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Electron-phonon mediated heat flow in disordered graphene
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We calculate the heat flux and electron-phonon thermal conductance in a disordered graphene sheet, going
beyond a Fermi’s golden rule approach to fully account for the modification of the electron-phonon interaction
by disorder. Using the Keldysh technique combined with standard impurity averaging methods in the regime
kF l � 1 (where kF is the Fermi wave vector and l is the mean free path), we consider both scalar potential
(i.e., deformation potential) and vector-potential couplings between electrons and phonons. We also consider the
effects of electronic screening at the Thomas-Fermi level. We find that the temperature dependence of the heat
flux and thermal conductance is sensitive to the presence of disorder and screening, and reflects the underlying
chiral nature of electrons in graphene and the corresponding modification of their diffusive behavior. In the case of
weak screening, disorder enhances the low-temperature heat flux over the clean system (changing the associated
power law from T 4 to T 3), and the deformation potential dominates. For strong screening, both the deformation
potential and vector-potential couplings make comparable contributions, and the low-temperature heat flux obeys
a T 5 power law.
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I. INTRODUCTION

The potential to exploit the exceptional thermal properties
of graphene in applications has recently generated con-
siderable activity:1–4 possible applications include sensitive
bolometry and calorimetry for detecting infrared and terahertz
radiation. Such detectors would ultimately be based on the sim-
ple heating of electrons in a graphene sheet by the absorption
of incident photons. Ideally, the detector electrons would be
thermally decoupled from their surroundings, thus allowing
any heating produced by the incident radiation to be long
lived. In this respect, graphene provides a potential advantage:
Its low electron density and relatively weak electron-phonon
coupling implies that the expected low-temperature thermal
decoupling between electrons and the lattice5,6 could occur
over a much wider temperature range than in a conventional
metal.7,8 Further, one can effectively suppress the thermal link
between graphene electrons and electrons in the contacts by
employing superconducting leads.9

Given the above, it is crucial to develop a rigorous and
quantitative understanding of the thermal link between elec-
trons and phonons in graphene at low temperatures. Several
recent theoretical works have addressed this problem in the
case of clean graphene (i.e., no electronic disorder).7,8,10,11 At
low temperatures, the heat flux (per volume) between electrons
and longitudinal acoustic phonons takes the general form

P (Te,Tph) = F (Te) − F (Tph) = �
(
T δ

e − T δ
ph

)
, (1)

where F (T ) is called the energy control function, � is a
coupling constant, and Te and Tph are the temperatures of
the electrons and lattice (i.e., phonons), respectively. Previous
theoretical works7,8,10,11 find that δ = 4 in the low-temperature
limit (assuming an unscreened deformation potential electron-
phonon coupling); this has been confirmed in recent experi-
ments on graphene in the clean limit.2–4 This power law is also
identical to what would be expected for a clean conventional
two-dimensional (2D) metal.11

In this work, we now ask how the above result is modified in
the presence of electronic disorder. While great experimental
progress has been made in reducing disorder effects in
graphene,12 the devices studied for bolometric applications in
Refs. 2–4 are sitting on a silicon substrate and have mean free
paths that are 100 nm or less. In conventional metals, electronic
disorder can strongly affect the electron-phonon coupling at
temperatures low enough that the wavelength of a thermal
phonon is comparable to (or longer than) the electronic mean
free path.13–16 This defines a characteristic temperature scale
Tdis below which disorder effects are important,

kBTdis ≡ hs/l, (2)

where s is the speed of sound and l is the electronic mean free
path. As discussed in Refs. 13–16 (and below), the effects of
disorder are subtle: Depending on the nature of the disorder
and the electronic system, the power law δ in Eq. (1) can either
be enhanced by disorder or be suppressed.13–16

Here, we study how the additional complexity arising
from the unique electronic properties of graphene modify
the interplay of disorder and the electron-phonon interaction.
The principle new ingredients arise from the effective chiral
nature of carriers in graphene, which both modifies electronic
diffusion, and allows for a new kind of effective vector-
potential electron-phonon coupling.17–19 For simplicity, we
will focus on disorder originating from charges in the substrate
below the graphene flake, and thus take the disorder potential
to preserve the symmetries (valley and sublattice) of the
low-energy graphene Hamiltonian.20,21 The impurity potential
is thus also taken to be static, i.e., it does not move with
the graphene sheet. We also consider the case where the
graphene flake has been doped sufficiently that kF l � 1 (kF is
the Fermi wave vector), meaning that the standard impurity-
averaged perturbation theory is appropriate.22,23 Combining
this approach with the Keldysh technique then allows us
to rigorously address the electron-phonon interaction in the
presence of disorder, in a manner analogous to the classic
works looking at this physics in a conventional disordered
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metal.13–16 We stress that properly addressing disorder effects
involves going beyond the sort of golden rule calculation used
to address the clean case.11

Note that since we work in the regime kF l � 1, the tem-
perature scale Tdis below which disorder effects emerge will
necessarily be well below the Bloch-Grüneisen temperature
kBTBG = 2h̄skF ; we will thus explicitly focus on temperatures
T < TBG. For a typical doped graphene electron density
1012/cm2, TBG ∼ 70 K. In contrast, for a typical mean free path
of 100 nm and a graphene acoustic phonon velocity of ∼2 ×
104 m/s, Tdis ∼ 10 K. We note that a recent study examined
disorder effects on electron-phonon interactions above the BG
temperature.1 Somewhat surprisingly, the expression derived
in that work for impurity-assisted electron-phonon cooling
for T � TBG is exactly half of our expression for e-phonon
cooling based on the deformation potential at T � Tdis < TBG

[cf. Table I and Eq. (38)].
Our main results for the energy control function F (T ) [cf.

Eq. (1)]) for graphene at low temperatures are summarized in
Table I. We consider the contribution to the electron-phonon
heat flux arising from both the standard deformation-potential
(DP) coupling, as well as from the effective vector-potential
(VP) coupling . In the absence of disorder (or at temperatures
well above Tdis but below TBG), and in the absence of electronic
screening, one finds that both these mechanisms contribute
independently and in a similar manner: The respective heat
fluxes are each described by Eq. (1) with δ = 4 (in agreement
with Refs. 10 and 11).

In contrast, for T < Tdis, the two coupling mechanisms are
affected oppositely by the electronic disorder. We find that
the heat flux associated with the VP coupling is suppressed
by disorder: Still neglecting screening, it is described now by
Eq. (1) with an enhanced power law of δ = 5. Heuristically,
this is attributed to the disorder broadening of the graphene
energy levels. The effect of disorder on the heat flux associated
with the DP coupling for T < Tdis is the opposite from the
above: it is enhanced. It is described by a reduced power law
δ = 3 (again, no screening), and will thus dominate the VP at
low temperatures. On a heuristic level, this enhancement is due
to the diffusive charge dynamics, which effectively increases
the time an electron interacts with a given phonon (i.e., this
becomes the time to diffuse across a phonon wavelength,
as opposed to the time needed to ballistically traverse this
distance). The absence of any diffusive enhancement of the
VP coupling is (as we will show) a direct consequence of the
nonconservation of pseudospin.

We also consider how including screening changes the
above results; the importance of screening the e-ph interaction
has been the subject of several recent studies.24–26 As discussed
extensively in Refs. 24 and 26, the DP coupling is expected
to be screened, whereas the VP coupling is expected to be
unscreened, as it induces no net electronic charge (i.e., the
effective vector potential generated by a phonon field has
opposite sign in the two graphene valleys). As a result (see
Table I), even without disorder (i.e., Tdis < T < TBG), the DP
and VP heat fluxes are not equivalent in the limit of strong
screening: The VP power law remains δ = 4, where the DP
power law is increased to δ = 6. Similarly, at low temperatures
where disorder effects matter, the VP power law is unchanged,
but the DP power law becomes T 5.

Note that our results suggest that even though the bare
VP coupling strength g2 is believed to be about an order of
magnitude smaller than the bare DP coupling g1,18 if screening
is strong, its contribution to the heat flux could be comparable
to or even larger than that from the DP coupling. This is
despite the relative enhancement of the DP coupling over the
VP coupling by disorder. Further, our results suggest that the
electron-phonon heat flux could be a means for empirically
determining if screening is important. In particular, the only
way to obtain a T 3 power law is via an unscreened DP coupling
in the diffusive limit. We note that measurements of the phonon
contribution to the resitivity in a clean graphene sheet (as
recently measured27) cannot directly resolve this issue, as both
DP and VP couplings contribute to a T 4 dependence.26

This paper is organized as follows. In Sec. II, we present
our model and an outline of the calculational method. This
includes a brief derivation of the kinetic equation of electrons
in graphene in the Keldysh formalism (Sec. II B), as well
as a derivation and discussion of the diffusion propagator in
graphene and the resulting diffusive renormalization of the
electron-phonon vertex (Sec. II C). We present the main results
in Sec. III, i.e., the heat flux due to electron-phonon interaction
in both weak and strong screening cases. Finally, we briefly
summarize the paper in Sec. IV.

II. MODEL AND CALCULATION

A. Model Hamiltonians of impurity and
electron-phonon scattering

1. Electrons in disordered graphene

The low-energy electronic degrees of freedom are described
by a massless Dirac Hamiltonian. Focusing on a single valley
(the K+ valley), one has12,19,28,29

H =
∫

d2r �†(r)[−ivF σ̂j ∂j + U (r)1̂]�(r), (3)

where vF = 106 m/s is the Fermi velocity, �(r) = ( ψA(r)
ψB (r)

) is a

spinor field operator describing the amplitude of electrons on
the two sublattices, σ̂j (j = x,y) are Pauli matrices, and U (r)
is the disorder potential; we also set h̄ = 1 throughout unless
otherwise indicated. We do not include an index for spin or
valley, as for the physics we consider, each spin and valley
contributes in an equal and independent fashion.

As mentioned, we focus on a smooth disorder potential
originating with impurities in the substrate. We thus treat the
impurity potential U (r) as a scalar potential with respect to
both the valley degree of freedom and the sublattice degree of
freedom (i.e., pseudospin).20,21 In the standard way, U will be
treated as δ-correlated Gaussian disorder, with zero mean and
correlator:

〈U (r)U (r′)〉 = wδ(r − r′). (4)

The corresponding scattering rate is 1/τ ≡ vF /l = πνw,
where ν = kF /2πvF is the density of states at the Fermi
energy per spin per valley. We note here that for a given
disorder strength w the electronic mean free path is inversely
proportional to the Fermi wave vector in graphene. As a result,
one could tune the disorder temperature scale Tdis by tuning
the electron density. Tdis increases with increasing density.
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TABLE I. Energy control function [cf. Eq. (1)] of deformation potential and vector potential e-phonon couplings in graphene below the
Bloch-Grüneisen temperature TBG = 2h̄skF /kB. g1 and g2 are the deformation potential and vector-potential coupling constant, respectively,
[cf. Eqs. (6)]. EF is the Fermi energy with respect to the Dirac point, vF is the Fermi velocity, l is the electronic mean free path, and ρM is the
mass density of graphene per area. qTF is the Thomas-Fermi wave vector (as defined in Ref. 24), and ζ (n) is the ζ function.

Deformation potential

T < Tdis Tdis < T < TBG Vector potential

Weak screening Strong screening Weak screening Strong screening T < Tdis Tdis < T < TBG

F (T )
v3
F

ρM

EF

2ζ (3)
π2

g2
1k3

B
h̄4ls2 T 3 24ζ (5)

π2
g2

1k5
B

h̄6s4q2
TFl

T 5 π2

15
g2

1k4
B

h̄5s3 T 4 8π4

63
g2

1k6
B

h̄7s5q2
TF

T 6 30ζ (5)
π2

g2
2 lk5

B
h̄6s4 T 5 π2

15
g2

2k4
B

h̄5s3 T 4

2. Electron-phonon interaction

The electron-phonon interaction in graphene has been
studied extensively in Res. 24 and 26. For suspended graphene,
there are both in-plane phonon modes and flexural phonon
modes (out of plane). In this work, we consider graphene
on a substrate (as in recent experiments probing thermal
properties2–4), such that flexural motion is suppressed; we thus
only focus on in-plane motion. Further, at low to moderate
temperatures, the optical modes are barely excited and the
dominant modes participating in cooling of hot electrons are
acoustic modes; we thus focus exclusively on the coupling to
these modes.

Due to the Dirac Hamiltonian of electrons in graphene, there
are two distinct electron-phonon coupling mechanisms.17–19

The first is a standard deformation-potential coupling, which
corresponds to a local dilation of the lattice. In the Dirac
theory, it appears as a scalar potential (with respect to
pseudospin). The second mechanism is an effective gauge-field
coupling or vector-potential coupling. This corresponds to
the change in hopping matrix elements accompanying a pure
shear deformation, and enters the Dirac theory the same way
as an external gauge field (the only proviso being that this
phonon-induced vector potential is valley odd, and hence does
not break time-reversal symmetry).

Letting �k denote a momentum-space electronic field
operator and bη,q a phonon annihilation operator, the total
interaction between electrons and acoustic phonons can be
written in the general form26

Hep =
∑
η=l,t

∑
k,q

�
†
k+q M̂η(q) �k(bη,q + b

†
η,−q). (5)

Here η = l,t denote longitudinal (LA) and transverse (TA)
acoustic modes, respectively. The 2 × 2 coupling matrices
M̂η(q) take the form

M̂l(q) = iqξ l
q

(
g1 −ig2e

2iφq

ig2e
−2iφq g1

)
, (6a)

M̂t (q) = iqξ t
q

(
0 g2e

2iφq

g2e
−2iφq 0

)
, (6b)

where

ξη
q = (h̄/2ρMωη

q)1/2. (7)

Here ρM is the mass density of the graphene sheet, ω
η
q is

the phonon frequency for mode η, and φq is the angle of
the phonon wave vector q with respect to the x axis (which
is taken to be along the armchair direction of the graphene
lattice). For simplicity, we take the speed of sound to be the

same for the LA and TA phonons and drop the superscript
η in the frequency from now on. g1 (g2) is the deformation-
potential (vector-potential) coupling constant. Previous works
have estimated g1 ∼ 20–30 eV and g2 ∼ 1.5 eV,18 though we
note that even the value of the deformation-potential coupling
is subject to some debate.25,30,31 Our theory is thus not tied
to specific values of these parameters, and we keep both the
DP and VP couplings in our discussion. Note that transverse
phonons induce only a pure shear deformation, and hence
couple only through the vector potential.

B. Keldysh formalism for the kinetic equation
of electrons in graphene

Having established the basic electronic and electron-
phonon Hamiltonians [cf. Eqs. (3) and (5)], we now turn to
our main goal of calculating the heat flux between electrons
and phonons. We consider the standard situation where each
subsytem is independently in thermal equilibrium at its
own temperature (electrons at Te, phonons at Tph). In the
disorder-free case, this heat flux can be conveniently calculated
by using Fermi’s golden rule to calculate electron-phonon
scattering rates.7,8,10,11 Including disorder, we need a more
general formalism, one that is capable of capturing the
interference between electron-phonon and electron impurity
scatterings [i.e., the vertex correction of the electron-phonon
vertices M̂η(q) by disorder]. To that end, we make use of
the Keldysh technique,32,33 coupled with standard disorder-
averaged perturbation theory. Such an approach was used by
Kechedzhi et al. to study conductance fluctuations (in the
absence of any electron-phonon coupling).21

We start by noting that the heat flux of interest (i.e., energy
lost/gained by the electrons) can be directly related to the
collision integral I0(ε,p) appearing in a standard Boltzmann
equation describing the dynamics of the electronic phase-space
distribution function n[ε,p; t]:

I0(ε,p) ≡
[
dn[ε,p]

dt

]
e-ph scatt

. (8)

The collision integral I0(ε,p) tells us the rate of change
of n[ε,p; t] due to the emission and absorption of acoustic
phonons.

As electronic momentum relaxation is much faster than
energy relaxation, to describe the latter process we can
focus on times longer than the electron momentum relaxation
time; in addition, the distribution function will be sharply
peaked on shell (magnitude of momentum set by energy).
The relevant kinetics can thus be described by an electron
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distribution function n(ε; t) that depends only on energy, not on
momentum. The kinetic equation for the electronic distribution
function n(ε; t) takes the form

∂n(ε; t)

∂t
= Ī0(ε) = 1

πν

∫
dp

(2π )2
I0(ε,p)A(ε,p), (9)

where

A(ε,p) = −Im
2
(
ε + i

2τ

)
(
ε + i

2τ

)2 − v2
F p2

(10)

is the electron spectral function.
The heat flux between electrons and lattice (for one valley

and spin projection) is given by

P (Te,Tph) = ν

∫
dε εĪ0(ε). (11)

The collision integral I0(ε,p) is obtained in the standard
manner by calculating the electronic Keldysh self-energies �̂

arising from the electron-phonon interaction, to first order. One
finds the general relation21 (see Appendix A)

I0(ε,p) = − i

4
Tr{�̂K + [1 − 2n(ε,p; t)](�̂A − �̂R)}. (12)

The self-energies �̂j (j = K, R, and A) are 2 × 2 matrices
(in pseudospin space), and are functions of both energy ε and
momentum p; they include the effects of disorder averaging.
As we are considering a quasiequilibrium situation where both
phonons and electrons are individually in thermal equilibrium,
n(ε,p; t) in Eq. (12) can be replaced by a Fermi distribution
function at temperature Te, and the self-energies can be
calculated assuming phonons are in thermal equilibrium at
temperature Tph.

In the regime of interest (kF l � 1), the dominant self-
energy diagram describing the leading-order electron-phonon
contribution to the kinetic equation (in the presence of disor-
der) is shown in Fig. 1. In this diagram, the wavy line represents
a phonon propagator �β(ω,q; η), where β = R,A,K denotes

ε,p ε+ω,p+q ε,p

phonon 

e e e 

= + ω,q
ε,p

ε +ω,p+q ε +ω,p+q

ε,p ε,p

ε +ω,p+q

(a) 

(b) 

FIG. 1. (Color online) (a) Electron self-energy diagram. The
wavy line represents the phonon propagator, the solid line represents
the electron propagator, and the square block represents the dressed
electron phonon vertex by diffusion. (b) Vertex correction of the
electron-phonon interaction by impurity scattering. The dashed line
represents an impurity average. The square block represents dressed
vertex and the dot represents bare vertex.

retarded, advanced, and Keldysh propagators. The retarded
and advanced phonon propagators appearing here are

�R/A(ω,q) = 2ωq

ω2 − ω2
q ± iδ

, (13)

with ωq = sq, while the Keldysh propagator is

�K (ω,q) = [1 + 2N (ω,Tph)][�R(ω,q) − �A(ω,q)], (14)

where N (ω,Tph) is the Bose-Einstein distribution evaluated at
T = Tph.

The solid line in Fig. 1 represents an impurity-averaged
electronic Green function Ĝβ(ε,p); note that these are 2 ×
2 matrices in pseudospin space. The retarded and advanced
components are given by

ĜR/A(ε,p) = ε ± i
2τ

+ vF 	σ · p(
ε ± i

2τ

)2 − v2
F p2

, (15)

while the Keldysh electron Green function is

ĜK (ε,q) = [1 − 2n(ε,Te)][ĜR(ε,q) − ĜA(ε,q)], (16)

where n(ε,T ) is now the Fermi-Dirac distribution function
evaluated at T = Te and chemical potential EF , where EF is
the Fermi energy (measured from the Dirac point).

Note that the electron Green function in Eq. (15) has an
extremely simple form: It is just a free propagator with the
substitution ε → ε ± i/2τ , corresponding to disorder-induced
broadening of energy levels. This broadening represents the
first mechanism by which the electron-phonon heat flux will
be modified due to disorder; this broadening generally causes a
suppression of the heat flux. The second key effect of disorder
is via the vertex correction of the electron-phonon vertex
appearing in the self-energy in Fig. 1. Each vertex describes the
emission or absorption of a phonon; heuristically, the disorder-
induced vertex correction corresponds to the modification of
the amplitude of such a process due to the diffusive motion
of electrons. The full details of the renormalization of the
e-phonon vertices in a conventional (non-Dirac) metal by
disorder using the Keldysh formalism are presented in Ref. 14.
The Keldysh structure and renormalization of the e-phonon
vertices in graphene can be treated in a similar fashion. The
only key difference comes from the 2 × 2 matrix structure
associated with pseudospin; as we will see, this leads to
interesting new physical consequences.

The electron-phonon vertices M̂ (the η superscript is
dropped here) in the Keldysh technique are represented by
the form M̂

γ
μ,ν , where the upper index is for phonons and

the lower for electrons. The indices γ,μ,ν each have two
possible values, cl and q, due to the two-component structure
of the electron and phonon fields in the Keldysh formalism.32

The vertices with different indices are renormalized differently
by disorder in the Keldysh technique as shown in Ref. 14. Here,
we only present the simplest case, the renormalization of the
vertex M̂

q

cl,cl . We stress here that our full calculation considers
all relevant Keldysh-space vertices and their disorder-induced
renormalization. Upon summation of all self-energy diagrams
in the Keldysh formalism, one finds that the form of the renor-
malized vertex M̂

q

cl,cl appears directly in the final expression
for the collision integral, Eq. (21).13,14 The renormalization of
vertex M̂

q

cl,cl by disorder is depicted in Fig. 1(b). We focus on
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this specific vertex in the remainder of this section and drop
the upper and lower indices from now on.

In general, we may describe the renormalization of an
electron-phonon interaction vertex by

M̂diff(q,ω) = Ď(q,ω) ◦ M̂0(q), (17)

where M̂0 (M̂diff) is the bare (renormalized) vertex, and
Ď(q,ω) is a linear operator acting in the space of 2 × 2
matrices. It represents the diffusion propagator for electrons
in graphene, with the nontrivial matrix structure reflecting the
fact that charge and pseudospin diffusion are linked together.
It is convenient to write this expression using a basis of
Pauli matrices. Defining the four-component vectors 	m, 	mdiff

via

M̂0 = 	m0 · (1̂,σ̂x,σ̂y,σ̂z), (18a)

M̂diff = 	mdiff · (1̂,σ̂x,σ̂y,σ̂z). (18b)

Equation (17) takes the form

	mdiff(q,ω) = D(q,ω) · 	m0(q), (19)

where D is a 4 × 4 matrix. Using this representation, the
summation of ladder diagrams depicted in Fig. 1 results in
the form

D(q,ω) = [1 − P(q,ω)]−1 ,

[P(q,ω)]αβ = 1

2πντ
σ̂ α

ij

∫
d2k

(2π )2
[ĜR(k + q,ω)]ki

× [ĜA(k,0)]j l σ̂
β

lk. (20)

Here, the indices α,β run from 0 to 3, and repeated indices
are to be summed over; we also use σ̂ 0 to denote the 2 × 2
unit matrix and σ̂ i (i = 1,2,3) are the Pauli matrices. P
describes a single “rung” in a standard diffusion ladder. Its
4 × 4 matrix structure is now directly related to the fact
that each propagator carries an initial and final charge or
pseudospin index. A similar structure is encountered when
considering diffusive dynamics in a system with strong spin-
orbit coupling or in 2D helical metals, as studied by Burkov
et al.34,35

We will discuss the properties and physics encoded in
the matrix diffusion propagator D in more detail in the next
section. For now, we only show how it enters in the final
expression for the collision integral (and hence the heat flux).
One finds that due to the causality structure of Keldysh
Green functions, the two vertices in Fig. 1(a) cannot both
be simultaneously dressed by impurity scattering. Summing
up all the self-energy diagrams in the Keldysh formalism, one

finally obtains

I (ε,p) = −1

2

∑
η=l,t

Tr

[ ∫
dq dω

(2π )3
R(ε,ω)

([
M̂

η

0 (q)
]†

�R(−ω; η)

× ĜR(ε + ω,p + q)M̂η

diff(−ω,−q) + H.c.
)]

,

(21)

where R(ε,ω) is the expected combination of Bose-Einstein
and Fermi-Dirac functions appropriate for phonon emission
and absorption processes:

R(ε,ω) = N (ω,Tph)n(ε,Te)[1 − n(ε + ω,Te)]

− [1 + N (ω,Tph)][1 − n(ε,Te)]n(ε + ω,Te)

= [n(ε,Te) − n(ε + ω,Te)][N (ω,Tph) − N (ω,Te)].

(22)

The first term of R(ε,ω) describes absorption of a phonon ω

from energy state ε to ε + ω and the second term describes
emission of a phonon ω from energy state ε + ω to state ε.
As expected, R(ε,ω) vanishes if Te = Tph. We note that apart
from the matrix structure of the electron-phonon vertices and
electron propagators, the expression for the collision integral
has the same form as that found for conventional diffusive
metals.13,14,16 Nonetheless, we will see that the added matrix
structure (which encodes the chiral nature of the graphene
electronic excitations) gives rise to qualitatively new effects.

C. Diffusion propagator and renormalization
of the e-phonon vertex

1. Diffusion propagator

It follows from Eqs. (11) and (21) that a key part of the
disorder-induced modification of the electron-phonon heat flux
is due to the modification of the effective electron-phonon
interaction vertex. This modification is in turn directly related
to the chiral diffusive dynamics of electrons in graphene, as
described by Eq. (17). In this section, we discuss the diffusion
propagator in more detail, as well as the forms of the dressed
electron-phonon vertices. Note that we restrict our discussion
here (as we do throughout the paper) on electrons in the K+
valley. While the sign of the chirality will be different for holes,
or for the K− valley, this sign has no impact on the quantity of
interest, the e-phonon heat flux in the presence of disorder.

We focus in this section on the most interesting diffusive
regime, where ql � 1, ωτ � 1 (i.e., we are interested in
length scales longer than l and time scales longer than τ ). In
this limit we can work to lowest nonvanishing order in ql and
ωτ . The inverse diffusion propagatorD−1(q,ω) = 1 − P(q,ω)
simplifies to

1

τ
D−1(q,ω)=

⎛
⎜⎜⎝

−iω + Dq2 0 0 0
0 1

2

(
1
τ

− iω+Dq2
)

0 0
0 0 1

2

(
1
τ

− iω+Dq2
)

0
0 0 0 1

τ

⎞
⎟⎟⎠+ 1

4

⎛
⎜⎜⎝

0 2ivF qx 2ivF qy 0
2ivF qx D

(
q2

x − q2
y

)
2Dqxqy 0

2ivF qy 2Dqxqy D
(
q2

y − q2
x

)
0

0 0 0 0

⎞
⎟⎟⎠ ,

(23)

in the diffusive limit, where D = vF l/2 is the usual diffusion constant in two dimensions.
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To gain intuition, it is useful to follow Ref. 34 and consider
the real-space representation of the matrix diffusion propaga-
tor, which describes the coarse-grained evolution of charge
and pseudospin densities [N (r,t) and Sj (r,t), respectively,
j = x,y,z]. The first term in Eq. (23) would simply lead to
uncoupled equations for each of these quantities: N would
be described by a standard diffusion equation, while Sx

and Sy would be described by diffusion equations with an
additional decay term (rate 1/τ ), corresponding to the fact that
pseudospin is not a conserved quantity. Sz has no dynamics in
the limit we consider, as it precesses with frequency EF and
averages away on the time scale 1/τ .

The second term in Eq. (23) complicates the above picture,
as it now links the dynamics of charge and pseudospin
densities. We thus obtain a set of coupled diffusion equations,
describing the dynamics of these quantities (note that we have
taken into account the fact that the Pauli matrices are twice the
pseudospin matrices):

∂N

∂t
= D∇2N − vF

(
∂Sx

∂x
+ ∂Sy

∂y

)
, (24a)

∂Sx

∂t
= 3D

2

∂2

∂x2
Sx + D

2

∂2

∂y2
Sx + D

∂2

∂x ∂y
Sy − Sx

τ

− vF

2

∂N

∂x
, (24b)

∂Sy

∂t
= D

2

∂2

∂x2
Sx + 3D

2

∂2

∂y2
Sx + D

∂2

∂x ∂y
Sx − Sy

τ

− vF

2

∂N

∂y
. (24c)

These equations are analogous (but not identical) to the
diffusive dynamics for charge and spin in a 2D helical metal35

or the diffusion equations of Cooperons in graphene.36 The
interpretation here is similar to Ref. 35: The coupling between
charge and pseudospin dynamics in the diffusive limit is a
result of the effective helicity of the electronic eigenstates.
By helicity, we mean that in the ε > 0 eigenstate of Eq. (3),
pseudospin will be aligned with momentum. Thus, a positive
gradient in, say, Sx in the x direction implies a corresponding
positive gradient in the density of electronic x momentum. This
will then naturally cause the charge density N to decrease in
time: This is the third term in Eq. (24a). Alternatively, writing
Eq. (24a) in the form of a continuity equation,

∂N

∂t
= −	∇ · J, (25)

one sees that the charge current density J has the form

J = −D 	∇N + vF (Sxx̂ + Syŷ). (26)

The first term is the usual diffusive current, while the second
term corresponds to a “drift” current driven by the pseudospin
density following from the Hamiltonian in Eq. (3) (i.e., the
current operator is the pseudospin operator).

Turning to the dynamics of pseudospin densities, Eqs. (24b)
and (24c) again reflect the fact that pseudospin is not con-
served, and effectively decays on a time scale τ due to elastic
impurity scattering. In addition, we see that the diffusion of
these densities is anisotropic: This is also a simple consequence
of helicity, as a net pseudospin density in a specific direction
also implies a net momentum density in this direction which
reinforces the diffusion in this direction.

Finally, inverting Eq. (23) [using as always the Pauli matrix
representation defined in Eq. (19)], one finds the diffusion
propagator in Eq. (20) in the diffusive limit to be

D(q,ω) =

⎛
⎜⎜⎜⎜⎝

1
(−iω+2Dq2)τ

iqx l

(iω−2Dq2)τ
iqy l

(iω−2Dq2)τ 0
iqx l

(iω−2Dq2)τ
3
2 + iωτ+(q2

x−q2
y )l2

2(iω−2Dq2)τ
qxqy l

2

(iω−2Dq2)τ 0
iqy l

(iω−2Dq2)τ
qxqy l

2

(iω−2Dq2)τ
3
2 + iωτ−(q2

x−q2
y )l2

2(iω−2Dq2)τ 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ . (27)

Note that the effective diffusion constant (i.e., the coefficient of
q2 in the diffusion poles appearing above) is twice the value of
the standardly defined D appearing in Eqs. (24): Deff = 2D =
vF l. This effective doubling of the diffusion constant is a direct
consequence of the chiral nature of electrons in graphene, and
is consistent with the results of previous transport studies.20,37

Also note that as expected from our discussion following
Eq. (23), only the charge-charge and charge-spin components
of D [i.e., the top row and column] diverge in the limit of small
ω and q. The lack of any corresponding large enhancement
of the spin components of D is directly tied to the fact that
pseudospin is not a conserved quantity.

2. Disorder vertex correction of deformation-potential
e-phonon vertex

Having discussed the basic form of the matrix diffusion
propagator, we now turn to the renormalization of the e-phonon

interaction vertex due to diffusion, as given by Eqs. (19)
and (27). Consider first the DP contribution to the vertex. The
bare DP vertex is just a diagonal matrix in the sublattice basis
[cf. Eqs. (6)] proportional to the coupling constant g1. The
impurity-dressed vertex in the diffusive limit takes the form

M̂DP,diff(q,ω) = iqξqg1

τ

(
1

(−iω+2Dq2) − iqle−iφq

(−iω+2Dq2)

− iqleiφq

(−iω+2Dq2)
1

(−iω+2Dq2)

)
.

(28)

The diagonal parts of the vertex acquire a diffusion pole
protected by charge conservation, analogous to the case of
a normal metal. We will be interested in Eq. (28) with ω,q

corresponding to a thermal phonon, h̄ω = h̄sq 
 kBT . As
s � vF in graphene, we thus have that over a wide range
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of temperature
s

vF

Tdis < T < Tdis, (29)

one has ω � Dq2, and thus the diagonal parts of the vertex in
Eq. (28) will be enhanced by a factor ∼1/(q2l2) compared to
the clean case. This corresponds to the well-known diffusive
enhancement of the electron-phonon interaction: The diffusive
motion effectively enhances the interaction time between an
electron and a long-wavelength phonon.

More surprisingly, Eq. (28) implies that the diffusive
renormalization of the deformation potential induces a vector
potential which is along the direction of wave vector q. This is
a direct consequence of the chirality of the graphene electrons,
which links the dynamics of charge and pseudospin, and thus
allows a scalar potential to generate a vector potential (i.e., a
potential which couples to pseudospin). In the next section, we
will show that this induced vector potential only gives a small
contribution to the heat flux compared to the renormalized
deformation-potential coupling.

3. Disorder vertex correction of vector-potential
e-phonon vertex

The bare VP e-phonon vertex is given in Eqs. (6); it is
purely off diagonal in pseudospin space, and implies that
a phonon of wave vector q = qq̂ = q(cos φq, sin φq) and
polarization η generates an effective vector potential Al

0 =
g2(sin 2φq, cos 2φq) (η = l) or At

0 = g2(cos 2φq, sin 2φq)
(η = t). It is useful to decompose these vectors into their
longitudinal and transverse parts

Aη

0 = A
η

‖,0q̂ + A
η

⊥,0q̂⊥, (30)

where q̂⊥ is a unit vector perpendicular to q. One finds

Al
‖,0 = g2 sin 3φq, Al

⊥,0 = g2 cos 3φq, (31a)

At
‖,0 = g2 cos φq, At

⊥,0 = −g2 sin φq. (31b)

Given the linearity of the vertex correction described by
Eq. (17), we can separately analyze how disorder changes
the interaction with the transverse and longitudinal phonon-
induced vector potentials. Each of these will yield an e-phonon

vertex which is a 2 × 2 matrix in pseudospin space. The bare
vertices are

M̂
η

‖,0 = A
η

‖,0(cos φqσ̂x + sin φqσ̂y), (32a)

M̂
η

⊥,0 = A
η

⊥,0(− sin φqσ̂x + cos φqσ̂y). (32b)

The corresponding renormalized vertices in the diffusive limit
are given by Eqs. (19) and (27), yielding

M̂
η

‖,diff = 2(iω − Dq2)

(iω − 2Dq2)
M̂

η

‖,0 + iql/τ

iω − 2Dq2
A

η

‖,0σ̂0, (33a)

M̂
η

⊥,diff = 2M̂
η

⊥,0. (33b)

We see that the diffusive renormalization simply doubles the
e-phonon vertex associated with the transverse part of the
phonon-induced vector potential; there is no diffusion pole
here, as there is no charge associated with a transverse vector
potential. In contrast, the longitudinal part acquires a diffusion
pole. The vector-potential part of the renormalized vertex is
simply the bare vertex multiplied by a factor of 2(iω−Dq2)τ

(iω−2Dq2)τ .
This factor tends to 2 in the dc limit q → 0, ω → 0 and 1
in the regime we are most interested in in this work, i.e.,
ql > s/vF . The renormalization factor of 2 in the dc limit is
consistent with the renormalization of the current vertex in
graphene in the dc limit.21,37 Finally, we see that the vertex
associated with the longitudinal vector potential also acquires
a scalar potential [second term in Eq. (33a)]: This is an induced
deformation-potential coupling, again arising from the helicity
of electrons in graphene.

We stress that in contrast to the renormalized DP [cf.
Eq. (28)], Eqs. (33) explicitly show that there is no large
enhancement of the VP vertex in the ω = 0, q → 0 limit of
interest. As discussed, the lack of a diffusive enhancement is
a direct consequence of the nonconservation of pseudospin
and the consequent lack of a protected diffusion pole. The net
result is that the diffusive vertex correction discussed here does
not significantly enhance the heat flux associated with the VP
coupling at low temperatures.

Finally, for completeness, we give the full form of the
dressed VP e-phonon vertex in the diffusive limit. For the
interaction with LA phonons, combining Eqs. (30)–(33) yields

M̂
η=l

VP,diff(q,ω) = iqξ l
qg2

⎛
⎝ − iql

−iωτ+q2l2 sin 3φq −i
(

3
2 + iωτ/2

iωτ−q2l2

)
e2iφq − i

q2l2/2
−iωτ+q2l2 e

−4iφq

i
(

3
2 + iωτ/2

iωτ−q2l2

)
e−2iφq + i

q2l2/2
−iωτ+q2l2 e

4iφq − iql

−iωτ+q2l2 sin 3φq

⎞
⎠ . (34)

The full interaction vertex for TA phonons can be obtained in
a similar fashion. One finds that vector potentials arising from
TA and LA phonons make identical contributions to the heat
flux.

III. RESULTS AND DISCUSSIONS

A. Heat flux without screening

Having now determined both the renormalized electron-
phonon vertices [cf. Eqs. (28) and (34)] as well as the
disorder-averaged electronic Green functions [cf. Eq. (15)],

we have all the necessary ingredients to evaluate Eq. (21) for
the electronic collision integral. From this, Eq. (11) directly
yields the desired electron-phonon heat flux. As with the
disorder-free case, we again find that the DP and VP couplings
contribute independently; we can thus meaningfully discuss
the flux associated with each coupling. It is useful to express
each of these heat fluxes in terms of an energy control function
Fα(T ) (α = DP,VP), defined via

Pα(Te,Tph) = ν

∫
dε εĪα,0(ε) ≡ Fα(Te) − Fα(Tph). (35)
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Here, Īα,0(ε) is the momentum average of the collision integral
corresponding to the coupling mechanism α.

We discuss each mechanism in turn, focusing as always on
the regime s

vF
Tdis < T � TBG; as discussed, the lower limit

here allows us to ignore the frequency dependence of the
renormalized electron-phonon vertices. We also first discuss
our results in the absence of any electronic screening.

1. Deformation-potential heat flux

The energy control function determining the DP heat flux
through the whole temperature regime s

vF
Tdis < T � TBG is

obtained from Eqs. (C2) and (C3) to be

FDP(T ) = 4g2
1

s

vF

ν

2πρM

∫ ∞

0
dq q3

[
ql

(
1√

1 + q2l2
+ 1

q2l2

)

− 1

ql

(
1 − 1√

1 + q2l2

)]
N (ωq,T ). (36)

Here, ωq = sq, and we have included an overall factor of
4 reflecting the identical contribution from both valleys and
both physical spin projections. The integrand reflects the
contribution from phonons having momentum q to the heat
flux. The first term corresponds to the contribution stemming
only from the diagonal parts of the renormalized DP electron-
phonon vertex, whereas the second term corresponds to off-
diagonal terms (i.e., the effective vector potential generated by
the chiral diffusion). The clean limit can easily be obtained by
taking l → ∞, yielding

FDP,clean ≡ lim
l→∞

FDP(T ) = π2

15
g2

1
EF

h̄5ρMv3
F s3

(kBT )4 , (37)

where we explicitly include factors of h̄ in the expression. This
result is the same as the heat flux for deformation potential in
clean graphene obtained in previous theoretical work.7,10,11

For finite l, both terms in Eq. (36) contribute. For
long-wavelength phonons satisyfing ql � 1, the first term
dominates the second (effective vector potential) term by a
large factor 1/(ql)2. In contrast, for phonons having ql ∼ 1,
both terms make comparable contributions. In the diffusive
limit T < Tdis, the energy control function reduces to

FDP(T ) = 2ζ (3)

π2
g2

1
EF

h̄4ρMs2v3
F l

(kBT )3 . (38)

The power law becomes T 3 instead of T 4; this is the result
of the diffusive enhancement of the diagonal parts of the
renormalized DP vertex, in complete analogy to what happens
in a conventional disordered metal.13–16,38–40 The correspond-
ing thermal conductance G = (d/d�)P (T + �,T ) associated
with the DP coupling is shown in Figs. 2 and 3.

We note that the T 3 power law in Eq. (38), valid in
the disorder-dominated regime T < Tdis, is identical to what
would be obtained for conventional 2D electron gas coupling
via deformation potential to 2D phonons. Previous works
studying related physics15,16,38–41 consider a conventional 2D
electron gas embedded in a 3D structure, so that electrons
interact with 3D phonons. For the common case of a 2D
electron gas in a GaAs/AlxGa1−xAs heterostructure (as
studied in Refs. 38–41), the dominant e-phonon interaction
at low temperature is not a deformation-potential coupling,
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FIG. 2. (Color online) Thermal conductance per unit area G/A

associated with the deformation-potential coupling versus temper-
ature T , including the effects of disorder, but without electronic
screening. We have taken a bare coupling constant g1 = 20 eV, carrier
density n = 1012/cm2, and mean free path l = 20 nm. The black solid
line is the full result of our theory. The green-dashed line shows the
asymptotic T 2 dependence in the low-temperature T � Tdis limit,
whereas the red-dotted line shows the asymptotic T 3 behavior in the
high-temperature (clean) limit.

but rather a piezoelectric coupling. For these reasons, these
previous works obtain different power laws for the e-phonon
heat flux than those reported in this work, i.e., a power
law of T 5 in the clean limit and T 4 in the disordered limit
for deformation-potential coupling in the weak screening
case.15,16 The same power law of T 5 in the clean case and
T 4 in the disordered case were also obtained for piezoelectric
coupling in the strong screening case.38–41

As noted in the Introduction, the expression in Eq. (38) is
exactly twice of that of the e-phonon heat flux associated
with impurity-assisted “supercollisions,” as described by
Song et al. in Ref. 1, for temperatures T � TBG. Unlike our
study, Ref. 1 considers e-phonon scattering dressed by only
a single impurity scattering event, and simply sums the effect
of each impurity. In our approach, the q dependence of the

l = 20 nm
l = 100 nm
l = 10 Μm
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FIG. 3. (Color online) Thermal conductance per unit area G/A

associated with the deformation-potential coupling versus temper-
ature T , including the effects of disorder, showing the effects of
varying the mean free path l as indicated; screening is neglected.
Remaining parameters are the same as Fig. 2. Both the enhancement
of the low-temperature thermal conductance and shift of the crossover
temperature with increasing disorder are clearly evident.
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integrand in Eq. (36) in the dirty limit l → 0 can ultimately
be traced to the diffusive enhancement of the DP vertex [cf.
Eq. (28)]. In contrast, the corresponding q dependence in Ref. 1
can be traced to the energy of a virtual electronic state in a
second-order process involving both e-phonon and e-impurity
scattering events.

2. Vector-potential coupling heat flux

The energy control function FVP(T ) for vector-potential
coupling in the temperature regime s

vF
Tdis < T � TBG is

obtained from Eqs. (C4) and (C5) to be

FVP(T ) = 4g2
2

s

vF

ν

2πρM

∫
dq q3

×
[
ql

(
1√

1 + q2l2
+ 1

2(1 + q2l2)

)

− 1

2ql

(
1 − 1√

1 + q2l2

)]
N (ωq,T ). (39)

We have again included an overall factor of 4 in front to take
into account the valley and spin degeneracy. The first term in
the square bracket is the contribution from the vector potential
after renormalization and the second term is the contribution
from the induced deformation-potential coupling from vector
potential. At ql � 1, the second term gives a contribution
about 1/6 of the first term, while at ql � 1, the second term
is smaller by a factor of 1/2ql. In the clean limit T � Tdis,
the energy control function for vector potential has the same
functional form as that for the DP coupling, i.e.,

FVP(T ) = π2

15
g2

2
EF

h̄5ρMv3
F s3

(kBT )4 . (40)

In the opposite diffusive limit T � Tdis, the energy control
function for the VP coupling reduces to

FVP(T ) = 30ζ (5)

π2
g2

2
EF l

h̄6ρMs4v3
F

(kBT )5 . (41)

Unlike the DP coupling, we see disorder increases the power
of temperature of the low-temperature heat flux, indicating a
suppression of heat flux from VP coupling. As discussed, the
lack of a diffusive enhancement of the VP coupling is directly
tied to the nonconservation of pseudospin; the main remaining
effect of disorder is a simple broadening of the electronic
eigenstates. The result is that for T � Tdis, disorder suppresses
VP-mediated heat transport. Note that as the bare VP coupling
constant g2 has been estimated to be more than an order
of magnitude smaller than the corresponding DP coupling
constant g1,18 it follows that in the absence of screening,
the heat flux associated with the VP coupling is expected to
be negligible in comparison to that associated with the DP
coupling. The thermal conductance associated with the VP
coupling is shown in Figs. 4 and 5.

B. Heat flux with electronic screening

We now consider how the above results are altered if one in-
cludes the screening of the e-phonon interaction. As discussed
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FIG. 4. (Color online) Thermal conductance per unit area G/A

associated with the vector-potential coupling versus temperature T ,
including the effects of disorder, but without electronic screening.
We have taken a bare coupling constant g2 = 1.5 eV, carrier density
n = 1012/cm2, and mean free path l = 20 nm. The black solid line
is the full result of our theory. The green-dashed line shows the
asymptotic T 4 dependence in the low-temperature T � Tdis limit,
whereas the red-dotted line shows the asymptotic T 3 behavior in the
high-temperature (clean) limit.

extensively by von Oppen et al.,24 the deformation-potential
coupling will be subject to screening at long wavelengths in
the usual manner, whereas the vector potential will not be
screened, as it does not induce any net charge density.

While the full dynamical screening of the deformation
potential can be important at low temperatures, it has been
shown that a static-screening approximation is sufficient for
phonon wave vectors q satisfying ql > s/2vF .15,42,43 Thus, in
our regime of interest s

2vF
Tdis < T < Tdis, dynamic screening

will not be important, and a Thomas-Fermi approach is
sufficient. Screening thus implies that the DP coupling constant
g1 in Eq. (6) now becomes q dependent:

g1,sc(q) = g1
q

q + qTF
, (42)
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FIG. 5. (Color online) Thermal conductance per unit area G/A

associated with the vector-potential coupling versus temperature T ,
including the effects of disorder, showing the effects of varying the
mean free path l as indicated; screening is neglected. Remaining
parameters are the same as Fig. 4. Both the suppression of the
low-temperature thermal conductance and shift of the crossover
temperature with increasing disorder are clearly evident.
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where the Thomas-Fermi wave vector qTF is given by12,25

qTF = 4
e2

κh̄vF

kF (43)

and κ is an effective dielectric constant. Using the value of κ

appropriate to graphene on a SiO2 substrate, one has qTF 

3.2kF .12 Note that as we focus on the regime kF l � 1, the
effects of screening will generally set in at a much higher
temperature Tsc = sqTF/kB than the temperature Tdis below
which disorder effects become important.

One can now easily include the effects of screening
into our theory by making the substitution g1 → g1,sc(q) in
Eq. (36) for the energy control function FDP(T ) determining
the deformation-potential mediated heat flux. One finds

FDP,sc(T ) =
⎧⎨
⎩

8π4g2
1EF k6

B

63ρMh̄7v3
F s5q2

TF
T 6, if Tdis � T � Tsc,

24 g2
1EF

π2ρMh̄6v3
F s4q2

TFl
ζ (5)T 5, if T � Tdis,Tsc.

(44)

The suppression of the DP coupling by screening at low
temperatures T � Tdis implies that its associated heat flux
can now become comparable or even smaller in magnitude
to that associated with the VP coupling [cf. Eq. (41)]. In the
low-temperature limit, both mechanisms yield energy control
functions F (T ) ∝ T 5, with

FDP,sc(T )

FVP(T )
∼ g2

1

g2
2

1

q2
TFl

2
. (45)

We see that the largeness of qTFl can compensate for the
relative smallness of g2 with respect to g1, leading both
mechanisms to make comparable contributions. This behavior
is demonstrated in Fig. 6, where the thermal conductance
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FIG. 6. (Color online) Thermal conductance per unit area G/A

versus temperature T , showing the effects of electronic screening.
g1 = 20 eV, g2 = 1.5 eV, a carrier density n = 1012/cm2, and a mean
free path l = 20 nm. The red short-dashed line corresponds to an
unscreened deformation-potential coupling, while the blue dashed-
dotted line corresponds to a screened deformation-potential coupling,
with a Thomas-Fermi wave vector qTF = 3.2kF as appropriate
for graphene on SiO2 (Ref. 12). The dashed purple curve is the
contribution from the vector-potential coupling. Despite its much
smaller bare coupling constant, we see that at low temperatures,
both the deformation-potential and vector-potential couplings make
almost equal contributions when both screening and disorder effects
are included.
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FIG. 7. (Color online) Thermal conductance per unit area G/A

versus temperature T , showing the effects of electronic screening.
Parameters are identical to Fig. 6, except we have now taken the
mean free path to be l = 10 μm, meaning that we are effectively
in the clean limit. Unlike the disordered case shown in Fig. 6, we
now see that at low temperatures, the contribution of the vector-
potential coupling dominates that from the deformation-potential
coupling.

versus temperature for both mechanisms is presented, for
both the strongly and weakly screened cases. The fact that
both mechanisms are comparable is markedly different from
what happens in the screened, disorder-free case, which is
realized when Tdis � T � Tsc. In this case, the VP heat flux
will dominate the DP heat flux at low temperatures, as the VP
heat flux scales like T 4, while the DP heat flux scales like
T 6 (see Fig. 7). This behavior in the clean limit is similar
to expectations for e-phonon contribution to the electrical
resistivity, where it has also been argued that the VP coupling
can dominate at low temperatures.26

However, we note that a recent experiment measuring
the e-phonon contribution to the electrical resistivity of a
suspended graphene flake suggests that screening does not
seem to be playing a role even when T < Tsc,27 as the
results are compatible with the predictions for an unscreened
deformation-potential interaction (see also Ref. 25). The
same conclusions could be drawn from recent experiments
measuring the hot electron heat flux in graphene.2–4

Finally, we note that with our theory, the only way to obtain
a T 3 power law in the heat flux at low temperatures [i.e.,
δ = 3 in Eq. (1)] is via an unscreened deformation potential.
Thus, measurements of the low-temperature heat flux could
also serve as a diagnostic tool for assessing the importance of
screening the deformation potential.

IV. CONCLUSIONS

We have presented a comprehensive theory showing how
electronic disorder modifies the electron-phonon interaction in
graphene (both the vector-potential and deformation-potential
couplings), and how this in turn has observable consequences
for the heat flux between the electrons and lattice (acoustic)
phonons. We focused on the relatively simple situation where
the graphene is doped away from the Dirac point, and where
the impurity potential can be considered smooth on atomic
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scales (implying that the disorder potential preserves the
pseudospin and valley symmetries of the graphene Hamil-
tonian). We found that the unusual diffusion dynamics of
electrons in graphene that results from their chirality also
has implications for how disorder modifies electron-phonon
physics. We also found that this modification is quite different
for the deformation-potential coupling versus the effective
vector-potential coupling. In the absence of screening, the
contribution to the heat flux in Eq. (1) from both couplings
has temperature dependence of T 4 in the clean limit T � s/ l,
consistent with previous work. In the disorder limit T < s/l,
however, disorder affects the two types of couplings differently
and the power law of heat flux for the two couplings becomes
different. We found that the total effect of disorder enhances
the heat flux from DP coupling; however, it suppresses the
heat flux from VP coupling. The power law in Eq. (1) for
DP coupling becomes T 3 in the disorder limit while for
VP coupling, the power law becomes T 5 in the same limit
without screening. Thus, without screening, the DP coupling
is expected to dominate heat transport in both the clean limit
and disorder limit, given that DP coupling is believed to be
much stronger than vector-potential coupling.

We also considered the effects of screening on the above
physics, adopting the Thomas-Fermi approximation. Only
the DP is affected by screening; it suppresses it, and thus
at low temperatures, its contribution to the heat flux scales
like T 6 in the clean limit and T 5 in the disordered limit.
Without disorder, one would thus expect the VP to dominate
at low temperatures due to the screening of DP, similar
to expectations for the electron-phonon contribution to the
resistivity in clean graphene sheets.26 However, when disorder
effects are included along with screening, we find that both
the DP and VP coupling mechanisms can make comparable
contributions at low temperature.

In the future, it would be interesting (though challenging)
to extend these results to situations of lower doping (where
the Fermi energy is closer to the Diract point), and to include
a richer structure of disorder that can break the symmetries
of the clean graphene Hamiltonian (as has been done in, e.g.,
studies of weak localization20).

ACKNOWLEDGMENTS

We acknowledge useful discussions with Anton V. Andreev,
K. C. Fong, Tami Pereg-Barnea, and K. C. Schwab. This
work was supported by NSERC and the Canadian Institute
for Advanced Research (CIFAR).

APPENDIX A: KELDYSH FORMALISM OF THE
KINETIC EQUATION

The Green’s function in the Keldysh space is a matrix as

Ĝ =
(

ĜK ĜR

ĜA 0

)
, (A1)

where ĜR and ĜA are the retarded and advanced Green’s
functions, respectively. The Keldysh component ĜK in general

could be parametrized as ĜK = ĜR ◦ F − F ◦ ĜA, where F is
the Hermitian distribution function matrix. The Green function
obeys the following Dyson equation:

(
0

(
ĜA

0

)−1 − �̂A(
ĜR

0

)−1 − �̂R −�̂K

)
◦

(
ĜK ĜR

ĜA 0

)
= 1, (A2)

where the bare retarded and advanced Green functions in
graphene are (ĜR/A

0 )−1(x,x ′) = δ(x − x ′)(i∂t ′ + i 	̂σ · 	∂r ′) in
the sublattice basis. �̂R/A and �̂K are the retarded, advanced,
and Keldysh components of the electron self-energy, respec-
tively. The circle ◦ indicates integration over intermediate
coordinates.

The equation for the Keldysh component reads

F ◦ (
ĜA

0

)−1 − (
ĜR

0

)−1 ◦ F = �̂K + F ◦ �̂A − �̂R ◦ F.

(A3)

The distribution function matrix F (x,x ′) in graphene could
be decomposed to four components,

F (x,x ′) =
3∑

i=0

fi(x,x ′)σ̂ i , (A4)

where σ̂ 0 is the 2 × 2 unit matrix and σ̂ i , i = 1,2,3 are the
Pauli matrices.

The Wigner transformation of Eq. (A3) gives the kinetic
equation of the distribution function as

−
3∑

i=0

iσ̂ i∂τ fi(t,ρ; ε,p) − 2ivF

3∑
i,j,k=1

εijkσ̂
kkjfi(t,ρ; ε,p)

= �̂K (ε,p) + F (t,ρ; ε,p)�̂A(ε,p) − �̂R(ε,p)F (t,ρ; ε,p)

= I (ε,p; t), (A5)

where the function f0(t,ρ; ε,p) = 1 − 2n(t,ρ; ε,p) and
n(t,ρ; ε,p) is the charge density distribution function,
fi(t,ρ; ε,p), i = 1,2,3 represent the pseudospin density dis-
tribution, and εijk is the three-dimensional antisymmetric
tensor. The parameters t and ρ are center-of-mass time and
coordinates, respectively. Since the translation symmetry in
space is restored after averaging over impurities, we drop the
ρ dependence in the text.

The right-hand side of this equation is the collision
integral I (ε,p; t) (times i) in the presence of interactions.
�̂R, �̂A, and �̂K are, respectively, the retarded, advanced,
and Keldysh components of the electron self-energy due to
e-phonon and impurity scatterings. From the left-hand side
of the above equation, one finds that the pseudospin density
distribution functions fi=1,2,3 are small in a factor of 1/EF τ

compared to f0. To leading order, one can replace F (t,ρ; ε,p)
on the right-hand side by the scalar charge component
f0(ε,p; t).

The collision integral is a 2 × 2 matrix in the sublattice
basis, which can be decomposed to components of σ̂ 0 and
σ̂ i (i = 1,2,3). The three components of σ̂ i (i = 1,2,3) give
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a measure of the pseudospin density induced by interaction,
while the σ̂ 0 component determines the collision integral for
the charge density distribution function and is the one of
interest in this paper. From Eq. (A5), one gets the collision
integral for charge distribution function

I0(ε,p) = ∂n(ε,p; t)

∂t
= −1

2

∂f0(ε,p; t)

∂t
= − i

4
Tr{�̂K (ε,p)

+ [1 − 2n(ε,p; t)](�̂A − �̂R)(ε,p)} (A6)

as shown in Eq. (12).

APPENDIX B: FULL FORM OF THE DIFFUSION
PROPAGATOR AND RENORMALIZED e-PHONON

VERTEX

The full form of the diffusion propagator D(ω,q) crossing
the whole temperature regime s

vF
Tdis < T � TBG is quite

complicated, yet in the temperature regime T > s
vF

Tdis, the
frequency dependence of the diffusion propagator can be
dropped and the typical thermal phonon wave vector q is much
smaller than the Fermi wave vector. In this case, the diffusion
propagator in Eq. (20) is simplified to

D(ω → 0,q)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 +
√

1+q2l2

q2l2 − i
ql

cos φq − i
ql

sin φq 0

− i
ql

cos φq 1 + 1−cos 2φq

2
√

1+q2l2
− sin 2φq

2
√

1+q2l2
0

− i
ql

sin φq − sin 2φq

2
√

1+q2l2
1 + 1+cos 2φq

2
√

1+q2l2
0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B1)
in the Pauli matrix basis.

The four-vector representation of the bare deformation-
potential vertex in the Pauli matrix basis is 	mDP,0 =
iqξ l

q(1,0,0,0)g1. The renormalized vertex according to

Eq. (19) in such basis becomes

	mDP,diff(ω → 0,q) = iqξ l
q

⎛
⎜⎜⎜⎜⎝

1 +
√

1+q2l2

q2l2

− i
ql

cos φq

− i
ql

sin φq

0

⎞
⎟⎟⎟⎟⎠

T

g1, (B2)

where the superscript T means transpose of the column vector
to row vector and the same for 	mVP,diff below. Written in the
sublattice basis, the renormalized deformation-potential vertex
becomes

M̂DP,diff(ω → 0,q) = iqξ l
q

⎛
⎝1 +

√
1+q2l2

q2l2 − ie−iφq

ql

− ieiφq

ql
1 +

√
1+q2l2

q2l2

⎞
⎠ g1.

(B3)

In the diffusive limit ωτ � 1, ql � 1, it reduces to Eq. (28)
(dropping the frequency dependence there), while in the clean
limit ql � 1, it reduces to the bare vertex.

The four-vector representation of the bare vector potential
for the LA phonon in Eq. (6) is

	mVP,0 = iqξ l
q(0, sin 2φq, cos 2φq,0)g2 (B4)

in the Pauli matrix basis. The renormalized vertex according
to Eq. (19) then becomes

	mVP,diff(ω → 0,q)

= iqξ l
q

⎛
⎜⎜⎜⎜⎜⎝

− i sin 3φq

ql

sin 2φq
(
1 + 1

2
√

1+q2l2

) − sin 4φq

2
√

1+q2l2

cos 2φq
(
1 + 1

2
√

1+q2l2

) + cos 4φq

2
√

1+q2l2

0

⎞
⎟⎟⎟⎟⎟⎠

T

g2

(B5)

in the same basis. Written in the sublattice basis, it reads

M̂VP,diff(ω → 0,q) = iqξ l
q

⎛
⎝ − i sin 3φq

ql
−ie2iφq

(
1 + 1

2
√

1+q2l2

) − i e−4iφq

2
√

1+q2l2

ie−2iφq
(
1 + 1

2
√

1+q2l2

) + i e4iφq

2
√

1+q2l2
− i sin 3φq

ql

⎞
⎠ g2. (B6)

In the diffusive limit, it reduces to Eq. (34) (again dropping the frequency dependence there), while in the clean limit ql � 1, it
reduces to the bare vertex.

APPENDIX C: DETAILS OF THE MATRIX COLLISION INTEGRAL

1. Deformation potential

The renormalized deformation potential in the whole regime of ql is presented in Appendix B. Plugging in the renormalized
deformation potential to Eq. (21) and integrating over the phonon frequency, one gets the collision integral for deformation-
potential coupling as

IDP,0(ε,p) = ∂n(ε,p; t)

∂t
= i

∫
dq

(2π )2
g2

1

{
(qξq)2 1(

ε + ωq + i
2τ

)2 − v2
F |p + q|2

[[(
ε + ωq + i

2τ

)(
1 +

√
1 + q2l2

q2l2

)

+ i
vF

l
+ ivF l

qxpx + qypy

q2l2

]
+ h.c.

]
R(ε,ωq) − (ωq → −ωq,q → −q)

}
, (C1)

where ωq = sq.
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The collision integral for deformation potential after average over the electron momentum becomes

ĪDP,0(ε) = 1

πν

∫
dp

(2π )2
A(ε,p)IDP,0(ε,p) = τ

∫
dq

(2π )2
g2

1

{
q2ξ 2

q

[(
1 +

√
1 + q2l2

q2l2

)
1√

1 + q2l2
− 1

q2l2

(
1 − 1√

1 + q2l2

)]

×R(ε,ωq) − (ωq → −ωq,q → −q)

}
. (C2)

The heat flux is then

PDP(Te,Tph) = ν

∫
dε εĪDP,0(ε) = FDP(Tph) − FDP(Te), (C3)

where the energy control function FDP(T ) is presented in Sec. III.

2. Vector potential

Plugging in the renormalized vector potential in Appendix B to the collision integral Eq. (21) and separating the component for
the charge distribution function, one gets the kinetic equation of the charge distribution function due to vector-potential coupling
after averaging over the angle of electron momentum as

∂n(ε; t)

∂t
= ĪVP,0(ε) = τ

∫
dq

(2π )2
g2

2

{
q2ξ 2

q

[(
1 + 1

2
√

1 + q2l2

)
1√

1 + q2l2
− 1

2q2l2

(
1 − 1√

1 + q2l2

)]
R(ε,ωq)

− (ω → −ωq,q → −q)

}
. (C4)

The heat flux due to vector-potential coupling is

PVP(Te,Tph) = ν

∫
dε εĪVP,0(ε) = FVP(Te) − FVP(Tph), (C5)

where the energy control function FVP(T ) is presented in Sec. III.
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Lett. 109, 056805 (2012).

5J. Ziman, Principles of the Theory of Solids (Cambridge University
Press, Cambridge, UK, 1972).
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17J. González, F. Guinea, and M. A. H. Vozmediano, Phys. Rev. Lett.
69, 172 (1992).

18H. Suzuura and T. Ando, Phys. Rev. B 65, 235412 (2002).
19A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and

A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
20K. Kechedzhi, E. McCann, and V. I. Fal’ko, Euro. Phys. J. 148, 39

(2007).
21K. Kechedzhi, O. Kashuba, and V. I. Fal’ko, Phys. Rev. B 77,

193403 (2008).
22B. L. Altshuler, D. Khmel’nitzkii, A. I. Larkin, and P. A. Lee, Phys.

Rev. B 22, 5142 (1980).
23S. Hikami, A. I. Larkin, and N. Nagaosa, Prog. Theor. Phys. 63,

707 (1980).
24F. von Oppen, F. Guinea, and E. Mariani, Phys. Rev. B 80, 075420

(2009).
25H. Min, E. H. Hwang, and S. Das Sarma, Phys. Rev. B 83, 161404

(2011).
26E. Mariani and F. von Oppen, Phys. Rev. B 82, 195403 (2010).
27D. K. Efetov and P. Kim, Phys. Rev. Lett. 105, 256805 (2010).
28P. R. Wallace, Phys. Rev. 71, 622 (1947).
29J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272 (1958).
30E. H. Hwang and S. Das Sarma, Phys. Rev. B 77, 115449

(2008).

125443-13

http://dx.doi.org/10.1103/PhysRevLett.109.106602
http://dx.doi.org/10.1103/PhysRevLett.109.106602
http://dx.doi.org/10.1103/PhysRevB.85.115403
http://dx.doi.org/10.1103/PhysRevX.2.031006
http://dx.doi.org/10.1103/PhysRevX.2.031006
http://dx.doi.org/10.1103/PhysRevLett.109.056805
http://dx.doi.org/10.1103/PhysRevLett.109.056805
http://dx.doi.org/10.1103/RevModPhys.78.217
http://dx.doi.org/10.1103/PhysRevLett.102.206410
http://dx.doi.org/10.1103/PhysRevLett.102.206410
http://dx.doi.org/10.1103/PhysRevB.79.235406
http://dx.doi.org/10.1038/35010065
http://dx.doi.org/10.1103/PhysRevB.79.075417
http://dx.doi.org/10.1103/PhysRevB.81.245404
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/PhysRevB.61.6041
http://dx.doi.org/10.1103/PhysRevLett.94.136602
http://dx.doi.org/10.1103/PhysRevLett.94.136602
http://dx.doi.org/10.1103/PhysRevLett.69.172
http://dx.doi.org/10.1103/PhysRevLett.69.172
http://dx.doi.org/10.1103/PhysRevB.65.235412
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/PhysRevB.77.193403
http://dx.doi.org/10.1103/PhysRevB.77.193403
http://dx.doi.org/10.1103/PhysRevB.22.5142
http://dx.doi.org/10.1103/PhysRevB.22.5142
http://dx.doi.org/10.1143/PTP.63.707
http://dx.doi.org/10.1143/PTP.63.707
http://dx.doi.org/10.1103/PhysRevB.80.075420
http://dx.doi.org/10.1103/PhysRevB.80.075420
http://dx.doi.org/10.1103/PhysRevB.83.161404
http://dx.doi.org/10.1103/PhysRevB.83.161404
http://dx.doi.org/10.1103/PhysRevB.82.195403
http://dx.doi.org/10.1103/PhysRevLett.105.256805
http://dx.doi.org/10.1103/PhysRev.71.622
http://dx.doi.org/10.1103/PhysRev.109.272
http://dx.doi.org/10.1103/PhysRevB.77.115449
http://dx.doi.org/10.1103/PhysRevB.77.115449


WEI CHEN AND AASHISH A. CLERK PHYSICAL REVIEW B 86, 125443 (2012)

31K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, Phys. Rev. B
85, 165440 (2012).

32A. Kamenev and A. Levchenko, Adv. Phys. 58, 197 (2009).
33J. Rammer, Quantum Field Theory of Non-Equilibrium States

(Cambridge University Press, Cambridge, 2007).
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