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Cauchy pressure and the generalized bonding model for nonmagnetic bcc transition metals
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The chemical bond as a physical linkage between atoms has proven to be an immensely powerful heuristic
device, providing insight into the general relationships between the structure and properties of molecules and
solids. Unfortunately, the bond concept is incomplete and fails to explain more subtle aspects of molecular and
materials behavior. A rich set of examples is provided by attempts to identify the structural origins of nonzero
Cauchy pressures, a quantity that has been said to reflect the nature of the bonding at the atomic level. We show
that these deviations are easily explained by extending the concept of a bond from a linkage between atoms to a
set of linkages between charge density critical points (maxima, minima, and saddle points). Further, we show that
these links possess an identifiable structure with measurable characteristics. For the nonmagnetic bcc transition
metals, we are able to write the Cauchy pressure as a function of these characteristic measures. Significantly,
the model should be generalizable to other structures and will provide insight into the relationships between the
charge density and elastic response.
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I. INTRODUCTION

We report our efforts to describe the full range of atomic
interactions with a general bonding model (GBM) that retains
the elegance of a bond as a spring like link. The GBM is
motivated by resent extensions to the quantum theory of atoms
in molecules (QTAIM),1–4 which have demonstrated that the
charge density my be partitioned into volumes—irreducible
bundles—diffeomorphic to tetrahedra that are also proper
open systems within the QTAIM formalism. As tetrahedra,
irreducible bundles (IBs) are also simplices and, therefore,
can be glued together both in a topological sense and as open
systems to produce simplical complexes whose realization is
the charge density of any molecule or solid. The underlying
graph, or 1-skeleton, of the resulting complex is related to the
common molecular graph representing bonds between atoms
as links. However, a molecule’s underlying graph provides
more information than does the molecular graph. And, we
believe, provides quantitative insight into the origin of a
molecule or solid’s elastic properties.

The relative magnitudes of a solid’s elastic moduli are
indicative of mechanical and phase behavior.5–7 Despite their
importance and the fact that first-principles methods can be
used to calculate their values, there is no simple model that
allows one to explain, for example, why the shear modulus of Ir
is greater than that of Pt. In this work, a model that accounts for
the variation of the Cauchy pressure across the topologically
simple nonmagnetic bcc transition metals is introduced.

A. Topological structure of the charge density

In building the GBM we are exploiting Bader’s quantum
theory of atoms in molecules (QTAIM),1 which, as a topo-
logical theory, is ideally suited to describe linkages between
atoms. In its original formulation, QTAIM was concerned with
the topological connections between volumes bounded by a
specific set of surfaces on which the gradient of the charge
density vanishes at every point. Such surfaces are referred to
as zero flux surfaces (ZFSs). By virtue of being bounded by

ZFSs, these volumes are proper open systems characterized by
properties that are in principle measurable.1,8–11 Though there
are infinitely many such volumes,12,13 the initial formulation
of QTAIM involved only those where the bounding ZFSs did
not intersect an atomic nucleus. These distinct volumes, called
Bader atoms or sometimes atomic basins, partition the charge
density of a molecule or solid into space filling regions each
of which encloses a single nucleon—hence the name, “atom.”

In turn, Bader atoms can be connected variously as reflected
by the charge density’s rank three critical points (CPs). These
are the places where the charge density, a three-dimensional
scalar field, achieves extreme values in all directions. As with
all 3D scalar fields, the charge density possesses at most four
kinds of CP: local minima, local maxima, and two types of
saddle points. These CPs are denoted by an index, which is
the number of principal positive curvatures minus the number
of principal negative curvatures. For example, at a minimum,
the curvature in all three orthogonal directions is positive;
therefore it is called a (3, +3) CP. The first number is simply
the number of dimensions of the space and the second is the
net number of positive curvatures. A maximum is denoted by
(3, −3), because all three curvatures are negative. A saddle
point with two of the three curvatures negative is denoted
(3, −1), while the other saddle point is a (3, +1) CP.

The charge density at the atomic nucleus is always a
maximum, i.e., a (3, −3) CP, hence it is also called a nuclear
CP. The other CPs, which must be present in a molecular
system, sit on the ZFSs bounding the Bader atoms and mediate
their connectivity.1,8,14,15 The simplest topological connection
results from a shared (3, −1) CP between two Bader atoms, and
is indicative of a charge density ridge originating at the (3,−1)
CP and terminating at the nuclear CPs. In essence, this charge
density ridge possesses the topological properties imagined
for the chemical bond, which motivated studies showing the
presence of such a ridge between atoms that conventional
wisdom assumed to be bound. Accordingly, this ridge is
descriptively referred to as a bond path and the accompanying
(3, −1) CP as a bond CP. Other types of CPs have been
correlated with other features of molecular connectivity. A
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(3, +1) CP is required at the center of ring structures (rings
of bond paths). Accordingly, it is designated a ring CP. Cage
structures must enclose a single (3, +3) CP and are given the
name cage CPs.

Though only recently noted,2–4,16,17 CPs, bond paths, and
the ZFSs of Bader atoms are elements drawn from the larger
set of extremal points, lines, and surfaces. These extremals
are generically referred to as ridges and valleys. In 2D, a
ridge is a familiar topographic feature, the path (gradient
path) connecting mountain passes to neighboring peaks, for
example. There is only one such gradient path; and it is
a path of locally least steep ascent terminating at the local
maximum. Consequently, it is an extremum with respect to all
neighboring paths. Similarly, a valley is an extreme gradient
path connecting a saddle point to a local minimum. Because
valleys and ridges differ only by the sign of the curvatures
along the path, both are often referred to as “ridges.” In 3D
fields (the electron charge density), ridges are the points,
gradient paths, and zero flux surfaces that are extreme with
respect to all neighboring points, gradient paths, and zero
flux surfaces, respectively. They are denoted by an index,
n − d, where n is the dimensionality of the space and d is
the number of principal directions in which the charge density
is extremal.18 Thus a 0-ridge is nothing more than one of the
four types of critical points. A 1-ridge is an extremal gradient
path, of which the bond path is an example, and a 2-ridge is an

FIG. 1. An irreducible bundle of fcc Cu, showing the Cu nuclear
CP (top), the ring point (middle left), the bond point (middle right),
and the cage point (bottom). The dark rods are gradient paths
originating at the cage CP and terminating at the atom CP. The
gradient paths in the IB are confined to the shaded tetrahedral volume
and are characterized by both curvature and torsion. The faces of this
tetrahedron are 2-ridges each containing three CPs.

extremal gradient surface, of which the ZFSs bounding Bader
atoms are examples.

For an extended systems—infinite solids—there will al-
ways be four kinds of charge density CPs (0-ridges), six
kinds of 1-ridges, and four kinds of 2-ridges. The 1-ridges
pairwise connect the four kinds of critical points and the
2-ridges are surfaces containing three distinct CPs. The ridge
structure forms a set of space filling volumes diffeomorphic to
a tetrahedron and called irreducible bundles. Coincident with
the four vertices of each irreducible bundle (IB) is a nuclear,
bond, ring and cage CP, respectively. The six edges of the
tetrahedron are 1-ridges, and the four faces are 2-ridges, Fig. 1.

As tetrahedra, the IBs are simplices, and by virtue of the
fact that they are also proper open systems bound by ZFSs,
they are the most basic unit of charge density retaining local
topology. As such, IBs may be glued together to form a
simplical complex that is isomorphic to the charge density
of any molecular system. By way of illustration, Fig. 2 shows
the symmetry unique IB that can be joined to produce the bcc
Wigner Seitz cell, which can then be joined to form a larger
simplical complex—the extended bcc crystal.

From a molecule or solid’s simplical complex one can
construct subcomplexes, called d-skeletons, which recover the
charge density at various topological levels. In particular, the
0-skeleton of the simplical complex is the set of all of its
CPs. Its 1-skeleton consists of all 1-ridges and is called the
underlying graph of the complex. The 2-skeleton is the set of all
2-ridges, and the 3-skeleton is the full simplical complex. We
are particularly interested in a molecule or solid’s underlying
graph, which as a subset contains the molecular graph common
to depictions of molecules. However, the molecular graph
depicts only bond paths, i.e., the connections between atoms,
while the underlying graph (1-skeleton) depicts the full set of
1-ridges and their points of intersection, the CPs of the charge

FIG. 2. The conventional cubic bcc unit cell, the surface of the
Bader atom (Wigner-Seitz cell) is the shaded truncated octahedron.
A nuclear CP is located at its center. Ring CPs are located at every
vertex, bond CPs in the center of every hexagonal face, and cage CPs
in the center of each square face, giving a total of 39 critical points in
or on the surface of the Bader atom. The four symmetry unique CPs
are designated with spheres (black for nuclear, dark gray for bond,
white for ring, and light gray for cage) and the symmetry unique
paths of the ridges and valleys connecting these CPs, the edges of the
irreducible bundle, are shown as gray tubes. Within the GBM there
are 134 such connections that are treated as straight springs.
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density. Together these structures capture the full topology of
the atomic connections.

B. Geometric structure of the charge density

The geometry of the charge density can be characterized
at various levels through the specific values of the extremal
features of the n-skeletons. As an example, Ayers and
Jenkins19,20 have proposed a dynamical theory of electronic
response using a subset of the information available from
the charge density’s underlying graph. They treated bond
critical points as pseudoparticles that, when moved, drag
the nuclear cp along by virtue of their connections through
bond paths (1-ridges). The validity of this assumption derives
from the observation that the eigenvectors of the Hessian
of the charge density [ρ(�r)], the second derivative matrix,
at a CP are good approximations to the eigenvectors of the
quantum stress tensor—the quantum operator that mediates the
electronic response to deformation. The effectiveness of this
perspective was substantiated by predicting the direction of
structural change during the pressure-induced phase transition
in ice19 and formation of new bond paths during chemical
reactions.20

With this background, it is not a great leap to evoke
the underlying graph as the GBM’s representation for a
molecule and consider all critical points as pseudo-particles
joined along 1-ridges by Hookean springs characterized by
their stiffness alone. Motivated by Ayers and Jenkins,19,20

we begin by making a “local” approximation and con-
jecture that the spring constants can be approximated by
functionals of the charge density in the neighborhood of
the corresponding 1-ridge’s end point, i.e., at the CPs. In
particular, we expect that the charge density and its curvatures
at these points will most influence the value of the spring
constants.

II. METHODS

All calculations were performed using the Vienna ab
initio simulation package (VASP) version 4.621,22 with the
standard PAW potentials23 and the Perdew-Burke-Ernzenhof
generalized gradient corrections (PBE).24 To ensure there was
no dependence on the exchange and correlation potential a
second set of calculations were performed with the Perdew-
Wang (PW91) generalized gradient corrections25 and the
Vosko-Wilk-Nusair interpolation of the correlation part of the
exchange-correlation functional.26 Because the geometric and
topological properties were not sensitive to this choice we only
report the results of the PBE calculations, which were analyzed
using TECPLOT.27

III. MODEL

We start with the nonmagnetic bcc transition metals
because, of the common crystal structures, only the bcc
structure possesses the simplest possible topology, with one
symmetry unique nuclear, bond, ring and cage CP and hence
(the minimum) six different 1-ridges. These 1-ridges are shown
in Fig. 2. Two of these are bent—the bond CP to cage CP
and the nuclear CP to ring CP—a fact that is transparent to
the GBM. We adopt the notation kcp1cp2 to denote the spring

TABLE I. bcc elastic constants (1010 Pa).

Mo Nb Ta V W

C11 45.00 25.27 28.63 23.24 53.26
C12 17.29 13.32 15.82 11.94 20.50
C44 12.50 3.10 8.74 4.60 16.31
C12 − C44 4.79 10.22 7.08 7.34 4.18

constant of the link joining cp1 to cp2, where a cp can be
n, b, r, or c for nuclear, bond, ring, and cage, respectively.
Thus kbr corresponds to the spring constant of the bond to ring
CP connection.

As with all cubic crystals, the elastic response of this
entire set of springs is tied to three independent elastic
constants: C11, C12, and C44 (see Table I), each of which can
be expressed as a linear combination of the six symmetry
unique spring constants. The procedure through which this
relationship is derived begins by distorting the entire system
with a homogenous strain, the corresponding displacement
of the CPs is determined along with the extension of the
connecting springs and hence the elastic energy of the system.
The energy terms quadratic in the strain are then mapped onto
the single crystal elastic constants (see for example, Ref. 28).
This procedure gives

C11 = V
− 1

3
a (0.67knb + 6.80knr + 2knc + 13.96kbr

+ 7.31kbc + 14.56krc),

C12 = V
− 1

3
a (0.67knb + 1.60knr + 0knc + 8.76kbr

+ 3.31kbc + 1.69krc),

C44 = V
− 1

3
a (0.67knb + 1.60knr + 0knc + 5.67kbr

+ 1kbc + 0.80krc),

where Va is the atomic volume.
Note that the quantity C12 − C44, called the Cauchy

pressure, is a function of only three spring constants:6

C12 − C44 = V
− 1

3
a (3.10kbr + 2.31kbc + 0.89krc), (1)

where all terms related to connections with the nuclear CP
have dropped out.

Systems where the Cauchy pressure is zero are indicative
of atoms interacting through a central force potential, which
includes simple spring like connections and accounts for
the fact that connections with the nuclear CP have dropped
out. Positive deviations reflect “metallic bonding,” which
necessitates corrections involving “many-body interactions
that result when an atom interacts with the electron gas of its
neighbors.” Negative Cauchy pressures derive from “covalent
bonding character” and require angular corrections.29

The simplified nature of Eq. (1) makes it somewhat easier
to guess at the relationship between the structure of the
charge density at two connected CPs and the spring constant
of that link. Additional insight is gained by considering
the stiffness tensor from a DFT perspective,30,31 where the
energy of an atomic system is expressed as a function of
nuclear position q(Ri) and a functional of the charge density;
E = E[q(Ri),ρ(�r,Ri)], where Ri represents the coordinates
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of the ith atom. The macroscopic elastic properties originate
through the variation of this energy accompanying collective
nuclear distortions from the ground state configuration. These
distortions can be fully parameterized within a six dimensional
vector space of strains εij and we denote these nuclear
coordinates as Qij , where the subscripts have the same sense
as in the strain tensor. The elastic energy is now a function of
the nuclear strain coordinate and a functional of the density
E = E[q(Qij ),ρ(�r,Qij )]. The stress tensor σμν is given by
the variational derivative of the system energy with respect to
Qij , i.e.,

σij = ∂E

∂Qij

+
∫

dV
∂ρ(�r)

∂Qij

δE

δρ(�r)
. (2)

Since the electrons are allowed to relax to positions that
minimize the total energy, δE

δρ(�r) = 0. Hence σij = ∂E
∂Qij

.
This is simply a generalization of the Hellmann-Feynman
theorem.

Though the stress at a nucleus is given purely by electro-
statics involving the charge density; the change in this stress
with strain—the elastic stiffness—requires that one take the
variational derivative of Eq. (4) with respect to the nuclear
strain coordinate, giving

Cijkl = ∂2E

∂Qij∂Qkl

+
∫ ∫

dV dV ′ ∂ρ(�r ′)
∂Qij

∂ρ(�r)

∂Qkl

δ2E

δρ(�r)δρ(�r ′)
,

(3)

where C is the fourth-rank stiffness tensor of elasticity theory.
The origins of the stiffness can be seen to be due to

two terms. The first of these is the stiffness experienced
by a collective motion of the nuclei through a fixed charge
distribution. The second is the result of variations in the charge
density—the charge redistribution. Of the three terms in the
integrand, the first two, ∂ρ(�r ′)

∂Qij
and ∂ρ(�r)

∂Qkl
gives the change in

charge density induced by the strain at the points r ′ and r ,
while the quantity δ2E

δρ(r)δρ(r ′) measures of the variation of the
energy due to the correlated change in charge density at two
points r and r ′. Functionally, when r and r ′ are separated by
distances on the order of atomic units this term goes as 1

|�r−�r ′| ,
i.e., inversely as the distance between the two differential
volume elements. In most systems, at small distances this
term approaches zero as r approaches r ′. The integrand is
interpreted as measuring the coupling of charge redistribution
between two volume elements.

We make a conceptual simplification to the integral of
Eq. (3) by adopting a reasonable form for δ2E

δρ(r)δρ(r ′) . This form
associates a volume Vcp with each critical point such that
every point r is contained in only one volume and defines as
connected CPs joined by a 1-ridge, hence, only CPs within
the same irreducible bundle may be in connected. With these
concepts and definitions, we assume: (1) for r and r ′ in
unconnected CP volumes, i.e., far apart, δ2E

δρ(r)δρ(r ′) = 0; (2) for
r and r ′ located in the same CP volume, i.e., close together,

δ2E
δρ(r)δρ(r ′) = 0; and (3) for r and r ′ located in connected

volumes, δ2E
δρ(r)δρ(r ′) = Ccp1,cp2 > 0, where Ccp1,cp2 is a constant

that depends on the connected volumes.

With these assumptions, the integral of Eq. (3) becomes∫ ∫
dV dV ′ ∂ρ(�r ′)

∂Qij

∂ρ(�r)

∂Qkl

δ2E

δρ(�r)δρ(�r ′)

=
∑
cp1

∑
cp2�=cp1

Ccp1,cp2

[∫
dVcp1

∂ρ(�r)

∂Qij

∫
dVcp2

∂ρ(�r)

∂Qkl

+
∫

dVcp1
∂ρ(�r)

∂Qkl

∫
dVcp2

∂ρ(�r)

∂Qij

]
. (4)

In this form, the component of the stiffness tensor given
by Eq. (4) quantify the coupling of charge redistribution in
different critical point volumes. A classical analogy is provided
by elastic elements subject to load; these elements couple
through their load induced change in shape. The stiffer the
element, the smaller the shape change. In a comparable way,
the intercritical point spring constants, as in Eq. (1), relate
the charge redistribution to the change in shape of these CP
volume.

The shape of the charge density about a CP is well approx-
imated by its Hessian [Hij ρ(�r) = ∂2ρ(�r)

∂xi∂xj
], which has the same

transformation properties as the coefficients of a quadratic
polynomial referred to as the representation quadric.32,33 When
expressed in a diagonal basis, the representation quadrics is
given by the equation

ρ11x
2
1 + ρ22x

2
2 + ρ33x

2
3 = 1,

where x1, x2, and x3 are the orthogonal directions in which
the curvature of the charge density achieves its extreme values
and ρ11, ρ22, and ρ33 are the curvatures of the charge density
in these directions.

At a cage CP, where all principal curvatures are positive, the
representation quadric is an ellipsoid. A ring CP, having one
negative principal curvature, is represented by a hyperboloid
of one sheet; and the representation quadric of a bond CP
(two negative principal curvatures) is a hyperboloid of two
sheets. We will also consider the asymptotic elliptic cones
associated with the hyperboloids of the bond and ring CPs (the
surfaces given by the equation ρ11x

2
1 + ρ22x

2
2 + ρ33x

2
3 = 0).

As the charge density at a nuclear CP is a cusp, its curvatures
and representation quadric are not well defined.

IV. RESULTS

Consider now the specific case of the nonmagnetic bcc
transition metals. Because the eigenvectors of the Hessians
for different bcc metals are identical, and the eigenvalues are
symmetry constrained, only nine independent terms represent-
ing the shape of the charge density about bcc CPs need be
determined. These are the charge density at the cage, ring,
and bond points, and at each of these points two independent
charge density principal curvatures derived from a degenerate
pair and a singlet. These values are given in Table II.

Figure 3 provides a particularly useful visual presentation
of this information by plotting the representation quadric of the
cage CP and asymptotic cones to the representation quadrics
of the bond and ring CPs. For the bcc structure, these are right
circular cones and are fully described by a single angle. In our
notation, the apex angle is denoted by 2φcp and the exterior
angle by 2θcp (φ + θ = 90◦). These angles are given by ratios
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TABLE II. Values of the nine independent shape descriptors for the bcc metals: ρcp gives the value of the charge density at a cage (c), ring
(r), or bond (b) point in units of electrons per Å3, cpρ11 gives the nondegenerate principal value of the curvatures at the critical point specified
by the superscript and cpρ22 is the value of its degenerate principal curvature in units of electrons per Å5.

ρc ρr ρb
cρ11

cρ22
rρ11

rρ22
bρ11

bρ22

Mo 0.243 0.258 0.370 0.509 0.120 −0.113 0.209 3.477 −0.713
Nb 0.203 0.215 0.282 0.327 0.094 −0.087 0.094 2.389 −0.394
Ta 0.223 0.235 0.301 0.255 0.077 −0.087 0.156 1.938 −0.343
V 0.216 0.225 0.253 0.139 0.086 −0.068 0.069 0.507 −0.177
W 0.265 0.286 0.411 0.532 0.170 −0.162 0.231 3.354 −0.783

of the principal curvatures of the Hessian. The values of θb are
approximately: Mo = 24◦, Nb = 22◦, Ta = 23◦, V = 30.5◦,
and W = 26◦. For the ring CP, the θr are approximately: Mo =
36◦, Nb = 44◦, Ta = 36.5◦, V = 45◦, and W = 40◦. Finally,
there is an equivalent set of angles for the cage CP that are
related to the eccentricity of the ellipsoid and are: Mo = 64◦,
Nb = 62◦, Ta = 62◦, V = 52◦, and W = 60.5◦

The asymptotic cones mark boundaries of a sort. Close
to the CP, these cones are isosurfaces of the charge density.
The isosurfaces exterior to the cone are curved oppositely from
those interior to the cone. As a result, the gradient paths turn as
they cross the cone, transitioning from divergent to convergent
paths. To illustrate the point, Fig. 4 shows a series of gradient
paths in the 2-ridge containing the nuclear, bond, and ring CPs.
Note that the gradient paths coming from the nuclear CP are
diverging, while after crossing the cone they are converging.
The same is true for a general gradient path. Ostensibly, these
cones act to “divert” and “concentrate” or “focus” gradient
paths. Further concentration occurs as the gradient paths cross
the asymptotic cone of the ring CP.

The family of gradient paths passing through the asymptotic
cones of the bond and ring CPs will fill volumes of the type
introduced in Eq. (4). The key here is that these volumes are

FIG. 3. A representation of the the charge density around the CPs
of bcc tungsten for one irreducible bundle. The two near neighbor
bound nuclei are shown as spheres located in the lower back left-hand
corner and upper front right-hand corner. The 1-ridges coincident
with the edges of the irreducible bundle are shown as lines. A scaled
representation quadric for the cage CP is located in the lower left-hand
corner. Also shown are the asymptotic cones to the representation
quadrics (ρ11x

2
1 + ρ22x

2
2 + ρ33x

2
3 = 0) of the bond CP (center) and

ring CP (center bottom).

distinct (by virtue of the their gradient field), should reflect
the form of charge redistribution, and can be approximated by
just four parameters—the angles characteristic of the repre-
sentation quadrics, and the charge densities at the connected
critical points. Previously, Eberhart31 suggested that the strain
induced mobility of electrons about a bond CP goes as ρbθb

or equivalently as ρb tan(θb). Accordingly, we propose as an
ansatz that the total strain induced electron mobility between
the ring and bond, for example, goes as ρr tan(θr ) ρb tan(θb)
and the spring constant will be proportional to the reciprocal of
this quantity, less a comparatively small constant (the meaning
of which will become clear), giving

krb ∝ 1

ρr tan(θr )ρb tan(θb)
− κrb = tan(φr )

ρrρb tan(θb)
− κrb.

For conceptual reasons, we write this expression in a nearly
identical form as

krb ∝ φr

ρrρbθb

− κrb. (5)

Similarly, the other spring constants are given by

kcr ∝ φc

ρcρrφr

− κcr , (6)

kcb ∝ θc

ρcρbθb

− κcb. (7)

FIG. 4. Gradient paths crossing the asymptotic cone of the bond
CP in tungsten. (Right) Contour diagram of the computed charge
density of W in a plane containing a nuclear, bond and ring CP, a (211)
plane. The gradient paths are shown as dashed lines. The full asymp-
totic cone is shown in the lower left-hand corner while its trace in the
plane is shown in the upper righthand corner. The angle θ is related to
the relative magnitude of the principal curvatures of the Hessian of the

charge density, specifically, tan(θ ) =
√

ρ22
ρ11

. (Left) The full trajectory

of a general gradient path. Note the concentration of path curvature
and torsion near the asymptotic cones of the ring and bond CP.
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FIG. 5. Two extreme ring to bond interactions. (Left) A ring and
bond connected by gradient paths confined to a comparatively large
cross section, hence possessing a smaller value of kbr than the case
represented (right) where the ring and bond CP interact through a
smaller cross section.

According to these relationships, large values of kcp1cp2 result
when CPs interact through a small cross section, Fig. 5, and
small (possibly negative) values result from large interaction
cross sections.

To test this conjecture, the parameters tabulated in Table II
have been used in conjunction with Eqs. (1) and (5)–(7) to
predict the relative values of the Cauchy pressure for each of
the bcc transition metals and then plotted against the measured
values of the same quantity, Fig. 6. For such a simple model,
the correlation is quite good, with R2 = 0.975 for the best
linear fit.

It is important to note that in settling on the form of Eqs. (5)–
(7), we investigated many alternative expressions, first using
principal component analysis to isolate the parameters most
important in determining the intercritical point spring con-
stants and then through trial and error exploration of hundreds
of functional forms involving these parameters. Equations (5)–
(7), and those conceptually similar, were demonstrably better
than all others. Happily they were also consistent, though not
identical, with the notions presented in earlier papers,31 where
it was argued that tan θb provided a measure of the distance to
“bond breaking.” In other words, tan θb must vanish if the bond

FIG. 6. Predicted vs measured values of the Cauchy pressure
for five bcc metals. The best linear fit gives an R2 of 0.975. The
intercept of this line with the horizontal axis allows one to estimate an
average κ .

TABLE III. The effective intercritical point spring constants in
units of 1010 Pa.

Connection type Mo Nb Ta V W

Ring to bond 0.932 2.309 1.486 1.487 0.834
Cage to bond 0.590 1.257 0.925 0.780 0.501
Cage to ring 0.797 1.208 1.087 1.043 0.692

point is to vanish. Hence the quantity ρb tan θb is proportional
to the charge that must be moved to break a bond.

For the current application, the issue is the charge that must
be moved to make the Cauchy pressure vanish. The Cauchy
pressure goes to zero when the charge density takes on a shape
resulting from the overlap of spherically symmetric densities.
This “reference state,” though built from overlapping spherical
charge densities, will likely continue to be characterized by
a bcc topology with values for all the shape descriptors of
Table II. We will denote these with a superscript, e.g., refρb for
the value of the charge density at the bond critical point for the
reference state of some bcc metal. These reference quantities
will differ from metal to metal. However, the quantities

refφr

refρref
r ρref

b θb

,
refφc

refρref
c ρref

r φr

, and
refθc

refρref
c ρref

b θb

are less variable and are taken to be the constants of
Eqs. (5)–(7), i.e., κrb, κcr , and κcb respectively. Obviously,
this identification guarantees that the intercritical point spring
constants vanish for a system in its reference state.

That κcp1cp2 are nearly constants is supported by a simple
model that assumes the tails of the overlapping spherical
charge densities go as e−αr . It is then an easy matter to
calculate the values of the reference quantities as functions
of α. While the reference quantities vary with α, κcp1cp2 vary
more slowly and will be practically constant for a series of
metals in which the tails of the reference state charge densities
do not differ markedly. The compelling conclusion is that the
intercritical point spring constants provide information about
the amount of charge that flows from a CP in its reference state
to yield the same CP in the observed state. This conclusion
is entirely consistent with the interpretation of the elastic
constants afforded by Eq. (4).

Unfortunately, without an exact form for the reference
state there is insufficient information to calculate κcr , κcb,
and κrb individually. Still, one can extract an average κ

and approximate the values of the intercritical point spring
constants for each of the five bcc metals. These are provided
in Table III.

V. CONCLUSIONS

The GBM, even at this early stage, provides both a
quantitative and simple visual representation for the stiffness
of an intercritical point connection, and by extension, the
values of the Cauchy pressure in bcc metals. However, there
is much more that needs to be done. First, a formal method
to determine the shape of the reference state is needed. One
approach may be to use the methodology of Hirshfeld,34

which has been shown to produce a reference state in which
the information lost is minimized as this state evolves to
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produce the observed molecular or solid state density.35,36

Second, the picture presented here is applicable to metals with
the simplest of topologies—the bcc metals. As our next step,
we will address fcc metals where there are two symmetry
unique irreducible bundles, four nonnuclear CPs, two of which
are characterized by three distinct principal curvatures. In all,
there will be 14 charge density shape descriptors. We expect
that in fcc metals, in addition to the structures identified here,

there will be other charge density features that play a role in
mediating elastic response.
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