in Yb3+ (Figs. 1 and 2), �8(4I15/2) → �6(4I13/2) in Er3+
[Fig. 3(a)] and �7(6H5/2) → �8(6H13/2) in Sm3+ [Fig. 3(b)].
More complicated structure is observed for the transition

between the singlet ground state �1(3H6) and the excited triplet
�4(3H5) in the absorption spectra of the non-Kramers Tm3+
ions (Fig. 4), where the corresponding spectral line is split
into three components. It is worth noting that the experimental
doublet line profiles cannot be represented by a sum of separate
lines with symmetric line shapes.

The widths of the dips (the difference �ε between the
transition energies corresponding to peaks in the split line),
as well as the widths of the components of the split lines,
increase with increasing concentration of the impurity ions.
The measured values of �ε are in the range from 0.03 to
2.6 cm−1 and are comparable to or substantially larger than
any hyperfine splitting that we might expect for the degenerate

(a) (b)

FIG. 1. (Color online) Measured (symbols) and simulated (solid
curves 1 and 2 corresponding to single ion and dimer centers,
respectively) absorption line shapes for the transition 2F7/2(�6) →
2F5/2(�8) in Cs2NaYF6:Yb3+ samples with the ytterbium concen-
trations (a) 0.01 at.% and (b) 1 at.%. Spectra were taken with the
resolutions 0.05 and 0.1 cm−1, respectively, at temperature T = 3.5 K.
The inset shows the spectral envelope calculated for a perfect sample
(without random strains) containing odd and even Yb isotopes with
natural abundances.
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(a) (b)

FIG. 2. (Color online) Measured (symbols) and simulated (solid
curves) absorption line shapes for the transition 2F7/2(�6) →
2F5/2(�8) in Cs2NaScF6:Yb3+ with the ytterbium concentrations
(a) 0.1 at.% with spectral resolution 0.05 cm−1 and (b) 2 at.% with
spectral resolution 0.1 cm−1. T = 3.5 K. Wave number scales in (a)
and (b) differ by an order of magnitude.

crystal-field sublevels of the odd R isotopes 173Yb3+, 171Yb3+,
169Tm3+, 167Er3+, 149Sm3+, and 147Sm3+ (a more detailed
comparison is presented later).

Additional satellites of the transition �6(2F7/2) →
�8(2F5/2) are observed in the spectra of the yttrium and scan-
dium elpasolites containing Yb3+ ions with concentrations
larger than 0.1 at.% [Figs. 1(b) and 2(b)]. Intensities of these

(a) (b)

FIG. 3. (Color online) Measured (symbols) absorption
line shapes for (a) the transition 4I15/2(�8) →4 I13/2(�6) in
Cs2NaYF6:Er3+ (0.3 at.%) at T = 4 K, and (b) the transition
6H5/2(�7) →6 H13/2(�8) in Cs2NaYF6:Sm3+ (3 at.%) at T = 5 K.
The results of simulations are represented by solid curves: curve
1, the sum of spectral envelopes for even and odd erbium isotopes
with natural abundances in the perfect cubic lattice; curve 2, spectral
envelopes for single ions of even isotopes with the doublet structure
caused by random strains; and curve 3, the spectral envelope for the
erbium dimer. Wave number scales in (a) and (b) differ by an order
of magnitude.

FIG. 4. (Color online) Measured (symbols) and simulated (solid
curves) absorption line shapes for the transition 3H6(�1) →3 H5(�4)
in Cs2NaYF6:Tm3+ (data A for c = 0.1 at.%, T = 4 K, and data B
for c = 1 at.%, T = 5 K). Curve 1 represents the simulated line in
the perfect lattice; curves 2A and 2B were computed with taking into
account the random strains.

satellites, which are shifted symmetrically from the line center
by ±1.6 and ±3.7 cm−1 in Cs2NaYF6:Yb (1 at.%) and by
±6.5 and ±10.5 cm−1 in Cs2NaScF6:Yb (2 at.%), increase
nonlinearly with the concentration of the Yb3+ ions. The
satellites with much smaller shifts of about ±0.1 cm−1 also
are observed for the �8(4I15/2) → �6(4I13/2) transition in the
Er3+ ions [Fig. 3(a)].

The observed fine structures of the spectral lines corre-
sponding to transitions that involve degenerate crystal-field
levels of different R ions give evidence for low-symmetry
local perturbations, which can be related to random electric
multipole fields. In general, low-symmetry components of the
crystal field affecting a R ion can be induced by native crystal
lattice point defects. Isotopic disorder is absent in the host
crystal lattices studied in the present work. However, impurity
R ions also perturb the local crystal lattice structure and induce
random strains when substituting for ions with different ionic
radii.

The satellites of spectral lines with concentration-
dependent relative intensities are evidently induced by inter-
actions between the R ions. The well-resolved satellites for
zero-phonon optical transitions involving the �8 crystal-field
levels also were observed earlier in Cs2NaErCl6, Cs2NaYbCl6,
and Cs2NaYbF6 crystals14 at rather large distances, up to
10 cm−1, from the central line. The magnetic origin of the
satellites proposed in Ref. 14 seems to be excluded, because the
magnetic ordering temperatures of R hexafluoroelpasolites are
less than 0.1 K.15 The observed spectral lines corresponding
to transitions between Kramers doublets do not have satellites.
We argue that electric multipolar interactions between the R

ions mediated by local static and dynamic lattice deformations
play the dominant role in the formation of satellites of
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the �8 ↔ �6,�7,�8 transitions observed in elpasolite-type
crystals containing high concentrations of the R ions.

In the following sections, the simulations of the spectral
envelopes are presented for the R ions interacting with
random strains induced by point lattice defects in hexafluo-
roelpasolites. Among the conventional mechanisms giving the
inhomogeneous broadening of spectral lines in solids,16 this
is the one that is consistent with the observed fine structure
of the doublet–quadruplet transitions. Calculations reproduce
well the results of measurements.

III. MODELING OF THE LINE SHAPES

A. Spectral envelope

The Hamiltonian of a R ion in a dielectric crystal operating
in the space of states of the electronic 4f N configuration is
written as follows:

H = H0 + HCF + He−ph + Hed(e). (1)

Here, H0 is the energy of a free ion, HCF is the energy of
4f electrons in the static crystal field in the perfect crystal
lattice, He−ph is the Hamiltonian of the electron–phonon
interaction, and Hed stands for changes of the crystal-field
energy due to lattice strains determined by the deformation
tensor e. A standard parameterized form of H0 that involves
electrostatic, spin–orbit, configuration and correlated spin–
orbit and spin–spin interactions is used here.17 The crystal-field
Hamiltonian of the R ions in hexafluoroelpasolites written in
the crystallographic system of coordinates (when the z-axis is
parallel to the C4 symmetry axis) contains only two parameters,
B4 and B6, and has the following form:

HCF = B4
(
O0

4 + 5O4
4

) + B6
(
O0

6 − 21O4
6

)
. (2)

Here, operators Ok
p (|k| � p) are linear combinations of

spherical tensor operators C
(p)
k ; the explicit relations between

operators Ok
p and C

(p)
k are presented in Ref. 18. In the case

of (2J + 1) states belonging to a multiplet with the total
angular momentum J , the operators Ok

p coincide with Stevens’
operators19 multiplied by the corresponding reduced matrix
elements.

Components of the deformation tensor for a cubic
crystal transform according to the �1g, �3g , and �5g

irreducible representations of the Oh group: e(�1g) =
(exx + eyy + ezz)/3; e1(�3g) = (2ezz − exx − eyy)/2

√
3 and

e2(�3g) = (exx − eyy)/2; and e1(�5g) = exz, e2(�5g) = eyz,
and e3(�5g) = exy . We consider here the electron–deformation
interaction linear in lattice strains:

Hed =
∑
pk

∑
αβ

Bk
p,αβeαβOk

p = V (�1g)e(�1g)

+
∑
λ=1,2

Vλ(�3g)eλ(�3g) +
∑
λ=1:3

Vλ(�5g)eλ(�5g). (3)

Parameters Bk
p,αβ determine variations of the crystal field in

the uniformly deformed crystal lattice [Eq. (23)]. The totally
symmetric deformation is not taken into account, because it
does not contribute to the splitting of a degenerate electronic
state. Explicit forms of the electronic operators Vλ(�) defined

by seven independent parameters bp(�) are as follows:20

V1(�3) = b2(�3)O0
2 + b4(�3)

(
O0

4 − 7O4
4

)
+ b6(�3)

(
O0

6 + 3O4
6

)
, (4)

V2(�3) =
√

3
[
b2(�3)O2

2 − 4b4(�3)O2
4

+ 1
2b6(�3)

(
5O2

6 + 11O6
6

)]
, (5)

V1(�5) = 2b2(�5)O1
2 − 1

2b4(�5)
(
O1

4 + 7O3
4

)
+ 1

4b6(�5)
(
O1

6 + 9
2O3

6 + 33
2 O5

6

)
+ 3

4b′
6(�5)

(
O1

6 − 5
6O3

6 + 1
2O5

6

)
, (6)

V2(�5) = 2b2(�5)O−1
2 − 1

2b4(�5)
(
O−1

4 − 7O−3
4

)
+ 1

4b6(�5)
(
O−1

6 − 9
2O−3

6 + 33
2 O−5

6

)
+ 3

4b′
6(�5)

(
O−1

6 + 5
6O−3

6 + 1
2O−5

6

)
, (7)

V3(�5) = b2(�5)O−2
2 + b4(�5)O−2

4 + b6(�5)O−2
6

+ b′
6(�5)O−6

6 . (8)

Values of the parameters bp(�) are calculated in Sec. III D.
Let En and |nξ > (ξ = 1 ÷ gn) be the eigenvalues and the

corresponding eigenfunctions of the Hamiltonian H0 + HCF.
The envelope of the absorption (emission) spectrum in the
region of the zero-phonon transition n → n′ is given by the
expression

I (ωn′n + ω) ∼ (2π�2)−1/2
∫

deg(e)
gn∑

δ=1

gn′∑
δ′=1

I δδ′
nn′ (e)

× exp{−[h̄ω − εn′δ′(e) + εnδ(e)]2/2�2}.
(9)

Here, ωn′n = (En′ − En)/h̄ is the frequency offset, g(e) is
the distribution function of random strains, and the Gaussian
form function, with a half-width (2ln2)1/2� considered as a
fitting parameter, is introduced to account for a broadening
of individual transitions (the values of � used in calculations
described later are given in Table I). This broadening comes, in
particular, from magnetic dipole–dipole interactions between
impurity ions, superhyperfine interactions between the impu-
rity ions and the fluorine nuclei, and random variations of
the totally symmetric crystal field. Frequencies of transitions
between sublevels of the initial (n) and final (n′) energy levels
are determined by eigenvalues εnδ of the perturbation Hed in
the basis of |nξ 〉 functions (the corresponding eigenfunctions
being |nδ̃〉), while the relative intensities of these transitions
induced by the nonpolarized radiation equal

I δδ′
nn′ =

∑
α=x,y,z

|〈n′δ̃′|mα|nδ̃〉|2, (10)

where m is the magnetic moment operator of the R ion
(zero-phonon electric dipole intraconfiguration transitions in
R ions at sites with Oh symmetry are forbidden by parity
considerations). Thus, to simulate the spectral envelope, the
distribution function for random lattice strains is needed, and
energy levels and relative transition probabilities as functions
of the deformation tensor components have to be calculated.
In the present work, it is assumed that the strains are induced
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by point dilatation (compression) defects, and an explicit
expression for the generalized distribution function of local
strains is derived in Sec. III C. In Sec. III B, a possible
influence of hyperfine interactions on the observed line profiles
is analyzed.

B. Hyperfine structure of optical transitions in the odd isotopes
of the R3+ ions (R = Yb, Er, Sm)

In the case of odd R isotopes with a nonzero nuclear spin
moment I , the Hamiltonian in Eq. (1) contains additional
terms corresponding to hyperfine interactions. Usually, the
most important is the magnetic hyperfine interaction

HHF = μBγNh̄

〈
1

r3

〉
4f

∑ {
2I l + O0

2 (3szIz − s I)

+ 3O2
2 (sxIx − syIy) + 3O−2

2 (sxIy + syIx)

+ 6O1
2 (sxIz + szIx) + 6O−1

2 (szIy + syIz)
}
, (11)

which results in a line splitting that can be observed in high-
resolution spectra (e.g., Ref. 21, where the resolved hyperfine
structure in the spectra of LiYF4:167Er3+ was observed and
successfully modeled). In Eq. (11), μB is the Bohr magneton;
γN is the nuclear gyromagnetic ratio; the sum is taken over
4f electrons with radius vectors r, orbital moments l, and spin
moments s; and 〈1/r3〉4f is the expectation value of the 1/r3

operator over a 4f -electron wave function. In this case, the
spectral envelopes can be simulated considering the energies
εnδ in Eq. (9) and the ket vectors |nδ̃〉 in Eq. (10) as eigenvalues
and eigenfunctions of the perturbation HHF + Hed operating in
the space of (2I + 1)gn electron-nuclear states |nξ 〉|I,Iz〉.

There are several even isotopes and two odd isotopes of
ytterbium, i.e., 171Yb and 173Yb (I = 1/2 and I = 5/2,
respectively; Table II). Energies of electron-nuclear states of
the odd ytterbium isotopes were obtained from numerical
diagonalization of the Hamiltonian H0 + HCF + HHF in the
space of states of the 4f 13 configuration with dimensions of
28 and 84 for the 171Yb3+ and 173Yb3+ ions, respectively. For
this configuration, H0 involves only the spin–orbit interaction
with the coupling constant ζ = 2913 cm−1;11 the crystal-field
parameters are given in Table I. The electron-nuclear states can
be characterized by the total angular momentum F = S + I ,
where the effective spin S equals 1/2 or 3/2 for crystal-
field states of the �6,�7 or the �8 symmetry, respectively.

TABLE II. Parameters for odd R isotopes used in simulations of
the hyperfine structure.a

147Sm 149Sm 167Er 169Tm 171Yb 173Yb

Natural abundance (%) 15 13.8 22.9 100 14.3 16.2
Nuclear spin I 7/2 7/2 7/2 1/2 1/2 5/2
Gyromagnetic ratio
γN/2π (MHz/T) −1.775 −1.46 −1.23 −3.53 7.53 −2.07
〈1/r3〉4f (at. units) 6.5 6.5 11.07 11.73 12.5 12.5

aReferences 22 and 23.

The ground state �6(2F7/2)×D(1/2) (D(l) is the irreducible
representation of the rotation group) of the 171Yb3+ ion is
split by the hyperfine interaction [Eq. (11)] into a singlet
�1 (F = 0) and a triplet �4 (F = 1) with a gap of 0.069 cm−1.
The excited crystal-field level �8(2F5/2)×D(1/2) splits into
three electron-nuclear sublevels �3 + �4 + �5, the total split-
ting being 0.16 cm−1. Four magnetic dipole transitions are
allowed within the spectral line 2F7/2(�6) →2 F5/2(�8), i.e.,
�1 → �4, �4 → �3, �4, �5; their wave numbers differ by no
more than 0.16 cm−1.

In the spectrum of the 173Yb3+ ions, the ground state
�6(2F7/2)×D(5/2) splits into two sets of quasidegenerate
electron-nuclear sublevels, �2 + �4 + �5 (F = 3) and �3 + �5

(F = 2), with a gap of 0.057 cm−1, and the excited
state �8(2F5/2)×D(5/2) splits into 10 sublevels, �1 + �2 +
2�3 + 3�4 + 3�5, corresponding to F = 1, 2, 3, 4, with a
total splitting of 0.159 cm−1. The inset in Fig. 1 displays
the sum of spectral envelopes for even and odd isotopes
calculated according to Eq. (9) using parameters from Table II
and neglecting random lattice strains. Due to a number of
allowed magnetic dipole transitions between the electron-
nuclear sublevels, integral intensities of individual transitions
in the odd ytterbium isotopes are considerably lower than
the intensity of a single transition in the even isotopes. The
total width of the hyperfine structure of the 2F7/2(�6) →
2F5/2(�8) transition is about two times smaller than the
width of the dip in the observed spectral line of the sample
with the lowest nominal concentration (0.01 at.%) of Yb3+
ions. In real crystals, because of additional broadening and
splitting of spectral lines due to random lattice strains, the
contribution of the odd isotopes into the observed spectrum
is presented by a smooth background under the central
line.

There is only one stable odd erbium isotope: 167Er, with the
nuclear spin I = 7/2. Figure 3(a) (curve 1) shows the sum of
spectral envelopes in the region of the 4I15/2(�8) → 4I13/2(�6)
transition in even and odd isotopes of Er3+, calculated for the
perfect cubic lattice using Eq. (9). Energies and wave functions
of the crystal-field states for even isotopes were obtained from
diagonalization of the electronic Hamiltonian H0 + HCF in the
space of 364 states of the 4f 11 configuration. Parameters of the
free-ion Hamiltonian were taken from Ref. 13; the crystal-field
parameters are given in Table I. Furthermore, the energies and
wave functions of electron-nuclear states for the odd isotope
were obtained from diagonalization of the Hamiltonian HHF

projected onto the truncated space of 240 electron-nuclear
states corresponding to crystal-field sublevels of the 4I13/2

and 4I15/2 multiplets. The ground state �8(4I15/2)×D(7/2) of
the 167Er3+ ion splits into four sets of sublevels (F = 5, 4,
3, and 2), �3 + 2�4 + �5, �1 + �3 + �4 + �5, �2 + �4 + �5,
and �3 + �5, whereas the total splitting equals 0.176 cm−1.
The excited state �7(4I13/2)×D(7/2) splits into two groups of
quasidegenerate states, �1 + �3 + �4 + �5 (F = 4) and �2 +
�4 + �5 (F = 3), with a gap of 0.099 cm−1. The calculated
width of the hyperfine structure of the transition 4I15/2(�8) →
4I13/2(�6) considerably exceeds the width of the dip in the
measured spectral envelope; this structure may be responsible
for the weak shoulders close to the center of the observed line
[Fig. 3(a)].
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Samarium also has several even isotopes and two odd
isotopes, 147Sm and 149Sm (Table II), with nuclear spin I =
7/2 for each. Calculated hyperfine splitting of the ground
�7(6H5/2)×D(7/2) and the excited �8(6H13/2)×D(7/2) states
is more than four times smaller than the width of the dip
in the observed spectral line for the 6H5/2(�7) →6 H13/2(�8)
transition in the spectrum of the sample Cs2NaYF6:Sm3+
(3 at.%). Thus, the results of calculations give evidence that the
observed fine structures are not related to hyperfine splitting
in the spectra of the odd isotopes of the trivalent Yb, Er, and
Sm ions.

C. Generalized distribution function of local strains produced
by random point defects in the elastic continuum

Let us consider the strain field eαβ (r) produced by Nd point
defects placed at the points Rj (xj ,yj ,zj ) (j = 1. . .Nd ) in the
elastic continuum. In the Cartesian coordinate frame, strains
due to a single defect are determined by the expression24,25

e
j

αβ = A

r3
j

(
δαβ − 3

xjαxjβ

r2
j

)
. (12)

Here, xjα are components of the vector rj = r − Rj

and A = (�/12π )(1 + σ )/(1 − σ ) is the defect strength that
depends on the Poisson coefficient of a crystal σ and the
change � = dV/dNd of a sample volume V due to a single
defect.16,25 Because, according to Eq. (12), e

j
xx + e

j
yy + e

j
zz =

0, we may consider five independent normalized combinations
of the deformation tensor components (12), with the angular
parts corresponding to tesseral harmonics of the second
order:

e
j

1 = e
j

1(�3g) = −
√

3A

2r5
j

(
2z2

j − x2
j − y2

j

)
,

e
j

2 = e
j

2(�3g)=− 3A

2r5
j

(
x2

j − y2
j

)
, e

j

3 =e
j

1(�5g) = −3Axjzj

r5
j

,

e
j

4 = e
j

2(�5g) = −3Ayjzj

r5
j

, e
j

5 = e
j

3(�5g) = −3Axjyj

r5
j

.

(13)

In the case of a low concentration of defects, it is natural
to assume that strains due to different defects are additive.
Then, the distribution function g(e1,e2,e3,e4,e5) ≡ g(e) can
be presented as follows:

g(e) =
*

5∏
m=1

δ

(
em −

∑
j

ej
m

)+
, (14)

where δ (. . .) is the Dirac delta function and 〈. . .〉 denotes
the averaging over random coordinates of Nd identical point
defects. Under the assumption that defects occupy random
positions within the crystal, the averaging is replaced by
Nd integrals over the crystal volume. The substitution of
delta function with its integral representation and the appli-
cation of the limit Nd,V → ∞ under the condition of the
fixed defect concentration Nd/V = Cd give the following

expression:

g(e) = 1

(2π )5V Nd

∫ ∞

−∞
dρ1 . . .

∫ ∞

−∞
dρ5

×
∫

V

dV1

∫
V

dV2 . . .

∫
V

dVNd

× exp

⎡
⎣i

5∑
m=1

ρm

⎛
⎝∑

j

ej
m − em

⎞
⎠

⎤
⎦

= 1

(2π )5

∫ ∞

−∞
dρ1 . . .

∫ ∞

−∞
dρ5

× exp

[
−i

5∑
m=1

ρmem − CdJ (ρ1, . . . ,ρ5)

]
, (15)

where

J (ρ1, . . . ,ρ5) =
∫

V

d3r

[
1 − exp

(
i

5∑
m=1

ρmem(r)

)]
. (16)

Let us introduce the coordinates x̃,ỹ,z̃ connected with x,y,z

by the orthogonal transformation that brings about the diagonal
quadratic form

r5
5∑

m=1

ρmem(r) =
∑

α,β=x,y,z

cαβxαxβ = c̃x x̃
2 + c̃y ỹ

2 + c̃zz̃
2.

(17)

Using the definitions (13), we can rewrite Eq. (17) as∑5
m=1 ρmem(r) = ρ̃1ẽ1(r) + ρ̃2ẽ2(r), where the coefficients

ρ̃1 and ρ̃2 are connected with ρm by the equation ρ̃2
1 + ρ̃2

2 =∑5
m=1 ρ2

m ≡ ρ2. Now, the integral in Eq. (16) can be obtained
in the analytical form by using the spherical coordinates r,θ,ϕ

of the vector r(x̃,ỹ,z̃):

J (ρ1, . . . ,ρ5) = 4π2|A|ρ
9

[β(η) − iβ ′(η)sgn(A)]. (18)

Here, η = arctan(ρ̃2/ρ̃1) and

β(η) = 3

8π

∫
sin θdθdϕ|ψ |,

(19)

β ′(η) = 3

4π2

∫
sin θdθdϕψ ln |ψ |,

where ψ(θ,ϕ) = r3(ρ̃1ẽ1 + ρ̃2ẽ2)/Aρ. As shown in Ref. 26,
the function β(η) slightly differs from unity in the whole
interval of η values [(3/π ) � β(η) � 1], and the function β ′(η)
with alternating signs satisfies the inequality |β ′(η)| � β ′(0) =
3
√

3
2π

∫ 1
0 dx(3x2 − 1) ln |3x2 − 1| < 0.132. Because of these

inequalities, approximate constant values of the functions
β(η) = 1 and β ′(η) = 0 can be used. Now it is easy to
obtain the analytical form of the distribution in Eq. (15).
The sum

∑5
m=1 ρmem can be considered the scalar product

of the five-dimensional vectors ρ and e. The integral over
variables ρm is calculated using hyperspherical coordinates
(ρ,θ1,θ2,θ3,θ4) and the equality (ρ · e) = ρe cos θ1, where
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e2 = ∑5
m=1 e2

m:

g(e) = 1

(2π )5

∫ ∞

0
ρ4dρ exp

(
−4π2Cd |A| ρ

9

) ∫ π

0
sin3 θ1dθ1

× exp(−iρe cos θ1)
∫ π

0
sin2 θ2dθ2

∫ π

0
sin θ3dθ3

∫ 2π

0
dθ4

= 1

4π3e3

∫ ∞

0
ρdρ exp

(
−4π2Cd |A|ρ

9

)
× [sin(ρe) − ρe cos(ρe)]

= 2γ

π3(e2 + γ 2)3
. (20)

The width of the distribution, γ = π(1+σ )
27(1−σ )

d ln v
d ln Cd

, is deter-
mined by the Poisson coefficient σ and the unit cell volume v

dependence on the concentration Cd of point lattice defects.
The subsequent integrations of g(e) over em results in the

well-known one- and two-dimensional distributions:16,26

g(e1) = γ

π
(
e2

1 + γ 2
) , g(e1,e2) = γ

2π
(
e2

1 + e2
2 + γ 2

)3/2 .

(21)

D. Electron–deformation coupling constants

Parameters bp(�) of the electron–deformation interaction
were calculated within the framework of the exchange charge
model.20,27,28 In line with this model, parameters of the crystal
field affecting the impurity R ions are presented as the sums
of contributions due to the electrostatic fields of effective
point charges of the host lattice ions: Bk

p = ∑
L Bk

p(RL)
(here, the lattice ions are labeled L and have the spherical
coordinates RL, θL,ϕL relative to the R ion placed at the
origin of the system of coordinates). However, in contrast to
the simple point–charge model, the effective charges q

(p)
L of

the nearest-neighbor lattice ions (ligands) involve exchange
charges, which depend on the rank p of the 4f electron
multipolar moment and are related to the overlap integrals
between the electronic 4f and the ligand wave functions:27

q
(p)
L = qL − 2(2p + 1)Rp

L

7(1−σp)〈rp〉4f

Sp(RL). (22)

Here, eqL is the nominal charge of an ion (e is
the proton charge), σp are the shielding constants,29

and Sp(RL) = GσSσ (RL)2 + γpGπSπ (RL)2 are the quadratic
forms constructed from the overlap integrals Sσ (RL) =
〈4 3 0(R)|2 1 0(L)〉 and Sπ (RL) = 〈4 3 1(R)|2 1 1(L)〉, where
one-electron wave functions of the R and the ligand (fluorine)
ions |n l lz〉 are defined by the principle quantum number n,
orbital moment l, and its projection lz and are considered in
the reference frame with the common quantization axis along
the vector RL. Also, γp = 2 − p(p + 1)/12, and Gσ , Gπ are

TABLE III. Parameters of the electron–deformation interaction
(in cm−1) for Cs2NaYF6:R3+ (R = Yb, Tm, Er, Sm).

Yb Tm Er Sm

b2(�3) −12850 −11570 −11550 −11100
b4(�3) −1018 −1078 −1100 −1127
b6(�3) 350 −422 −470 −444
b2(�5) 7760 7482 7488 7638
b4(�5) −1544 −1685 −1768 −2094
b6(�5) −70 573 646 782
b′

6(�5) −440 3800 4282 5190

dimensionless parameters of the model. The moments of
the 4f -electron density 〈rp〉4f (p = 2, 4, 6) and overlap
integrals were calculated using radial wave functions of the
R and fluorine ions given in Refs. 30 and 31. Furthermore,
we determined the values of the model parameters Gσ =
21, 22.1, 20.5, 11.2 and Gπ = 45, 23, 19.5, 8 for Yb3+,
Tm3+, Er3+, and Sm3+, respectively, from a comparison of the
calculated and experimental values of the parameters B4 and
B6 (Table I). Thus, we obtained the crystal-field parameters
and parameters of the electron–deformation interaction Bk

p,αβ

in the Hamiltonian given by Eq. (3),

Bk
p,αβ = 1

2

∑
L

(
XLβ

∂

∂XLα

+ XLα

∂

∂XLβ

)
Bk

p(RL), (23)

as explicit functions of the coordinates of the lattice ions.
According to Eqs. (4)–(8), the parameters bp(�) and Bk

p,αβ are
connected by the following relations [Eq. (3)]:

bp(�3) = 2
(
B0

p,zz − B0
p,xx

)
/
√

3, bp(�5) = 2B−2
p,xy,

(24)
b′

6(�5) = 2B−6
6,xy .

The calculated values of the parameters bp(�) are given
in Table III. In the present work, to avoid introduction of
additional unknown parameters that determine the coupling
between macro- and microdeformations, we neglected renor-
malization of the parameters bp(�) due to the interaction of
the R ions with the sublattice displacements of the �3g and
�5g symmetry.

E. Simulations of spectral profiles and comparison
with the measured spectra

In the space of four states belonging to the �8 quadru-
plet, the Hamiltonian Hed of the R ion interacting with
strains of the �3g(e1, e2) and �5g (e3, e4, e5) symmetry is
determined by two real parameters ν(�3g) and ν(�5g), which
equal to corresponding matrix elements of the operators in
Eqs. (4)–(8) and can be represented by 2 × 2 blocks as
follows:

〈�8|Hed|�8〉 =
∣∣∣∣∣ v(�3g)(−σze1 + σxe2) + v(�5g)σye5 v(�5g)σz(e3 − ie4)

v(�5g)σz(e3 + ie4) v(�3g)(σze1 − σxe2) − v(�5g)σye5

∣∣∣∣∣ , (25)
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where σα are the Pauli matrices. Calculated values of ν(�3g)
and ν(�5g) for quadruplets involved in the transitions with
the observed fine structure are given in Table I. It is seen
from Table I that the Yb3+ ions with the largest electron–
deformation coupling constants are the most sensitive probes
of lattice strains.

The matrix in Eq. (25) is easily diagonalized, and it has
two degenerate eigenvalues. Thus, in the deformed lattice,
the quadruplet splits into two doublets with energies ±E

depending on the two independent variables ρ = (e2
1 + e2

2)1/2

and r = (e2
3 + e2

4 + e2
5)1/2 only:

E = [v(�3g)2ρ2 + v(�5g)2r2]1/2. (26)

Now we can substitute the distribution function (20) for
g(e) and energies ±E for εnδ into Eq. (9). Because the
integral intensities of magnetic dipole transitions induced by
the nonpolarized radiation between the �6 or �7 doublets and
the different �8 sublevels are the same, we obtain the following
spectral envelope of the doublet–quadruplet transitions:

I (ωn′n + ω) ∼
∫ ∞

0
ρdρ

∫ ∞

0
r2dr

×
[(

ρ

ν(�3g)

)2

+
(

r

ν(�5g)

)2

+ 1

]−3

× (exp{−[h̄ω − γ (ρ2 + r2)1/2]2/2�2}
+ exp{−[h̄ω + γ (ρ2 + r2)1/2]2/2�2}). (27)

The computed spectral envelopes for doublet–quadruplet
transitions in the even isotopes of the Yb3+, Er3+, and Sm3+
ions are compared with the measured line shapes in Figs. 1–3.
The width γ of the distribution function g(e) was varied to fit
the measured spectral positions of the two maxima of the
split absorption line. As seen from Figs. 1–3, the dips in
the spectral profiles near line centers are well reproduced by
calculations. The obtained values of the most probable strains
of the �3g (ρM = γ /

√
3) and �5g (rM = γ

√
2/3) symmetry

and their variations with the type of the host ions and the
concentration of the impurity ions (Table I) are physically
reasonable. Low values of γ (3 × 10−5– 4 × 10−5) in
yttrium elpasolites weakly doped with Er3+ or Yb3+ ions can
be associated mainly with intrinsic lattice defects. Because the
differences among the ionic radii R of Er3+ (REr = 0.089 nm,
here and later the ionic radii corresponding to the sixfold
coordination are indicated32), Yb3+ (RYb = 0.0868 nm), and
Y3+ (RY = 0.09 nm) are rather small, perturbations of the
lattice by the impurity ions in these crystals can be neglected.
Alternatively, the Sm3+ ion has a considerably larger ionic
radius, RSm = 0.0958 nm, and induces local lattice expansion
when substituting for the host Y3+ ion. Correspondingly, the
width γ of the strain distribution function and the width � of
the individual transitions in the Sm3+-doped yttrium elpasolite
are about an order of magnitude larger than γ and � in the
yttrium elpasolites containing comparable concentrations of
the impurity Er3+ or Yb3+ ions (Table I). An even more
pronounced effect caused by lattice deformations due to
the impurity R ions was found in the scandium elpasolites
doped with the Yb3+ ions, where the difference between
the ionic radii of the host Sc3+ (RSc = 0.0745 nm) and the
impurity ions (RYb = 0.0868 nm) is rather large. In these

scandium crystals, the strain distribution width γ increases
markedly with the concentration of the impurity Yb3+ ions; in
particular, γ changes sixfold in Cs2NaScF6 crystals when the
nominal ytterbium concentration c increases 20 times (Table I).
Supposing that concentrations of intrinsic defects are the same
in the samples of Cs2NaScF6 with different concentrations of
ytterbium, we find that the contributions into the widths γ due
to the impurity Yb3+ ions equal 1.25 × 10−5 and 24.9 ×
10−5 for c = 0.1 and 2 at.%, respectively.

Finally, let us consider the line shape of the transition
�1(3H6) → �4(3H5) in the Tm3+ ions. There is only one
stable thulium isotope, 169Tm, with nuclear spin I = 1/2
(Table II). The energies and wave functions of the Tm3+
ion in the perfect lattice of Cs2NaYF6 were obtained from
diagonalization of the Hamiltonian H0 + HCF + HHF in the
total space of 182 electron-nuclear states of the electronic
4f 12 configuration. Parameters of the free-ion Hamiltonian
and crystal-field parameters were taken from Ref. 13. The
ground state transforms according to the �1(3H6) × D(1/2) =
�6 irreducible representation of the double Oh group, and
the lowest crystal-field sublevel �4 of the 3H5 multiplet is
split by the hyperfine interaction into a �6 doublet and a �8

quadruplet, with a gap of E0 = 0.062 cm−1. The calculated
line shape of the transition �1(3H6) → �4(3H5) in the perfect
lattice is shown in Fig. 4 (curve 1). It differs remarkably from
the observed line shape, which shows a splitting of the high-
frequency component comparable to the gap induced by the
hyperfine interaction. Thus, because the hyperfine splitting and
the strain-induced splitting have comparable values, we must
consider the sum of the hyperfine and the electron–deformation
interactions to be a perturbation. The projection h of the
Hamiltonian HHF + Hed on the space of six electron-nuclear
states �4 × D(1/2) = �6 + �8 can be presented as follows:

h =

∣∣∣∣∣∣∣
−E0 · 1̂ h12 h13

h+
12 h22 h23

h+
13 h+

23 −h22

∣∣∣∣∣∣∣ , (28)

where 1̂ is the unit 2 × 2 matrix, h12 = −√
2iν(�3g)e2σy −

ν(�5g)(e3 · 1̂ + ie4σz − 2ie5σx), h13 = √
2ν(�3g)e1σz − √

3ν

(�5g)(e3σx + e4σy), h22 = ν(�3g)e1 · 1̂, and h23 = −ν(�3g)
e2σx + √

2ν(�5g)(e3σz − ie4 · 1̂ − ie5σy). The calculated
values of ν(�3g) and ν(�5g) are given in Table I. The
computation of the spectral envelope according to Eq. (9)
involved numerical diagonalization of the matrix in Eq. (28)
and calculations of the relative integral intensities in Eq. (10)
for each set of the strain tensor components. The obtained
envelopes (Fig. 4, curves 2A and 2B) contain a central peak
and two wings with approximately equal intensities. Such
distribution of the line intensity agrees with the observed shape
of the �1(3H6) → �4(3H5) transition in the Cs2NaYF6 sample
containing 1 at.% of Tm3+; however, it differs markedly from
the measured line shapes in the spectra of the weakly doped
samples where the high-frequency wing is more intense than
the low-frequency one. It is possible that this asymmetry of
the wings is not reproduced by calculations, because elastic
anisotropy of the crystal lattice has been neglected when
deriving the strain distribution function. Also, weak residual
quasiuniform strains may contribute to a redistribution of the
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wing intensities. The obtained widths of the strain distribution
function in the Cs2NaYF6 samples containing 0.1 and 1.0
at.% of Tm3+, γ = 6 × 10−5 and 15 × 10−5, respectively,
correlate with the values of γ in the samples doped with
comparable concentrations of Yb3+ (Table I) and the value
of 8.5 × 10−5 obtained earlier for the LiYF4:Ho3+ (0.1 at.%)
crystal containing Tm3+ as a trace impurity.4

In conclusion, we turn to the satellites of the spectral lines
corresponding to the doublet–quadruplet transitions, which are
observed in the Cs2NaYF6 and Cs2NaScF6 samples containing
enhanced concentrations of Yb3+ or Er3+ [Figs. 1(b), 2(b),
and 3(a)]. We could suppose that the quadruplets in the pair
centers formed by the nearest-neighbor R ions, e.g., ions R1

and R2, are split due to local lattice deformations and magnetic
dipole and exchange interactions. However, in the elpasolite
structure, the impurity R ions have no common ligands, i.e.,
fluorine ions, and the minimum distance a/

√
2 ≈ 0.65 nm

(a is the lattice constant) between the R1 and the R2 ions
is so large that the energy of magnetic interactions in, e.g.,
Yb3+-doped crystals is negligible compared to the observed
shifts h̄�ω of the satellites from the central line. In the
case of the Cs2NaScF6:Yb3+ crystals, a crude estimation of
contributions into the crystal field affecting the Yb1 ion due to
electrostatic fields of six fluorine ions in the first coordination
shell of the Yb2 ion, shifted by RYb − RSc = 0.012 nm to
new equilibrium positions, results in the splitting of the
�8(2F5/2) level equal to 0.68 cm−1, which is ∼20 times less
than the measured splitting 2h̄�ω. The detailed analysis of
the lattice relaxation in the vicinity of an impurity dimer
could give a bit larger splitting, but this task is beyond
the scope of the present work. Because of a very strong
interaction of the Yb3+ ions in the �8(2F5/2) state with
lattice strains, it is more likely that the satellites arise due
to an effective coupling between the Yb3+ ions mediated by
dynamic lattice deformations. Observation of low-temperature
quadrupolar ordering in Cs2NaHoF6 evidences an important
role of interactions between the R ions through the phonon
field in fluoroelpasolites.33 To reveal the basic physics of this
interaction, we considered the following Hamiltonian of the
ytterbium dimer:

Hd = H0(R1) + HCF(R1) + H0(R2) + HCF(R2) + H (R1,R2),

(29)

which operates in the space of 14 × 14 = 196 states belonging
to the Kronecker product of single-ion states, where the two-
body term was taken in the form

H (R1,R2) = −[V1(�3g,R1)V1(�3g,R2)

+ V2(�3g,R1)V2(�3g,R2)]/D (30)

corresponding to the interion interaction through deformations
of the �3g symmetry induced by long-wave acoustic phonons
only,34 with the denominator D as a fitting parameter. By
an order of magnitude, D should be comparable to (C11 −
C12)v ∼ 106 cm−1, where Cij are the elastic constants and v is
the unit cell volume. The computed envelope of the magnetic
dipole transitions from the lowest 4 states [�6(2F7/2,R1) ×
�6(2F7/2,R2)] to the 16 excited states [�8(2F5/2) ×
�6(2F7/2) + �6(2F7/2) × �8(2F5/2)] of a dimer with the
Hamiltonian in Eq. (29) matches well the observed satellites

in the Cs2NaYF6:Yb3+ (1 at.%) crystal, provided D = 4.6 ×
106 cm−1 and the width of individual transitions � = 0.15
cm−1, comparable to the width of the central line [Fig. 1(b),
curve 2].

In the case of a pair of the nearest-neighbor Er3+ ions,
the energy of the magnetic dipole–dipole interaction, which
is comparable to the measured shifts of satellites from the
central line, is added to the operator (30). The curve 3
in Fig. 3(a) represents the simulated spectral envelope of
the transitions from the 16 lowest states �8(4I15/2,R1) ×
�8(4I15/2,R2) to the 16 excited states �8(4I15/2) × �6(4I13/2) +
�6(4I13/2) × �8(4I15/2) of the erbium dimer containing even
isotopes. Energies and wave functions were obtained from
diagonalization of the two-body Hamiltonian in the space of
30 × 30 = 900 crystal-field states belonging to the 4I15/2 and
4I13/2 multiplets of Er3+. We can see from Fig. 3(a) that the
observed weak satellites in the spectrum of the Cs2NaYF6:Er3+
(0.3 at.%) crystal might be related to the fine structure of the
computed envelope. However, our simulations show that the
shape of the considered spectral envelope strongly depends
on possible contributions of dynamic deformations with the
�5g symmetry into the interion interaction as well. Thus,
to elucidate the main physical mechanisms responsible for
formation of the satellites, more detailed spectroscopic studies
of a concentration series for the R-doped fluoride crystals with
the elpasolite structure are desirable.

IV. CONCLUSIONS

We have presented the first observation of the fine structures
of spectral lines corresponding to optical intraconfiguration
4f -4f transitions in the R ions at sites with cubic Oh

symmetry. The observed doublet structure of the doublet (�6

or �7)—quadruplet (�8) transitions in the Kramers Yb3+,
Er3+, and Sm3+ ions and the triplet structure of the singlet
(�1)—triplet (�4) transitions in the non-Kramers Tm3+ ions
were shown to be caused by splitting of the quadruplets or
triplets in the random crystal fields of the tetragonal (�3g) or
trigonal (�5g) symmetry. To treat the problem theoretically, an
explicit expression for the generalized distribution function
of local strains produced by random point defects in the
elastic continuum was derived. The observed spectral profiles
were reproduced by a model that involves only two fitting
parameters: the width γ of the strain distribution and the
line width � of individual single-ion transitions. The values
of these parameters were found from the comparison of the
simulated and measured line shapes. For all Cs2NaYF6 crystals
weakly doped with different R ions, the obtained values of
γ of the order of 10−5 are approximately the same, and
correspondingly, random strains can be attributed to intrinsic
lattice defects. However, a considerable increase of the width
for the strain distribution with increasing concentration of
impurity ions evidences the lattice perturbation due to a
substitution of the R ion for the Y3+ ion. These local lattice
perturbations are more pronounced in the R-doped Cs2NaScF6

crystals, which correlates with larger differences between the
ionic radii of the impurity and the host ions. The observed
satellite transitions were explained by considering the pairs of
the nearest-neighbor R ions interacting through the dynamic
lattice deformations.
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