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Coulomb drag in graphene–boron nitride heterostructures: Effect of virtual phonon exchange
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For a system of two spatially separated monoatomic graphene layers encapsulated in hexagonal boron nitride,
we consider the drag effect between charge carriers in the Fermi liquid regime. Commonly, the phenomenon
is described in terms of an interlayer Coulomb interaction. We show that if an additional electron–electron
interaction via exchange of virtual substrate phonons is included in the model, the predicted drag resistivity
is modified considerably at temperatures above 150 K. The anisotropic crystal structure of boron nitride, with
strong intralayer and comparatively weak interlayer bonds, is found to play an important role in this effect.

DOI: 10.1103/PhysRevB.86.125448 PACS number(s): 72.80.Vp, 77.84.Bw

I. INTRODUCTION

If two systems containing mobile charge carriers are spa-
tially separated such that direct charge transfer is not possible,
but close enough to allow interaction between the carriers in
different layers, the resulting momentum transfer will equalize
the drift velocities in both systems. This frictional effect was
experimentally observed between (quasi) two-dimensional
electron gases in double quantum well structures.1,2 In most
of the theoretical work the interlayer interaction was attributed
to Coulomb scattering, hence the effect now bears the name
“Coulomb drag” (see Refs. 3–5).

Interest in the subject has been revived recently by the
experimental progress which made it possible to prepare two-
dimensional electron systems based on monolayer graphene. A
considerable number of theoretical works6–16 studied Coulomb
drag between massless Dirac fermions, which effectively
describe the charge carriers in graphene.17 However, a quan-
titatively correct explanation of the experimental data is still
lacking.6,18–20

In the typical experiment, Coulomb drag is studied by
driving a constant current I2 through one of the layers (the
active one, labeled by the index λ = 2 in Fig. 1). If no current is
allowed to flow in the other (passive, index 1) layer, a potential
difference V1 builds up there. In terms of these two quantities,
the drag resistivity ρD ≡ (W/L)V1/I2 serves as a measure of
the momentum transfer between the two layers, where W and
L are, respectively, the width and the length of the layer. A
theoretical expression for ρD in second order in the interlayer
interaction can be derived either using Boltzmann’s kinetic
equation4,10,11,21 or the Kubo formula.5,9,11

In the present work we focus on the interlayer interaction
responsible for the drag effect in heterostructures composed
of two graphene monolayers and hexagonal boron nitride
(hBN), see Fig. 1. The large band gap insulator hBN has
a layered structure composed of stacked hexagonal crystal
planes. Recently the material received much attention as it
allows the construction of graphene–hBN devices with, in
comparison to the much used SiO2 substrates, favorable high
carrier mobilities.22–25 In particular, the Manchester group
reported the fabrication of devices where a few layer thin hBN
crystal, obtained by exfoliation, is sandwiched between two
monolayers of graphene.26–28 If such a structure is used for a
Coulomb drag experiment, the Dirac fermions in the active and

passive layer can exchange momentum not only via Coulomb
interaction but also by phonon exchange through the spacer
medium. The effect of a combined Coulomb-phonon coupling
on the drag resistivity has previously only been studied
for quasi-two-dimensional electron gases in semiconductor
systems.29–34

In the following we first investigate the effects of the
anisotropy of hBN, where the bonds in between the graphene-
like planes are much weaker than the in-plane bonds, on the
electron–electron interaction via phonon exchange. We then
show that the inclusion of phonon exchange into the descrip-
tion of Coulomb drag can significantly alter the temperature,
density, and distance dependence of the predicted value for ρD

at temperatures above 150 K.

II. INTERLAYER INTERACTION

A. Combined Coulomb–phonon mediated interaction

In a two-layer system as shown in Fig. 1, where the regions
I, II, and III are filled with a homogeneous isotropic dielectric
medium, the Fourier transform of the bare (unscreened)
Coulomb potential between electrons in layers λ and λ′ has
the form

V
(0)
λλ′ (q) = 1

ε∞

e2

2εvacq
e−qd(1−δλλ′ ), (1)

where q = (qx,qy), εvac denotes the dielectric constant of
vacuum and ε∞ accounts for the high frequency screening
properties of the medium. Apart from this Coulomb interac-
tion, the charge carriers in each graphene layer interact via a
substrate phonon mediated interaction. The charge carriers
from each layer couple to the long range electric fields
generated by optically active phonon modes in the surrounding
material via Fröhlich coupling.35–37 This remote interaction
between carriers in graphene and optical phonon modes in
a substrate medium was found to influence the electrical
conductivity of graphene on a dielectric substrate.24,38,39

In Appendix A we show that in an isotropic medium the
combined interaction between electrons in layers λ and λ′ via
the effects of a static Coulomb potential and virtual substrate
phonon exchange is of the form of Eq. (1), with ε∞ replaced
by the frequency dependent dielectric function ε(ω) of the
substrate material [see Eq. (A7)].

125448-11098-0121/2012/86(12)/125448(7) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.125448


AMORIM, SCHIEFELE, SOLS, AND GUINEA PHYSICAL REVIEW B 86, 125448 (2012)

I

II

III

z 0

z d 1

2

FIG. 1. (Color online) A sketch of the double layer system under
consideration. The two monoatomic graphene layers (yellow) with
charge carrier concentration n1, n2 are placed at z = 0 and z = d and
labeled by the layer index λ = 1,2, respectively. The surrounding
space (regions I, II, and III) is filled with the insulating material
boron nitride with hexagonal structure (hBN).

In the following we specialize to the anisotropic spacer
material hBN. From its three acoustic and nine optical phonon
bands, only those that (via dipole oscillations) create long
range electric fields couple to the graphene electrons.40 Given
the layered uniaxial crystal structure of hBN, these (infrared
active) optical modes are described by a dielectric tensor of
the form41

ε(ω) = diag[ε⊥(ω),ε⊥(ω),ε‖(ω)]. (2)

The resonance frequencies ω
‖
TO and ω⊥

TO of the two retarded42

dielectric functions

ε⊥,‖(ω) = ε⊥,‖
∞ + f⊥,‖

(ω⊥,‖
TO )2

(ω⊥,‖
TO )2 − ω2 − iωγ⊥,‖

(3)

are the phonon frequencies at the � point for transverse
intraplane shear modes with displacements parallel and per-
pendicular to the c axis of the crystal (aligned with the
z direction in Fig. 1), respectively. We make the usual
approximation of dispersionless optical phonon bands.29,35,43

The values for the high frequency dielectric constants ε∞,
the oscillator strengths f (related to the static ε0 and high
frequency dielectric constants f = ε0 − ε∞), ωTO, and the
damping factors γ taken from Ref. 44 are listed in Table I.

To obtain the combined Coulomb-phonon interaction U
(0)
λλ′

in the anisotropic medium, we solve Poisson’s equation

−∇ · (ε · ∇φ) = ρfree/εvac

TABLE I. Parameters for the dielectric function of hBN [see
Eq. (3)] taken from Ref. 44.a

ε⊥ ε‖

ε∞ 4.95 4.10
f 1.868 0.532
γ 3.61 meV 0.995 meV
ωTO 170 meV 97.4 meV

aThe experimental data in Ref. 44 exhibits two resonances, a strong
and a weaker one, for each direction of the polarization of incident
light. The weaker ones are attributed to misorientation of the
polycrystalline samples.

with ρfree being the free charge density of a point charge −e at
the origin. With Eq. (2), Poisson’s equation becomes

− ∂

∂z

[
ε‖

∂

∂z
φ(q,z)

]
+ q2ε⊥φ(q,z) = − e

εvac
δ(z),

and as U
(0)
12 = −eφ(q,d) and U

(0)
11 = U

(0)
22 = −eφ(q,0) we get

U
(0)
λλ′(q,ω) = e2

2εvacε‖(ω)q

√
ε‖(ω)

ε⊥(ω)

× exp

[
−qd(1 − δλλ′)

√
ε⊥(ω)

ε‖(ω)

]
. (4)

A generalization of this result to structures where the regions
I, II, and III (see Fig. 1) are filled with different insulating ma-
terials (or air) is straightforward; U

(0)
11 then involves different

dielectric functions than U
(0)
22 .

B. RPA screened interlayer interaction

To take into account the screening properties of the conduc-
tion electrons in the graphene layers themselves, we employ
the standard procedure of solving the Dyson equation for
the two-layer system within the random phase approximation
(RPA) (see Ref. 5). This finally yields the dressed interlayer
interaction

U12(q,ω) = U
(0)
12 (q,ω)

εRPA(q,ω)
. (5)

The total screening function for the coupled electron-phonon
system given by (see Ref. 31 and Appendix B)

εRPA = (
1 − U

(0)
11 χ1

)(
1 − U

(0)
22 χ2

) − U
(0)
12 U

(0)
21 χ1χ2, (6)

where χ1,2 denotes the (frequency and momentum dependent)
polarizability of the graphene layers.45

Figure 2 shows a density plot of |εRPA(q,ω)|, using
dimensionless units x = q/kF and y = ω/(vF kF ), where kF is
the Fermi momentum. The horizontal dashed green lines mark
the transverse and longitudinal frequencies of the infrared
active modes in hBN, connected by the Lyddane-Sachs-Teller
relation46 ω2

LO/ω2
TO = ε0/ε∞. For small damping γ � ωTO,

the real parts of ε⊥,‖(ω) are close to a pole at ω
⊥,‖
TO and close to

zero at ω
⊥,‖
LO , respectively. Near these frequencies, the absolute

value of the total screening function εRPA likewise shows an
abrupt change from high values (light colors) to almost zero
(dark colors). In regions where |εRPA| is small, the red lines
Re εRPA = 0 show the coupled plasmon-phonon dispersion
relation of the two-layer system.

III. RESULTS FOR THE DRAG RESISTIVITY

In the following we assume for the sake of simplicity the
same positive carrier density n (corresponding to electron
doping) in both layers, such that EF 	 kBT . In particular, we
do not address the recently reported drag at charge neutrality
point,20 which was attributed either to contributions from
higher order perturbation theory15 or to correlated density
inhomogenities in the graphene layers.16,20

The drag resistivity then assumes a negative value,18 and the
first nonvanishing contribution to ρD obtained in perturbation
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FIG. 2. (Color online) Absolute value of the total screening
function εRPA Eq. (6), with n1 = n2 = 0.02 nm−2 and d = 8 nm.
Vertical green lines show the optical resonance frequencies ω

‖
TO,

ω
‖
LO, ω⊥

TO, and ω⊥
LO of hBN (bottom to top). Red curves mark the

zeros of Re εRPA. The dashed black lines show the line y = x and
mark the region where Imχ = 0. The hybridization between phonon
and plasmon modes is clear.

theory is of second order in the dressed interlayer interaction.4,5

In terms of the variables carrier density, layer separation, and
temperature, and under the assumptions that both layers are
with high electron doping and T � TF ,47 it reads (refer to
Refs. 6 and 10 for details)

ρD = − h̄

e2

α2
g

8

h̄vF

√
πn

kBT

∫ ∞

0
dx

∫ ∞

0
dy K(T ,d,n), (7)

where αg = e2/(4πεvacvFh̄) denotes the effective fine struc-
ture constant in graphene and the integral kernel

K = k2
F ε2

vac

e4

|U12(x,y)|2
sinh2

(
y TF

2T

) x7 �2(x,y)

x2 − y2
. (8)

The function �, defined in Eq. (B1), is related to the nonlinear
susceptibility of graphene, and restricts the integration range
in the x,y plane to the region ω < vF q.

In order to estimate the contribution of phonon exchange to
the drag effect, we note that the drag resistivity ρCD resulting
from Coulomb interaction only (which is usually taken as
a measure for Coulomb drag) is obtained by substituting the
static value of the electron–electron interaction into the integral
kernel Eq. (8):

ρCD = ρD|
U

(0)
λλ′ (q,ω=0). (9)

For low temperatures EF 	 kBT , the resistivity ρCD can
be approximated by ρ low T

CD ∝ T 2 of Eq. (B2) (see Ref. 6
for a detailed derivation), under the additional condition
kF d,kF d/ε‖ 	 1 (large layer spacing), this can be further
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FIG. 3. (Color online) Drag resistivity versus temperature for
various interlayer distances, n = 0.02 nm−2. The blue curves show
|ρD| [Eq. (7)] including interaction via phonon exchange and
Coulomb interaction, the dashed red curves show |ρCD| [Eq. (9)] with
Coulomb interaction only, and dashed black lines the low-temperature
asymptote ρ low T

CD [Eq. (B2)]. The lowest pair of curves (d = 8 nm) is
also plotted on a linear scale in Fig. 7.

approximated to yield6

ρ
large d
CD = − h̄

e2

(ε‖
0 )3

ε⊥
0

ζ (3)

π28α2
g

(kBT )2

(h̄vF )2n3d4
. (10)

(Note that in the static limit, one only needs to rescale
d → d

√
ε⊥/ε‖ and αg → αg/

√
ε⊥ε‖ to take into account the

anisotropy of hBN.) The full blue curves in Figs. 3–5 show
the absolute value of ρD Eq. (7) for different parameters T , n,
and d, while |ρCD| is shown by dashed red curves, ρ low T

CD by
the dashed black lines in Figs. 3 and 5, and the dotted green
line in Fig. 5 shows ρ

large d
CD .

As Figs. 3 and 4 show, the contribution of phonon mediated
interaction to the drag resistivity is vanishingly small at
low temperatures, but becomes noticeable for T > 150 K,
the effect being more pronounced the larger the layer sep-
aration. This temperature dependence is due to the factor
sinh−2[yTF /(2T )] in the integration kernel Eq. (8), which
suppresses the integrand for values of y > T/TF . Thus at
low temperatures the main contribution to the y integration
in Eq. (7) comes from a frequency range where the dielectric
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0.0

n nm 2
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FIG. 4. (Color online) Drag resistivity versus carrier density for
various temperatures d = 8 nm. Colors as in Fig. 3.
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FIG. 5. (Color online) Drag resistivity versus layer separation for
T = 300 K, n = 0.02 nm−2. Colors as in Fig. 3. The low-temperature
asymptote ρ low T

CD [dashed black curve, Eq. (B2)], converges for large
layer separation to ρ

large d
CD [dotted green line, Eq. (10)]. Note that at

this temperature and density ρ low T
CD already differs from the full static

calculation ρCD.

functions in the integrand are still close to their static values.
However, the phonon contribution becomes noticeable at lower
temperatures than one would expect, taking into account that
the energy of the lowest phonon mode h̄ω

‖
TO/kB ≈ 1100 K.

It is also interesting to notice that in the range from 100 to
250 K, the drag resistivity ρD , including the effect of phonons,
is closer to the T 2 behavior ρ low T

CD than the purely Coulomb
drag result ρCD. The plot ofK as a function of y in Fig. 6 shows
the origin of the phonon contribution to the integral ρD: With
rising temperature, peaks near the resonance frequencies ω

‖
TO

and ω⊥
TO appear in the integrand, which enhance the magnitude

of ρD .
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T
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FIG. 6. (Color online) The integral kernel K of Eq. (8) with x =
q/kF = 1, d = 8 nm, n = 0.02 nm−2 as a function of y = ω/vF kF

for the temperatures 200, 100, 70 K (full curves, from top to bottom).
The curves have been aligned on the left side by dividing with the
y → 0 temperature dependence (T/TF)2. At T = 100 K (green curve)
a peak near the resonance frequency ω

‖
TO appears, at T = 200 K (blue

curve) there is and additional second peak near ω⊥
TO (see the vertical

green lines in Fig. 2). Dashed curves show the integral kernel for ρCD,
where these peaks are absent.
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FIG. 7. (Color online) Effect of the anisotropy of hBN on the
behavior of drag with temperature, with n = 0.02 nm−2 and d =
8 nm. The curves isotropy, ε‖ and isotropy, ε⊥ were computed
assuming that the graphene layers are immersed in an isotropic
dielectric medium, with dielectric functions given by ε‖ and ε⊥,
respectively [see Eq. (2)]. The curve anisotropy was computed taking
into account the anisotropy of hBN as in Eq. (4). Solid curves show
ρD, dashed ones ρCD.

Figure 4 shows that the relative effect of phonon exchange
on ρD is larger for high densities. For high values of n, the
argument of the dielectric functions ε(ω) = ε(yvF

√
πn) in

Eq. (8) reaches the resonance frequency already at lower values
of y. While ρCD decreases rapidly with n due to increased
screening of the Coulomb interaction, the modification of
the screening function εRPA by phonon interaction is seen to
counteract this decrease at high temperatures.

Finally, Fig. 7 illustrates the effect of the anisotropy in hBN
that enters ρD through the electron-electron interaction Eq. (4).
We compare the drag resistivity in hBN with that in an isotropic
medium with dielectric functions ε‖ and ε⊥, respectively [see
Eq. (2)]. The difference in magnitude between ρD and ρCD is
seen to be greatest in the anisotropic case, where both in-plane
and out-of-plane phonon modes contribute to the interlayer
interaction.

IV. SUMMARY AND DISCUSSION

We showed that including the electron–electron interaction
via phonon exchange into the theory of Coulomb drag
significantly changes the magnitude of the predicted drag
resistivity in graphene-hBN heterostructures. For large layer
separations, the deviations become noticeable at temperatures
higher than 150 K.

As the lowest phonon resonance frequency in the spacer
material hBN corresponds to a temperature of approximately
1100 K, our result at first sight seems to be at odds with
the notion that phonon effects should be proportional to the
thermal population factor of the relevant modes. This is indeed
the case for other transport phenomena, like the substrate
limited electron mobility in graphene, where real momentum
transfer from an electronic state (in graphene) to a phonon
mode (in a dielectric substrate material) plays a role.24,38 The
decay rate of the electronic state is then overall proportional
to the thermal population of the phonon mode. Our scenario
however involves the exchange of virtual phonons in a process
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that is of second order in the interlayer interaction,5 and no
decay processes into real phonon states are relevant for ρD . We
note that in Ref. 7 the effect of substrate phonons on Coulomb
drag was considered for the case where a material described
by a uniform dielectric function fills what is our region III of
Fig. 1, and a deviation from the low-temperature T 2 behavior
of ρD was predicted for temperatures roughly an order of
magnitude lower than the phononic resonance frequency of
the substrate material.

Up to date, there remains considerable discrepancy between
experimental data on Coulomb drag between graphene layers
embedded in SiO2/Al2O3

18,19 and hBN20 and the existing
theoretical work. For hBN, the reported drag resistivities in
the Fermi liquid regime are roughly a factor of 3 larger than
predicted, and the results of the present paper do not change
this situation. The experimentally reported T 2 dependence of
ρD for d = 6 nm and n = 0.018 nm−2 up to temperatures of
240 K48 does not disagree with our results presented in Fig. 3.
Actually, it appears that in the temperature range of 100 to
250 K the inclusion of phonon mediated interaction brings the
behavior of drag closer to the low temperature T 2 behavior
than with static Coulomb interaction only. Nevertheless, an
extension of the experimental data shown in Ref. 20 up to room
temperature would be needed to distinguish clearly between
ρD and ρCD. The use of other substrate materials, such as
SiO2, should not qualitatively alter the results of this paper.
We think that future experiments with devices as considered
in the present work will be able to check our predictions.
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APPENDIX A : FRÖHLICH ELECTRON–PHONON
COUPLING AND PHONON MEDIATED

ELECTRON–ELECTRON INTERACTION

Throughout the present work we assume the dielectric
properties of hBN layers forming heterostructures as shown
in Fig. 1 to be the same as for bulk hBN.

The Fröhlich Hamiltonian describing the coupling of
electrons to a bulk polar longitudinal phonon mode (in an
isotropic homogeneous dielectric material) is given by35–37

He-ph =
∫

d3rρ(r)
1√
V

∑
Q

M(Q)eiQ·r(aQ − a
†
−Q),

where ρ(r) denotes the electron density operator, a
†
Q (aQ) is

the creation (annihilation) phonon operator with momentum
Q = (qx,qy,qz), and the matrix element reads

M(Q) = i

√
e2ωLO

2εvacQ2

(
1

ε∞
− 1

ε0

)
, (A1)

with the longitudinal optical phonon frequency ωLO. The
phonon mediated interaction between electrons is given by

ψ(Q,ω) = M(Q)M(Q)∗DLO(Q,ω), (A2)

with the bare phonon propagator

DLO(Q,ω) = 2ωLO/
(
ω2 − ω2

LO

)
. (A3)

We employ the usual approximation of dispersionless optical
phonons.29,33,35,43

The bare Coulomb interaction is given by

VC = e2/(εvacε∞Q2), (A4)

where ε∞ takes into account the high frequency screening
properties of the medium.

With Eqs. (A2)–(A4) and the Lyddane-Sachs-Teller
relation46 ω2

LO/ω2
TO = ε0/ε∞, we arrive at the combined

Coulomb and phonon mediated interaction

U (Q,ω) = VC(Q) + ψ(Q,ω) = e2

εvacε(ω)Q2
, (A5)

with ε(ω) the dielectric function of the medium, see Eq. (3).
Since the Fröhlich coupling is derived in a phenomenological
approach based on the dielectric properties of the material, the
combined Coulomb and phonon mediated interaction simply
reduces to the Coulomb interaction screened by ε(ω), as it
should.

In a two-layer system as shown in Fig. 1, the Fröhlich
coupling coupling between bulk phonons and 2D electrons of
layer λ is given by43

Mλ(q,qz) = i

√
e2ωLO

2εvac
(
q2 + q2

z

)(
1

ε∞
− 1

ε0

)
eiqzd(1−δλ1), (A6)

where q = (qx,qy) is a two-dimensional momentum vector. In
analogy to the above, we now get for the combined Coulomb–
phonon interaction in a homogeneous isotropic medium

U iso
λλ′(q,ω) ≡ Vλλ′ (q) + ψλλ′(q,ω)

= 1

ε(ω)

e2

2εvacq
e−qd(1−δλλ′ ). (A7)

Although it is possible to generalize the Fröhlich electron–
phonon coupling for the case of anisotropic materials41,49 and
inhomogeneous layered materials,50 the easiest way to obtain
the effective electron–electron interaction, taking into account
the phonon mediated interaction, is by solving Poisson’s
equation for the electric potential created by a point charge
in the dielectric medium taking into account the frequency
dependence of its dielectric tensor.
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APPENDIX B: MATHEMATICAL DETAILS

The dressed interlayer interaction Eq. (5) is the solution of
the coupled set of Dyson equations

U12(q, ω)
1 2

q, ω

=
1 2

q
+

2∑

λ=1 1 2
λ λ

+
1 2

q, ω
+

2∑

λ=1 1 2
λ λ

,

=

where the dashed and wiggled lines denote the bare Coulomb
and phonon interaction, respectively, and the full curves
electron propagators (see Refs. 5 and 31).

The function �(x,y) appearing in Eq. (8) reads6,10

�(x,y) = �+(x,y) �(y − x + 2)�(x − y)

+�−(x,y) �(1 − y − |1 − x|), (B1)

where

�± = ± cosh−1

(
2 ± x

y

)
∓ 2 ± x

y

√(
2 ± x

y

)2

− 1.

For the low-temperature approximation of ρD , the factor
sinh−2[yTF /(2T )] in the integration kernel Eq. (8), which
suppresses the integrand for values of y > T/TF , allows one
to expand the remaining integrand to the lowest order of y.
The y integration can then be performed, yielding

ρ low T
CD = − h̄

e2

2πα2
eff(kBT )2

3n(h̄vF )2

∫ 2

0
dx

⎧⎨
⎩e−2dx

√
πnε⊥

0 /ε
‖
0

× x3(4 − x2)[
(x + 4αeff)2 − 16α2

eff exp(−2dx

√
πnε⊥

0 /ε
‖
0 )

]2

⎫⎬
⎭,

(B2)

where αeff ≡ αg/

√
ε⊥

0 ε
‖
0 (see Ref. 6 for details).
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