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Comment on “Accurate and fast numerical solution of Poisson’s equation for arbitrary, space-filling
Voronoi polyhedra: Near-field corrections revisited”
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This is a Comment on the paper by Alam, Wilson, and Johnson [Phys. Rev. B 84, 205106 (2011)], proposing
the solution of the near-field corrections (NFCs) problem for the Poisson equation for extended, e.g., space-filling
charge densities. We point out that the problem considered by the authors can be simply avoided by means of
performing certain integrals in a particular order, whereas, their method does not address the genuine problem
of NFCs that arises when the solution of the Poisson equation is attempted within multiple-scattering theory. We
also point out a flaw in their line of reasoning, leading to the expression for the potential inside the bounding
sphere of a cell that makes it inapplicable for certain geometries.
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In Ref. 1, the authors proposed a solution of the near-
field corrections (NFCs) problem. The problem of near-field
corrections (NFCs) arises when one attempts to solve the
linear second-order partial-differential equations of mathe-
matical physics, e.g., the Poisson and Schrödinger equations,
through the formalism of multiple-scattering theory2–4 (MST)
expressed in the angular momentum representation.

Consider, for example, the Poisson equation associated with
a charge density ρ(r) and divide the charge into a set of
contiguous but nonoverlapping cells, see Fig. 1. The global
solution for the total charge is now to be constructed in terms
of the asymptotic solutions of the individual cells, describing
the potential at points outside the bounding sphere of a cell,
calculated in the angular momentum representation, i.e., in
terms of the multipole moments of the charge in the cell.

Because the use of the multipole moments in the moon
region, Fig. 1, violates the condition in the expansion about a
shifted center of the spherical Hankel (or Neumann) functions5

(the solutions of the free-space Laplace equation irregular
at the origin), the unmodified use of the expansions for the
potential outside the bounding sphere (given in terms of the cell
multipole moments) diverge in the near-field region (the
moon region). One can only conjecture that the expression in
terms of multipole moments must be corrected in the moon
region, hence, the suggestive term near-field corrections.6

Furthermore, because the problem is encountered immediately
in the case of extended charge densities when treated within
MST, particularly charges that fill all space, one may further
conjecture that these corrections are connected to the charge
in the moon region of a cell. This latter viewpoint evidently is
also adopted by Alam et al.1

The presence of charge in the moon region of a cell has no
effect on the description of the potential anywhere in space due
to the charge in that cell alone, regardless of how that potential
is described. As was initially pointed out by Gonis,7 and was
further developed in Gonis and co-workers8–10 as well as by
other authors,11 the problem is strictly one of geometric origin,
having to do with the choice of the centers of expansion7 of the
irregular spherical functions. Indeed, the problem appears in
full force in the case of a single cell. The realization of the true

nature of the problem ultimately led to its solution that was
amply discussed in the literature.10 By contrast, Alam et al.1

propose the solution of a nonexistent problem.
Equation (2) in Ref. 1, for the potential inside the bounding

sphere of a cell, is an elementary result and is, of course,
correctly stated. In the authors’ view, however, NFCs seem
to be necessary in the calculation of the parameter αL in that
equation.

The authors express αL as the sum of two terms, one that
counts the contribution of the charge inside all cells other than
the one at the origin (using a method that evidently can perform
such sums efficiently) and one that removes the contribution
of the charge inside the moon region of the central cell, i.e.,
inside the bounding sphere but outside the cell [because this
contribution to the potential has been accounted for in the
term V ex(r) in Eq. (2)]. It is this second term, [the integral in
Eq. (8) in Ref. 1] that the authors refer to as the NFCs.

Moon region

FIG. 1. Illustrating the artificial nature of the problem of NFCs
as treated in Ref. 1. Note the impossibility of defining rmin.
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In terms of the cells in Fig. 1, the authors calculate αL as
an integral of the charge in �2 minus that in the moon region.
Alternatively, αL can be calculated as a single integral over the
region B in Fig. 1 (inside �2 but outside the sphere bounding
�1). Clearly, the so-called NFCs are simply the integral over
the moon region that is completely avoided in the integral over
B.

On the other hand, consider the problem of determin-
ing the potential in �1 contributed by the charge in �2,
Fig. 1, expressed strictly in terms of the multipole moments
of the charge in �2. This problem cannot be avoided through
the performance of integrations in a particular order. This is
the problem addressed and solved in Refs. 7–10.

Finally, we comment on the line of reasoning followed by
Alam et al. in developing the form of αL. The alternative
procedure for calculating αL suggested above is independent
of the existence of a spherical region centered at the center of
the cell at the origin and lying outside the bounding spheres
of adjacent cells. The only parameter necessary in defining αL

is the radius of the bounding sphere.12 As such, the alternative
method applies to cells of arbitrary geometry, whereas, the

formalism in Ref. 1 is inapplicable to cells of elongated or
prismlike shape where the bounding sphere of a cell may
overlap the center of some of its neighboring cells. If such
prismlike cells were chosen in the case of muffin-tin spheres,
each containing several muffin tins, the NFCs defined by the
authors would need to be calculated in a case where no NFCs
arise in the first place!

Reference 10 in Ref. 1 presents a method for performing
integrations over convex cells that may be of interest to
the electronic structure community. However, a technical
matter should not be confused with conceptual challenges in
mathematical physics, such as those arising within multiple-
scattering theory, especially when these problems were solved
some years ago.
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