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Dynamic polarization of graphene by external correlated charges
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We use the dielectric response formalism within random phase approximation for graphene’s π -electron bands
to study polarization of doped, single-layer graphene in the presence of a moving dipole and a pair of comoving
ions, as well as to study the electrostatic part of the long-range interaction in the coadsorption of two ions and two
dipoles on graphene. We find that the vector components of both the force and the torque on the moving dipole
include both the conservative and dissipative contributions, whereas the wake in the induced charge density in
graphene shows asymmetry with respect to the direction of dipole’s motion. Furthermore, the screened interaction
energy between two comoving ions shows oscillations as a function of the interionic separation that may give
rise to a wake-riding bound state of the ions, whereas the total energy loss of those ions shows both constructive
and destructive interference effects in comparison with the energy loss of independent ions. In the case of static
coadsorption on doped graphene, strong screening of the ion-ion electrostatic interaction energy is found as a
function of their separation, whereas antiscreening is found in the interaction energy between two dipoles having
dipole moments perpendicular to graphene. In addition, shallow minima are found in the interaction energies at
finite separations between two ions and between two dipoles having dipole moments parallel to graphene due
to Friedel oscillations, which are shown to be much weaker than in the case of coadsorption on a comparable
two-dimensional electron gas with single parabolic energy band. It is shown that the interaction of graphene with
all the above model systems may be effectively controlled by changing the doping density of graphene.
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I. INTRODUCTION

Recent reviews of the charge carrier transport and other
properties of graphene’s π -electron bands emphasized the
importance of their interaction with charged impurities, which
may be trapped in a substrate or directly adsorbed on
graphene.1,2 In particular, it was shown recently that spatial
correlation among static charged impurities may explain
several intriguing properties observed in the conductivity of
single-layer graphene.3,4 In that context, formation of clusters,
or islands of atoms adsorbed on graphene, may also strongly
affect the mobility of charge carriers in graphene.5 On the other
hand, the structure of the adsorbate assemblies on graphene
at submonolayer coverages is expected to depend on the
interaction energy between adatoms or admolecules, which
is, in turn, affected by the ability of graphene’s π electrons
to screen the electrostatic part of that interaction. Such
substrate-mediated interaction is known to play a key role in
the coadsorption phenomena on solid surfaces.6 For example,
metal surfaces that support a surface state characterized by
two-dimensional electron gas (2DEG) with parabolic energy
dispersion were shown to exhibit Friedel oscillations (FOs),
which may be used to discuss the ordering phenomena in
the adsorbed submonolayers of ionized atoms7,8 and dipolar
molecules.9

In the case of adsorption on graphene, the possibility to
control its equilibrium charge carrier density n by capacitive
gating or by direct charge transfer from the adsorbed atoms
offers an interesting means of controlling the long-ranged
electrostatic interaction between the adatoms via changing
the screening ability of graphene. Such a mechanism should
work well for adsorbates that do not hybridize with graphene’s

π -electron bands,10 such as alkali atoms that form ionic bond
with graphene,11 or for closed-shell adsorbates that are charac-
terized by a large dipole moment, such as water molecules.12

With the spatial correlation among adsorbed species being
essentially determined by the screened interaction between
them, one could devise an effective way of controlling the
mobility of charge carriers in graphene, as was shown in
the case of controlled K-atom adsorption on free-standing
graphene.13 Of course, the role of substrate should also be
taken into account in such processes because of the presence
of uncontrolled amount of trapped charges.2,14

However, there are only few recent experimental studies
of structure and dynamics of submonolayer assemblies of
adatoms of relevance to graphene, examining the diffusion of
the K atoms on graphite15 and formation of the Cs superlattices
on graphene.16 Noting that the alkali adatoms are largely
ionized due to charge transfer to graphene, those studies
demonstrated the existence of a strong dipole-dipole–like
repulsion between the adatoms that prevents cluster formation.
However, no conclusive evidence was found of ordering
that may result from the long-ranged FOs in the adatom
interaction energy on graphene,15,16 which is in contrast to the
observations on metallic surfaces with 2DEG.7–9 A possible
explanation may come from the fact that the amplitude of FOs
in graphene decays faster than their amplitude in 2DEG.17–19

Furthermore, studying the electrostatic dipole-dipole interac-
tions on graphene may also be of interest for, e.g., extending
the studies of relaxation dynamics of liquids near nonmetallic
surfaces,20 formation of a superlattice in an assembly of
nanoparticles on graphitic surfaces,21 or electrostatic modeling
of lateral interactions between polar molecules adsorbed on
metal surfaces.22
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On the other hand, interactions of graphene with external
charges that move at the speed on the order of graphene’s
π -band Fermi speed vF (≈c/300, with c being the speed
of light in vacuum) were recently studied experimentally in
the context of both the high-resolution reflection electron
energy-loss spectroscopy (HREELS) (Refs. 23–26) and the
low-energy scattering of the Li and H ions.27,28 In the
theoretical accounts of such interactions, dynamic polarization
of graphene’s π -electron bands was described by a kinetic
model29 and by a dielectric function within the random
phase approximation (RPA),18,30–32 including the damping
effects via Mermin’s approach,33 local-field effects,34,35 and
the coupling with substrate phonons.34,36,37 It was shown
that graphene exhibits important differences with respect to
a 2DEG (Refs. 38 and 39) in both the stopping (dissipative)
force and the image (conservative) force, as well as in the
wake effect in the induced charge density in graphene due
to a moving point charge,35 which arise mostly due to the
effects of graphene doping and the role played by the interband
single-particle excitations (SPEs).40

In the above studies, particular attention was paid to
the interaction with charged particles moving parallel to
graphene,29,33,41,42 of relevance for possible extensions of the
ion-surface grazing scattering technique to graphene,43–45 as
well as for channeling of fast ions46–52 and molecules53,54

through carbon nanostructures. In that context, motivated by
observations made in the scattering of molecules on solid
surfaces55–57 and in the channeling of molecules through
carbon nanotubes,53 it is worthwhile exploring the phe-
nomenology that may arise in grazing scattering of the
molecular projectiles from graphene. Such processes may
include the dissociation of the incident molecule,58,59 Coulomb
explosion of its ionic fragments,60,61 vicinage effect in the
energy loss of these fragments,62 secondary electron emission
from the surface,57 and the radially constrained oscillations
of ion fragments in nanotubes.53 It is also of interest to study
the interaction of graphene with fast, undissociated molecules
with permanent electric dipole moment, in analogy with the
studies of grazing scattering of a dipole from a metal surface63

or supported 2DEG,64 and channeling of a dipole through a
carbon nanotube.54 Moreover, investigation of the dissipative
processes occurring due to the dynamic Casimir interaction
between slow dipolar molecules with metal surfaces has
received considerable attention recently,65–67 which renders
studying such processes on graphene also worthwhile.

With a view to such applications, we study the interaction
of graphene with multiple point charges representing ions that
move in a correlated manner over graphene, as would occur
in Coulomb explosion of molecular or cluster projectiles,
as well as with point dipoles representing undissociated
molecules or atoms with permanent dipole moment that may
be regarded as a limiting case of closely correlated charges
of opposite sign. In doing so, we consider a single-layer
graphene and note that the use of the dielectric function
within the RPA for its π electrons is justified for particles
moving at distances z0 above graphene that are larger than
its lattice constant a ≈ 2.46 Å (thereby neglecting the size
of graphene’s π -electron orbitals) with speeds satisfying the
condition v < 2z0εc/h̄, where εc ≈ 1 eV is a high-energy
cutoff validating the approximation of linearized π -electron

bands (thereby neglecting the intervalley scattering of charge
carriers in graphene).18,32,33 When the projectile speed is
normalized by the Fermi speed of graphene, the latter condition
amounts to v/vF � 0.3 z0 with z0 expressed in angstroms.

Our formulation of the problem readily takes into account
the effects of substrate that supports dynamic polarization
modes of its own and is placed a finite distance h underneath
graphene, as well as the effects of damping and the local
fields in graphene. However, our primary focus is to explore
the effects of finite-equilibrium charge carrier density n in
free-standing graphene, as well as the effects of the projectiles’
speed v and its distance z0 above graphene on (a) dissipative
and conservative forces and torque on a moving dipole,
(b) wake in the charge density in graphene induced by the
moving dipole, (c) dynamically screened interaction energy
between two comoving ions as a function of their separation
d, and (d) correlated energy loss of two comoving ions. In
the static limit, special attention is paid to the role played by
FOs in the interaction energy between two ions and between
two dipoles, coadsorbed on graphene. In addition, several
comparisons are made with a “massive” 2DEG (m2DEG),
characterized by a single parabolic energy band of relevance
to metallic surface states, with its dielectric response also
described within the RPA.68 We note that, while several
comments are specifically made on the results for intrinsic, or
neutral (n = 0) graphene, one expects strong influence of the
electron-hole puddles in this regime,14 requiring a treatment
that goes beyond present context.

After outlining the theoretical model in the next section,
the presentation of the results is organized by first discussing
a moving point dipole, followed by a discussion of the
static limit for two particles, and concluded by considering a
moving ion pair, whereas our conclusions will be summarized
in the final section. In the Appendix, we outline a theory used
for studying the wake effect in the induced charge density
in graphene. Note that we use Gaussian electrostatic units,
unless otherwise explicitly stated.

II. THEORY

We use a Cartesian coordinate system with coordinates
R = {r,z}, where r = {x,y}, and assume that graphene is
placed in the z = 0 plane. A semi-infinite substrate with the
(relative) dielectric constant εsub is assumed to occupy the
region z � −h < 0 underneath graphene, while the region
z > −h is assumed to be vacuum or air. By performing
the Fourier transform (FT) with respect to the coordinates
parallel to graphene (r → q) and with respect to time (t → ω),
one may easily show that the screened interaction above
graphene,69 or the Green’s function of the Poisson equation for
this system G(R,R′; t − t ′) ≡ G(r − r′,z,z′; t − t ′) for z>0
and z′ >0, has its FT given by G̃(q,z,z′; ω) = G̃C(q,z,z′) +
G̃ind(q,z,z′; ω), where G̃C(q,z,z′) = (2π/q)e−q|z−z′ | corre-
sponds to the bare Coulomb interaction, and

G̃ind(q,z,z′; ω) = 2π

q
e−q(z+z′)

[
1

ε(q,ω)
− 1

]
(1)

corresponds to the induced interaction due to polarization of
graphene and the substrate. Here, the dielectric function of the
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system is given by

ε(q,ω) = εbg(q,ω) + VC(q)�(q,ω), (2)

where VC(q) = 2πe2/q, and �(q,ω) is the polarization func-
tion of noninteracting π electrons in free graphene.18,30–32 In
Eq. (2), the background dielectric constant is given by69

εbg(q,ω) =
[

1 − εs(q,ω) − 1

εs(q,ω) + 1
e−2qh

]−1

, (3)

corresponding to a substrate with nonlocal dielectric function
εsub that depends on a three-dimensional (3D) wave vector
{q,qz} with q = {qx,qy} and on frequency ω, which yields
within the specular-reflection model34,69

εs(q,ω) =
[

q

π

∫ ∞

−∞

dqz

q2 + q2
z

ε−1
sub

(√
q2 + q2

z ,ω
)]−1

, (4)

where q =
√

q2
x + q2

y . Note that, in a local approximation,
the substrate is simply described by a frequency-dependent
dielectric function giving εs(ω) ≡ εsub(ω) in Eq. (4), as in
the case of, e.g., strongly polar substrate that exhibits surface
phonon modes.34,37

We further assume that a distribution of N -point particles,
each carrying a charge Zje (where e > 0 is the proton charge)
and a dipole moment μj with j = 1,2, . . . ,N is described by
a charge density ρ(R,t) = ρ0(r − vt,z), which corresponds to
a static distribution of charges with density ρ0(r,z) defined
in a frame of reference that moves rigidly with a velocity
v parallel to graphene. This situation may correspond to a
distribution of ionic fragments (with μj = 0) resulting from
a Coulomb explosion of a cluster grazingly scattered from
graphene, where the relative motion of the fragments with
respect to each other may be treated as adiabatic within the
moving frame of reference.57 Denoting the position of the j th
particle in that frame by Rj = {rj ,zj } with zj >0, we may
write

ρ0(r,z) =
N∑

j=1

(Zje − μj · ∇R)δ(R − Rj ), (5)

where δ(R − Rj ) = δ(r − rj ) δ(z − zj ) is a 3D delta function.
Therefore, with the induced potential in the region above
graphene (z > 0) given by

	ind(R,t) =
∫

d3R′
∫ ∞

−∞
dt ′ Gind(R,R′; t − t ′)ρ(R′,t ′), (6)

we may express the total induced electrostatic (self-) energy
of the assembly of N particles as57

Uind = 1

2

∫
d3R ρ(R,t)	ind(R,t)

= 1

2

∫
dz

∫
dz′

∫
d2q

(2π )2
G̃ind(q,z,z′; q·v)ρ̃∗

0 (q,z)ρ̃0(q,z′)

= 1

2

∫
d2q

(2π )2

2π

q
|F(q)|2 Re

[
1

ε(q,q · v)
− 1

]
, (7)

where ρ̃0(q,z) is a two-dimensional (2D) FT of the charge
density in Eq. (5), while the form factor of the assembly is

defined by

F(q) =
N∑

j=1

Qj (q)e−iq·rj −qzj , (8)

with Qj (q) = Zje − qμ⊥
j − i q·μ‖

j being the charge form
factor of the j th particle having the dipole components
μ⊥

j and μ
‖
j that are perpendicular and parallel to graphene,

respectively. In a similar manner, one may also define the rate
of energy loss of the assembly of N particles by70

dE
dt

= −
∫

d3R ρ(R,t)
∂

∂t
	ind(r,z,t)

= −
∫

d2q
(2π )2

2π

q
|F(q)|2 q · v Im

[
1

ε(q,q · v)

]
. (9)

In the final expressions of Eqs. (7) and (9), we have used the
symmetry of the dielectric function ε∗(q,ω) = ε(q,−ω).

It is often of interest to assume that all particles have the
same charges and dipole moments, so that Qj (q) ≡ Q(q) for
all j , allowing one to write |F(q)|2 = |Q(q)|2S(q), where
the geometric effect of correlated charges is exposed via the
structure factor

S(q) =
N∑

j=1

e−2qzj +
N∑

j=1

N∑
j �=�=1

eiq·(r�−rj )e−q(zj +z�). (10)

Note that the first summation in this structure factor, when used
in Eq. (7), represents independent contributions due to the self-
energy, or the image potential of each particle or, when used
in Eq. (9), it represents independent contributions due to the
stopping force on each particle. On the other hand, the second
term in Eq. (10) with double summation over the distinct
particle pairs, when used in Eq. (7), represents contributions
due to the dynamically screened pairwise interaction energies
or, when used in Eq. (9), the double summation gives rise to
the so-called vicinage, or the interference effect in the total
energy loss of the assembly due to the spatial correlation
among particles.57

While the above formalism may be readily used to study the
interaction of graphene with an assembly of particles having
arbitrary geometric configuration, we limit our focus to a
few important special cases: a point dipole, two point ions
with finite separation, and two static point dipoles with finite
separation between them.

A. Point dipole

A point dipole with zero net charge may be regarded
as a limit of two extremely correlated point charges of the
opposite signs, having a vanishingly short relative position
vector between them, d → 0, such that Zed → μ = {μ‖,μz}
with μ‖ = {μx,μy}. One may evaluate the self-energy and the
forces acting on a dipole grazingly scattered from graphene
as follows.63,64 With ρ(R,t) in Eq. (6) replaced by the charge
density ρdip(R,t) = −μ · ∇R δ[R − R0(t)] that corresponds to
a dipole moving parallel to graphene along the trajectory
R0(t) = {vt,z0} at a fixed distance z0 above graphene, one
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obtains the dipole self-energy as

Udip = 1

2

∫
d3R ρdip(R,t)	ind(R,t) = 1

2

∫ ∞

−∞
dt ′ (μ · ∇R)(μ · ∇R′)Gind(R,R′; t − t ′)|R=R0(t), R′=R0(t ′)

= 1

2

∫
d2q

(2π )2

2π

q

[
(q · μ‖)2 + q2μ2

z

]
e−2qz0 Re

[
1

ε(q,q · v)
− 1

]
. (11)

With the induced electric field above graphene given by Eind(R,t) = −∇R	ind(R,t), the total induced force on the dipole reads
as

Find =
∫

d3R ρdip(R,t)Eind(R,t) = −
∫ ∞

−∞
dt ′ (μ · ∇R)(μ · ∇R′)∇RGind(R,R′; t − t ′)|R=R0(t), R′=R0(t ′)

= −
∫

d2q
(2π )2

2π

q
(iq − q êz)

[
(q · μ‖)2 + q2μ2

z

]
e−2qz0

[
1

ε(q,q · v)
− 1

]
, (12)

where êz is a unit vector in the direction of the z axis.
Note that the rate of energy loss for a dipole, obtained from
Eq. (9) with ρ replaced by ρdip, gives (dE/dt)dip = −v·Find,
showing that the component of the force [Eq. (12)] taken in the
direction of motion is dissipative, giving rise to the stopping
of the dipole due to the excitation of dynamic modes in
graphene (and possibly the substrate, too). On the other hand,
the force component from Eq. (12) that is perpendicular to
graphene may be expressed in terms of the dipole self-energy
[Eq. (11)] as êz ·Find = −∂Udip/∂z0, exposing its conservative
nature that is related to the image interaction of the dipole with
graphene (and the substrate).

If one assumes that the dipole moves with the velocity v
that is directed along the x axis, then the total force on the
dipole Find = {Fx,Fy,Fz} may be written as

Fx = − 1

z4
0

[
μ2

xf
d
x + μ2

yf
d
y + μ2

z

(
f d

x + f d
y

)]
, (13)

Fy = − 2

z4
0

μxμyf
d
y , (14)

Fz = − 1

z4
0

[
μ2

xf
c
x + μ2

yf
c
y + μ2

z

(
f c

x + f c
y

)]
, (15)

where the dissipative and conservative dimensionless force
coefficients f d

α and f c
α are given, respectively, by

f d
α = −z4

0

∫
d2q
2π

q2
α

qx

q
e−2qz0 Im

[
1

ε(q,qxv)

]
, (16)

f c
α = −z4

0

∫
d2q
2π

q2
αe−2qz0 Re

[
1

ε(q,qxv)
− 1

]
, (17)

with α = x,y. While the force components Fx and Fz are
purely dissipative and purely conservative, respectively, and
may be associated with the stopping force and the image force
on the dipole, one notices that, somewhat surprisingly, there
also exists a nonvanishing dissipative force Fy that is parallel
to graphene but is perpendicular to the direction of motion, as
long as the dipole components satisfy μxμy �= 0.63,64

In order to study the effects of the dipole moment orien-
tation, it may be useful to express its Cartesian components
in terms of its magnitude μ = ‖μ‖ and the direction angles
θ relative to the z axis and ϕ relative to the x axis (i.e., the
direction of the dipole motion parallel to graphene), whence
μx = μ sin θ cos ϕ, μy = μ sin θ sin ϕ, and μz = μ cos θ .
Then, taking the angular average over all possible dipole
orientations, one finds 〈μ2

x〉 = 〈μ2
y〉 = 〈μ2

z〉 = μ2/3 and
〈μxμy〉 = 0, so that the corresponding averaged force
components are 〈Fy〉 = 0, whereas 〈Fx〉 = (μ2/6)∂2F u

s /∂z2
0

and 〈Fz〉 = (μ2/6)∂2F u
im/∂z2

0 show clear and simple relations
with the corresponding stopping and image forces F u

s and F u
im

that act on a point ion with unit charge, given by, respectively,33

F u
s = 2

πv

∫ ∞

0
dq e−2qz0

∫ qv

0
dω

ω√
q2v2 − ω2

Im

[
1

ε(q,ω)

]
,

(18)

F u
im = 2

π

∫ ∞

0
dq q e−2qz0

∫ qv

0

dω√
q2v2 − ω2

Re

[
1

ε(q,ω)
− 1

]
.

(19)
Finally, the torque acting on the dipole about its center of

mass in the moving frame of reference may be evaluated as64

τ =
∫

d3R ρdip(R,t)[R − R0(t)]×Eind(R,t) = −
∫ ∞

−∞
dt ′ (μ×∇R)(μ·∇R′)Gind(R,R′; t − t ′)|R=R0(t), R′=R0(t ′)

=
∫

d2q
(2π )2

2π

q
[μ × (iq − q êz)][μ · (iq + q êz)]e

−2qz0

[
1

ε(q,q · v)
− 1

]
. (20)

For a dipole moving with speed v along the x axis, the Cartesian components of the torque on the dipole τ = {τx,τy,τz} may be
written as

τx = − 1

z3
0

(−μyμzm
c
x + μxμym

d
)
, (21)
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τy = − 1

z3
0

[
μxμzm

c
y − (

μ2
x + μ2

z

)
md

]
, (22)

τz = − 1

z3
0

[
μxμy

(
mc

x − mc
y

) + μyμzm
d], (23)

where the dissipative and conservative dimensionless torque
coefficients md and mc

α are given, respectively, by

md = −z3
0

∫
d2q
2π

qxe
−2qz0 Im

[
1

ε(q,qxv)

]
, (24)

mc
α = −z3

0

∫
d2q
2π

q2
α

q
e−2qz0 Re

[
1

ε(q,qxv)
− 1

]
, (25)

with α = x,y. One notices that all three components of the
torque generally consist of both the dissipative and conserva-
tive contributions. In the case of a randomly oriented dipole,
one finds that 〈τx〉 = 〈τz〉 = 0, whereas the only nonvanishing
component 〈τy〉 = (μ2/3)∂F u

s /∂z0 > 0 is clearly dissipative
and amounts to the dipole “rolling” along the surface of
graphene as it moves at the speed v.

B. Separated particles

The case of two ions at finite separation that have equal
charges Ze and zero dipole moments is of interest, e.g., for
analyzing the electrostatic interaction energy in the coadsorp-
tion of alkali-metal atoms on a surface,6–8,15,16 or for studying
the comoving ion fragments during Coulomb explosion of a
homonuclear diatomic molecule on a surface.56,57,60,61 In the
latter case, experiments and simulations of grazing scattering
of molecules from surfaces showed that the internuclear
axis tends to remain parallel to the surface during Coulomb
explosion.55–62 In either case, it is then worthwhile studying the
configuration of two point ions at equal and fixed distances z0

from graphene with their relative position vector d = r2 − r1

parallel to the graphene, giving a simple structure factor of the
form

S(q) = 2e−2qz0 [1 + cos(q · d)]. (26)

If one uses the second term from this expression in Eq. (7) and
combines it with the bare Coulomb interaction for two ions a
distance d = ‖r2 − r1‖ apart, one obtains the total screened
interaction energy between the ions as

U i
scr = Z2e2

d
+ Z2e2

2π

∫
d2q
q

e−2qz0 cos(q · d)

× Re

[
1

ε(q,q · v)
− 1

]
. (27)

On the other hand, by using the full structure factor from
Eq. (26) in Eq. (9), one may write the total energy loss of
two ions as the sum (dE/dt)tot = 2(dE/dt)ion + (dE/dt)vic,
where (dE/dt)ion = −vZ2e2F u

s > 0 is the loss rate for a single
independent ion of charge Ze [see Eq. (18)], while(

dE
dt

)
vic

= −Z2e2

π

∫
d2q
q

e−2qz0 cos(q · d) q · v

× Im

[
1

ε(q,q · v)

]
(28)

describes the vicinage effect in the energy loss. It is cus-
tomary to analyze the vicinage effect in terms of the ratio

R = (dE/dt)vic/[2(dE/dt)ion] for various orientations of the
interionic axis d with respect to the velocity vector v.57 Two
special cases are of particular interest. Namely, when d is
directed along v one expects strong destructive interference
effects in the energy loss, whereas randomly oriented interionic
axis is of interest for statistical analysis of Coulomb explosions
on surfaces. In the latter case, one may perform 2D averaging
over the orientation angles of d, which amounts to replacing the
factor cos(q·d) in Eqs. (27) and (28) by 〈cos(q·d)〉 = J0(qd),
where J0 is the Bessel function of zeroth order. Then, the
resulting ratio Rrand has two obvious limits as a function of
distance d, i.e., Rrand → 1 when d → 0 and Rrand → 0 when
d → ∞.

Finally, it is interesting to consider a system of static (v =
0) point dipoles with zero charge, which are placed at the
positions Rj = {rj ,zj } and have the dipole moments μj , the
orientations of which may vary from dipole to dipole. The total
induced self-energy of this system may be written as

U d
ind =

N∑
j=1

U
(j )
dip + 1

2

N∑
j=1

N∑
j �=�=1

(
μj · ∇Rj

)(
μ� · ∇R�

)

×
∫ ∞

0
dq e−q(zj +z�) J0(qrj�)

[
1

ε(q)
− 1

]
, (29)

whereU
(j )
dip is the individual self-energy of the j th dipole

defined in Eq. (11) with v = 0, rj� = ‖r� − rj‖ is the projected
interdipole distance in the plane of graphene, and ε(q) is the
static dielectric function of the system. The second term in
Eq. (29) with double summation is responsible for a graphene-
(and substrate-) mediated interaction between the dipoles. For
a special case of two dipoles with the moments μ1 and μ2
that are placed at equal distances z0 above graphene with their
relative position vector d = r2 − r1 being parallel to graphene,
the second term in Eq. (29) gives

U d
int = μ⊥

1 μ⊥
2 V0 + [μ⊥

1 (μ‖
2 · d̂) + μ⊥

2 (μ‖
1 · d̂)]V1

+ 1
2μ

‖
1 · μ

‖
2(V0 + V2) − (μ‖

1 · d̂)(μ‖
2 · d̂)V2, (30)

where d̂ = d/d is a unit vector in the direction of the
interdipolar axis, and the coefficients Vk are given for k = 0, 1,
and 2 by

Vk =
∫ ∞

0
dq q2e−2qz0 Jk(qd)

[
1

ε(q)
− 1

]
, (31)

with Jk being a Bessel function of order k. With the bare
Coulombic interaction between two point dipoles being written
for the present configuration as

U d
C = 1

d3
[μ⊥

1 μ⊥
2 + μ

‖
1 · μ

‖
2 − 3(μ‖

1 · d̂)(μ‖
2 · d̂)], (32)

the total screened dipole-dipole interaction energy on graphene
is obtained from Eqs. (30) and (32) as U d

scr = U d
C + U d

int.

III. RESULTS AND DISCUSSION

In this section, we first provide a discussion of the
interaction of a moving point dipole with graphene, which
is followed by a discussion of several results for two separated
ions and two separated dipoles. The polarization function
�(q,ω) of doped graphene with finite charge carrier density n

125442-5
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describes three types of excitations in graphene’s π -electron
bands that may be characterized by different regions in the first
quadrant of the (q,ω) plane.18,30–33 The interband SPEs occur
in the region ω/vF > max(q,2kF − q), while the intraband
SPEs occur in the region q > ω/vF > max(q − 2kF ,0), where
kF = √

πn is graphene’s Fermi wave number (we assume
n > 0 without loss of generality). In addition, a well-defined
plasmon mode exists in the region q < ω/vF < 2kF − q for
q < kF that exhibits a ω ∝ √

q dispersion relation at long
wavelengths.

In the case of intrinsic graphene (n = 0), the polarization
function has a particularly simple form, given by18,30–33

�0(q,ω) = q2

4h̄

[ U(qvF − ω)√
(qvF )2 − ω2

+ i
U(ω − qvF )√
ω2 − (qvF )2

]
, (33)

where U is the Heaviside unit step function, which reflects the
fact that only the interband SPEs are allowed in the region
ω > vF q. As a consequence, for intrinsic graphene supported
by a substrate with zero gap (h = 0) and with static dielectric
constant εsub, so that εbg = ε0

bg ≡ (εsub + 1)/2, the resulting
dielectric function of the system ε(q,ω) only depends on the
ratio ω/q, so that the dependence of various quantities on
spatial variables, such as the distance z0 and the separation d,
may be factored out. For example, one finds from Eqs. (18)
and (19) that both the stopping and image forces on a point
ion with the charge Ze are proportional to the factor F i

0 =
Z2e2/z2

0 that is multiplied by certain universal functions of
the reduced ion speed v/vF , the coupling constant of free
graphene rs = e2/(h̄vF ) ≈ 2.19, and the background dielectric
constant ε0

bg.33 Similarly, from Eqs. (12) and (20), one may
easily find that, for intrinsic graphene, the force components
and the torque components on a point dipole with the moment
μ are proportional to the factors F d

0 = μ2/z4
0 and τ0 = μ2/z3

0,
respectively [hence the factorizations in Eqs. (13)–(15) and
(21)–(23)].

Regarding the parameter space, the default model for
graphene is free graphene with zero damping, but we briefly
discuss the effects of polarizable substrate and finite damping
in graphene’s dielectric response, as well as the effects of
replacing graphene with m2DEG. As for the particles that
interact with graphene, for a moving dipole we are mostly
concerned with the dependence of the results on its velocity,
while for the separated particles we are mostly concerned with
the dependence of the results on the interparticle separation d.

A. Moving point dipole

Since the line ω = vF q represents a boundary that separates
the regions in the first quadrant of the (q,ω) plane where in-
terband and intraband SPEs take place, whereas the kinematic
constraints imply a resonance condition in the form ω = vq

for excitation of such modes by an external particle that moves
at speed v parallel to graphene, it is natural to represent
the velocity dependence of various quantities in terms of the
normalized speed v/vF . Comparison with previous results64

may be facilitated by noting that the Fermi speed for graphene’s
π -electron bands is given by vF ≈ 0.46 atomic units.

FIG. 1. (Color online) Stopping force 〈F d
s 〉 (a) and image force

〈F d
im〉 (b) on a randomly oriented point dipole (solid lines), normalized

by F d
0 = μ2/z4

0, and the stopping force F i
s (a) and image force F i

im

(b) on a point ion (dashed lines), normalized by F i
0 = Z2e2/z2

0, both
moving at distance z0 = 20 Å above free graphene, are shown as
functions of the reduced speed v/vF for graphene doping densities:
n = 0 (thin black solid lines coincide with thin black dashed lines),
n = 1013 cm−2 [medium gray (red) lines], and n = 1014 cm−2 [thick
gray (blue) lines].

1. Comparison with point ion

We first compare the stopping and image forces on a
randomly oriented point dipole 〈F d

s 〉 ≡ 〈Fx〉 and 〈F d
im〉 ≡ 〈Fz〉,

with the corresponding forces on a point ion, obtained from
Eqs. (18) and (19) as F i

s ≡ Z2e2F u
s and F i

im ≡ Z2e2F u
im.

In Fig. 1, we show the projectile velocity dependencies of
those forces, normalized by the factors F d

0 = μ2/z4
0 and F i

0 =
Z2e2/z2

0 for the dipole and the ion, respectively, for several
doping densities of free graphene (εsub = 1 or h → ∞). With
such a normalization, the cases of a dipole and an ion above
intrinsic graphene (n = 0) give identical curves (shown by the
thin black lines in Fig. 1), emphasizing the universality of
their scaling by the respective factors F d

0 and F i
0. Note that the

shapes of those curves for intrinsic graphene are determined
essentially by the interband SPEs and, as a consequence, both
stopping forces vanish for projectile speeds v < vF .33 This
universality of scaling is lost for finite charge carrier density n

because the polarization function of doped graphene �(q,ω)
no longer depends on the ratio ω/q alone, as in the case of
intrinsic graphene, but rather introduces a new length scale
given by the inverse Fermi wave number k−1

F , which differently
affects the results for ion and dipole. We have found that, with
increasing charge carrier density in graphene n, there is very
little change in both forces on the dipole, as compared to the
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change found in the forces on the ion, especially at densities
n � 1011 cm−2. For that reason, we only show in Fig. 1 cases
with two rather large doping densities of graphene, in addition
to the case n = 0.

In order to further pursue the comparison with an ion,
we also evaluate the induced charge carrier densities in free
graphene nind due to a point dipole and due to a point ion
moving parallel to graphene at a distance z0 > 0. It was shown
in Ref. 35 that the induced density in graphene due to the point
ion moving at speeds v > vF exhibits strong wake patterns,
and we wish to examine how the direction of the dipole
moment affects such a wake for a moving dipole. Using the
results from the Appendix, we show in Fig. 2 the normalized
densities ni

indz
2
0 for an ion, and nd

indz
3
0e/μ for a dipole with

FIG. 2. (Color online) Induced charge densities in free graphene
with doping density of n = 1013 cm−2 are shown as functions of
the normalized coordinates {x−vt,y} in a moving frame by using the
reduced units: nd

indz
3
0e/μ for a point dipole (a) with a dipole moment μ

oriented along the y axis (i.e., parallel to graphene and perpendicular
to the direction of motion), and ni

indz
2
0 for a point ion (b) of charge

Ze, both moving with the speed of v = 4vF in the direction of the x

axis, at a fixed distance z0 = 20 Å from graphene.

the orientation angles θ = 90◦ and ϕ = 90◦ (i.e., the dipole
moment being parallel to graphene and perpendicular to the
direction of motion), both moving with the speed of v = 4vF

at the distance z0 = 20 Å from free graphene with equilibrium
charge carrier density n = 1013 cm−2. One notices that the
two particles induce similar, V-shaped wake patterns in the
graphene plane that trail the projection of each particle, with
an important difference that the pattern due to the dipole is
asymmetric about the x axis (the direction of motion), while
the pattern due to the ion is symmetric. While this difference
between the surface wakes induced by a moving ion and a
moving dipole is not an exclusive property of graphene, it
seems that experimental verification of such a difference is
still pending.

2. Forces and torque on moving dipole

The asymmetry of the wake pattern in the induced charge
density in free graphene implies that the effects of dipole
orientation may be strong. Equations (13)–(15) and (21)–(23)
show that the Cartesian components of the forces and the
torque acting on a dipole moving at speed v along the x

axis with arbitrary orientation of its dipole moment may be
expressed in terms of several coefficients f d

α and f c
α defined in

Eqs. (16) and (17), as well as md and mc
α defined in Eqs. (24)

and (25), which clearly expose dissipative and conservative
contributions. Note that these coefficients are rendered in
dimensionless form, in conjunction with the scaling factors z−4

0

and z−3
0 that are introduced in Eqs. (13)–(15) and (21)–(23),

respectively, and with their signs chosen so that the dissipative
coefficients are always positive, while positive values of
the conservative force coefficients correspond to attraction
towards graphene.

In Fig. 3, we show those coefficients for a free, intrinsic
graphene (n = 0), when the coefficients are actually inde-
pendent of z0 and are universal functions of v/vF . One
notices resonant features in all coefficients at the dipole speeds
v � 3vF , similar to those observed in Fig. 1, which result
from the onset of the interband SPEs in intrinsic graphene. We
further examine the effects of finite doping with n = 1013 cm−2

and finite damping with the damping constant h̄γ = 400 meV,
which is treated by using a Mermin modified polarization
function for graphene.33,71 One notices in Fig. 3 that both n

and γ have similar effects on the coefficients in softening their
resonant features. This is especially obvious for the dissipative
coefficients for v < vF , which seem to acquire a linear increase
with v at low speeds, with a rate that is proportional to both
n and γ , in a similar manner as was found for point ions.33

As pointed out in Ref. 34, linear dependence of dissipative
forces on velocity is relevant to the friction phenomena on
surfaces,65–67 so that the results from Fig. 3 imply that friction
of slow dipoles on graphene may be efficiently controlled by
its doping density n.

In Fig. 4, we examine the effects of different distances z0

and of graphene doping at the densities n = 1013 cm−2 and
1014 cm−2 over a broader range of dipole speeds. While the
latter density may be unrealistically high for graphene, we use
it, here and elsewhere, to examine the regime where the role
of interband SPEs is expected to be suppressed with respect to
the roles of intraband SPEs and plasmon excitations, thereby
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FIG. 3. (Color online) Panel (a) shows dissipative coefficients f d
x

(solid lines) and f d
y (dashed lines), and panel (b) shows conservative

coefficients f c
x (solid lines) and f c

y (dashed lines) from Eqs. (13)–(15)
for the force components on a point dipole, whereas panel (c) shows
conservative coefficients mc

x (solid lines) and mc
y (dashed lines), and

the dissipative coefficient md (dotted lines) from Eqs. (21)–(23) for
the torque components on a point dipole, as functions of the reduced
speed v/vF of the dipole moving at the distance z0 = 20 Å above
free graphene for three combinations of the doping density n and
the damping constant � ≡ h̄γ with n = 0 and � = 0 (thin black
lines), n = 0 and � = 400 meV [medium gray (red) lines], and
n = 1013 cm−2 and � = 400 meV [thick gray (blue) lines].

making graphene more akin to a m2DEG with single parabolic
band energy.2 One notices in Fig. 4 that increasing both n and
z0 may exert strong influence on various coefficients (within
the adopted normalization), and may even give rise to a change
of sign in the conservative coefficients f c

x and mc
x , which could

then result in the change of sign in the resulting forces and/or
torques in Eqs. (13)–(15) and (21)–(23). A similar effect was
observed for a dipole moving over m2DEG described by a
two-fluid, 2D hydrodynamic model, where the image force on
the dipole was found to become repulsive for certain ranges of
the speed and the dipole orientations.64

Given the importance of the m2DEG model in vari-
ous studies of particle interactions with metallic surface
state bands,7–9,19,38–40 it is worthwhile comparing the dipole
force and torque coefficients for free graphene with those for
free m2DEG within the RPA.68 This is performed in Fig. 5 for
the electron density n = 1013 cm−2 in both systems, and with
the effective mass of the m2DEG chosen to be meff = h̄kF /vF ,

ensuring that both graphene and the m2DEG have the same
plasmon dispersion relation at small wave numbers q. This
criterion for choosing meff is adopted because high-velocity
features in the stopping and image forces on a point ion moving
over m2DEG are dominated by the plasmon excitations in that
system.68 One notices in Fig. 5 generally similar resonant
features in the coefficients for both systems at lower speeds,
say, v � 5vF , but marked differences are seen at higher speeds,
where both the dissipative and conservative coefficients seem
to be more abundant and to decay slower with increasing speed
for graphene than for m2DEG. Similar observations were
made for point ions, where an explanation was provided in
terms of the prevailing role of the interband SPEs in graphene,
even in the regime of heavy doping.40 It is interesting that,
in comparison with the results shown in Fig. 4, one observes
in Fig. 5 that the conservative coefficients f c

x and mc
x for the

m2DEG may also change their signs, albeit at lower speeds
and at lower density than in the case of graphene [see Figs. 4(d)
and 4(f)].

Finally, the effects of substrate are also expected to be
important for interactions with external particles, not only
due to variations in the gap size h,33,34 but also in the case
when a substrate supports surface phonons.34,37 For example,
for an epitaxial graphene grown on a SiC substrate, which
is characterized by a nondispersing transverse optical (TO)
phonon mode with frequency h̄ωTO ≈ 97 meV and damping
rate h̄γTO ≈ 10 meV, one may use a dielectric function of the
form72,73

εsub(ω) = ε∞ + (ε0 − ε∞)
ω2

TO

ω2
TO − ω(ω + iγTO)

, (34)

where ε∞ = limω→∞ εsub(ω) ≈ 6.5 and ε0 = εsub(0) ≈ 9.7
are the high-frequency and the static dielectric constants of
SiC, respectively.72,73 In Fig. 6, we analyze the force and the
torque coefficients for a dipole moving over graphene with
the charge carrier density n = 1013 cm−2, supported by a SiC
substrate with zero gap that is described by either the full
dielectric function in Eq. (34), or by its static limit ε0. Also
shown in Fig. 6 are the results for the case of no graphene,
that is, for a point dipole moving over a SiC surface that
supports a TO phonon mode. As expected, resonant features
due to excitations of the substrate phonon are qualitatively
most distinct at the lowest dipole speeds v < vF , but the
presence of the substrate phonon also affects the magnitude of
all coefficients at high speeds by a surprisingly large amount.
Similar effects were observed for a point ion moving over
graphene epitaxially grown on a SiC substrate.34,37

B. Separated particles

As already mentioned in Sec. II B, in the case of two
particles we are interested in the electrostatic part of the
interparticle interaction energy due to screening by graphene,
which depends on the interparticle separation d, while leaving
out particles’ individual self-energies because they do not
depend on d and they only shift the overall energy reference
level as a function of the distance from graphene. In the case
of coadsorbed particles, we note that their interaction may be
substantially affected at short separations by a direct chemical
bond between the particles, as well as by their hybridization
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FIG. 4. (Color online) Panels (a) and (b) show dissipative coefficients f d
x (solid lines) and f d

y (dashed lines), and panels (c) and (d) show
conservative coefficients f c

x (solid lines) and f c
y (dashed lines) from Eqs. (13)–(15) for the force components on a point dipole, whereas

panels (e) and (f) show conservative coefficients mc
x (solid lines) and mc

y (dashed lines), and the dissipative coefficient md (dotted lines) from
Eqs. (21)–(23) for the torque components on a point dipole, as functions of the reduced speed v/vF of the dipole moving at two distances:
z0 = 5 Å (thin black lines) and z0 = 50 Å [thick gray (red) lines] above free graphene with two doping densities: n = 1013 cm−2 [panels (a),
(c), (e)] and n = 1014 cm−2 [panels (b), (d), (f)], and zero damping.

with graphene. In order to be able to discard such atomistic
effects in the interacting system, we assume d to exceed a
critical distance dc on the order of the chemical bond length
between the particles, and we limit our considerations to
either the closed-shell atoms/molecules or particles that do
not hybridize with graphene’s π orbitals.10,12

In order to emphasize the effects of charge carrier density
in doped graphene on the interparticle interaction energy,
we note that the screening due to polarization of graphene
is governed by its Thomas-Fermi (TF) wave number, given
by qTF = 4rskF . Hence, we adopt a normalization of the
interparticle separation by the inverse Fermi wave number

kF d, and we accordingly normalize the interaction energies
by U i

0 = Z2e2kF for ions and U d
0 = μ2k3

F for dipoles. While
such normalization allows us to show results that cover a
broad range of charge carrier densities in doped graphene,
it prevents us from making direct comparison with intrinsic
graphene because kF = 0 in that case. Such a comparison
may be accomplished by adopting a normalization of the
interparticle separation by the separation of each particle from
its image in the plane of graphene d/(2z0), while normalizing
the interaction energies between two ions and between two
dipoles by the corresponding bare Coulombic interaction
energies U i

C = Z2e2/d and U d
C = μ2/d3.
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FIG. 5. (Color online) Panel (a) shows dissipative coefficients f d
x

(solid lines) and f d
y (dashed lines), and panel (b) shows conservative

coefficients f c
x (solid lines) and f c

y (dashed lines) from Eqs. (13)–(15)
for the force components on a point dipole, whereas panel (c) shows
conservative coefficients mc

x (solid lines) and mc
y (dashed lines), and

the dissipative coefficient md (dotted lines) from Eqs. (21)–(23) for
the torque components on a point dipole, as functions of the reduced
speed v/vF of the dipole moving at the distance z0 = 20 Å above
free graphene with doping density n = 1013 cm−2 (thin black lines),
and above free massive 2DEG with electron density n = 1013 cm−2

[thick gray (red) lines].

1. Two static ions

We first consider a pair of static ions with equal charges Ze

at equal distances z0 from a free, doped graphene. Results are
shown in Fig. 7 for the total screened interaction energy U i

scr
from Eq. (27) with v = 0, normalized by U i

0 = Z2e2kF , as a
function of the reduced interionic separation kF d for several
distances z0 and for several doping densities n. One notices
that the thus normalized interaction energy between the ions
has the shortest range at the lowest density n = 1011 cm−2,
which is least affected by increasing z0. By a comparison with
the bare Coulomb interaction U i

C = Z2e2/d, also shown in
Fig. 7 (by the dashed lines), one notices that doped graphene
provides substantial screening at all densities n. Moreover, the
insets in Fig. 7 show shallow minima in the interaction energy
due to FOs, which are most pronounced at lower densities n

and shorter distances z0. These oscillations may be discussed
by rewriting the total screened interaction energy from Eq. (27)

FIG. 6. (Color online) Panel (a) shows dissipative coefficients f d
x

(solid lines) and f d
y (dashed lines), and panel (b) shows conservative

coefficients f c
x (solid lines) and f c

y (dashed lines) from Eqs. (13)–(15)
for the force components on a point dipole, whereas panel (c) shows
conservative coefficients mc

x (solid lines) and mc
y (dashed lines), and

the dissipative coefficient md (dotted lines) from Eqs. (21)–(23) for
the torque components on a point dipole, as functions of the reduced
speed v/vF of the dipole moving at the distance z0 = 20 Å above:
graphene with doping density n = 1013 cm−2 on a SiC substrate
that supports a surface phonon (thin black lines), graphene with
doping density n = 1013 cm−2 on a SiC substrate described by a static
dielectric constant [medium gray (red) lines], and SiC supporting a
surface phonon with no graphene atop of it [thick gray (blue) lines].
The graphene-substrate gap is h = 0 in all cases.

as U i
scr = U i

TF + U i
FO, where

U i
TF = Z2e2

d
+ Z2e2

∫ ∞

0
dq e−2qz0 J0(qd)

[
1

εTF(q)
− 1

]
(35)

is the interaction energy between the ions in a TF approxima-
tion with the corresponding approximate dielectric function
εTF(q) = 1 + qTF/q, whereas U i

FO gives an oscillatory part of
the interaction arising from a discontinuity of the full static
RPA dielectric function at q = 2kF .17,18 While U i

TF describes
a smooth repulsive interaction with an asymptotic form U i

TF ∝
Z2e2/(q2

TFd
3) for z0 � q−1

TF � d,74 the asymptotic behavior
of the oscillatory part goes as2,18

U i
FO ∝ Z2e2qTF

(2kF + qTF)2

cos(2kF d)

kF d3
(36)
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FIG. 7. (Color online) The total screened interaction energy U i
scr,

normalized by U i
0 = Z2e2kF with kF = √

πn, is shown as a function
of the reduced interionic separation kF d for two static ions of equal
charges Ze, adsorbed at equal distances above free graphene: z0 =
2.5 Å (a), 5 Å (b), and 10 Å (c) for four graphene doping densities:
n = 1011 cm−2 (thin solid black lines), n = 1012 cm−2 [thin solid gray
(red) lines], n = 1013 cm−2 [medium solid gray (blue) lines], and
n = 1014 cm−2 [thick solid gray (olive) lines]. The case of ion-ion
interaction energy above a free massive 2DEG with the electron
density n = 1011 cm−2 is shown by black dotted lines, and the bare
Coulomb interaction U i

C is shown by the dashed gray (wine) lines.

for z0 � k−1
F � d, exhibiting an amplitude that decays with

d at essentially the same rate as the TF interaction.
Because of the importance of the interadatom electrostatic

interactions mediated by a m2DEG,7,8 we also show in Fig. 7
the total screened interaction energy for a free m2DEG with
the electron density n = 1011 cm−2 and with the effective mass
meff = 2h̄

√
πn/(m0vF ), where m0 is the free-electron mass

and vF is graphene’s Fermi speed. This choice of meff ensures
that the m2DEG has the same TF wave number as graphene
so that, by using the same normalization as in the results for
graphene in Fig. 7, the two systems would have identical TF
interaction energies. As a consequence, direct comparison of
the curves in Fig. 7 for graphene with n = 1011 cm−2 with
those for m2DEG clearly shows that the latter system exhibits
much more pronounced FOs in the ion-ion interaction energy.
This is expected because the asymptotic form of FOs for a
m2DEG,2

U i
FO ∝ − Z2e2qTF

(2KF + qTF)2

sin(2KF d)

d2
, (37)

where KF = √
2πn, has an amplitude of oscillations that

exhibits a slower decay with d than the amplitude in Eq. (36)
for graphene. The observed difference in FOs may be related to
the observations of ordering in the layers of ionized adatoms on
surfaces with m2DEG,7,8 and the lack thereof in the analogous
systems on graphene.15,16

Finally, for intrinsic graphene above a substrate with zero
gap and with static dielectric constant εsub, the total screened
interaction energy between two coadsorbed ions is simply
given by the Coulomb repulsion, screened by the interaction
of ions with each other’s image in the plane of graphene,

U i
scr = Z2e2

d
+ Z2e2√

d2 + (2z0)2

(
1

ε0
eff

− 1

)
, (38)

where ε0
eff = ε0

bg + πrs/2 is an effective static dielectric
constant of the system with ε0

bg = (εsub + 1)/2.31,33 In order
to compare this simple result in the case of free graphene
with those shown for doped graphene in Fig. 7(b), we show in
Fig. 10(a) the total screened interaction energy for static ions
U i

scr normalized by U i
C = Z2e2/d as a function of the reduced

interionic separation d/(2z0) with z0 = 5 Å for several doping
densities n. One may conclude that the screening efficiency of
intrinsic graphene is comparable with that of doped graphene
with the lowest charge carrier density of n = 1011 cm−2

in Fig. 10(a) for interionic separations d � 2z0. However,
the screening ratio U i

scr/U i
C for intrinsic graphene approaches

a constant value of 1/ε0
eff = 1/(1 + πrs/2) ≈ 0.225 at large

separations d � 2z0, whereas this ratio vanishes for doped
graphene at finite separations that depend on charge carrier
density d � 2/kF , confirming that screening efficiency of
doped graphene increases with increasing n.

2. Two static dipoles

Moving on to a more complex problem of the coadsorption
of dipolar molecules on doped graphene,9 we use Eqs. (30)
and (32) to evaluate the total screened interaction energy U d

scr
for a static pair of point dipoles having the dipole moments
μ1 and μ2 of equal magnitudes ‖μ1‖ = ‖μ2‖ = μ, which
are placed on free graphene at equal distances z0, and are
separated by a relative position vector d. The results for
U d

scr are normalized by U d
0 = μ2k3

F and are shown in Fig. 8
as a function of the reduced interdipole separation kF d for
z0 = 5 Å, for several doping densities n, and for several
dipole moment orientations: (a) both dipoles perpendicular to
graphene and parallel to each other, (b) both dipoles parallel to
graphene, parallel to d, and antiparallel to each other, and
(c) both dipoles parallel to graphene, perpendicular to d, and
parallel to each other. Also shown in Fig. 8 are the bare
Coulombic interaction energies between the dipoles for those
three configurations U d

C based on Eq. (32).
Noting that the configuration (a) is most likely to occur in

the coadsorption of dipolar molecules on a surface, one notices
in Fig. 8(a) that the screened interaction energy is repulsive
and, in fact, stronger than the corresponding bare Coulombic
interaction at large distances d for all doping densities. This
apparent “antiscreening” by graphene may be rationalized
by noting that the total interaction energy for two dipoles
perpendicular to graphene is determined by the first terms in
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I. RADOVIĆ, D. BORKA, AND Z. L. MIŠKOVIĆ PHYSICAL REVIEW B 86, 125442 (2012)

FIG. 8. (Color online) The total screened interaction energy U d
scr,

normalized by U d
0 = μ2k3

F with kF = √
πn, is shown as a function

of the reduced interdipole separation kF d for two static dipoles with
equal magnitudes of the dipole moments μ, which are adsorbed at
equal distances z0 = 5 Å from free graphene for four graphene doping
densities: n = 1011 cm−2 (thin solid black lines), n = 1012 cm−2 [thin
solid gray (red) lines], n = 1013 cm−2 [medium solid gray (blue)
lines], and n = 1014 cm−2 [thick solid gray (olive) lines], for three
dipole orientations with respect to the interdipole relative position
vector d: (a) both dipoles perpendicular to graphene and parallel to
each other, (b) both dipoles parallel to graphene, parallel to d, and
antiparallel to each other, and (c) both dipoles parallel to graphene,
perpendicular to d, and parallel to each other. The case of the dipole-
dipole interaction energy above a free massive 2DEG with the electron
density n = 1011 cm−2 is shown by black dotted lines, and the bare
Coulombic interactions U d

C are shown by the dashed gray (wine) lines.

Eqs. (30) and (32). A careful asymptotic analysis of the TF
approximation for the total interaction energy in this dipole
configuration shows that the leading term is U d

int ∝ 2μ2/d3

for z0 � q−1
TF � d, i.e., twice the bare Coulombic repulsion

between the dipoles with the same configuration in free space
U d

C = μ2/d3. This is in qualitative agreement with the findings
of Ref. 9 for the long-ranged dipole-dipole repulsion on a metal
surface with m2DEG.

On the other hand, the other two configurations for a pair
of static dipoles, shown in Figs. 8(b) and 8(c), could be
of interest for coadsorption of nanoparticles on graphene,21

or polar molecules on metal surfaces.22 One notices in
Figs. 8(b) and 8(c) that graphene does provide screening
of the corresponding bare Coulombic interaction energies,

given by U d
C = 2μ2/d3 and U d

C = μ2/d3, respectively, which
is not as substantial as the screening seen in Fig. 7 for
a pair of static ions. An asymptotic analysis of the TF
approximation for the total dipole-dipole interaction energy
for the configurations (b) and (c) yields much shorter-ranged
expressions U d

int ∝ 12μ2/(q2
TFd

5) and U d
int ∝ 3μ2/(q2

TFd
5) for

z0 � q−1
TF � d, respectively, than the above expression for

the configuration (a). Moreover, the insets of Figs. 8(b) and
8(c) exhibit shallow minima at lower doping densities due to
FOs in those two configurations, which are not seen in the
configuration (a). This may be rationalized by considering the
asymptotic behavior of the FO terms in the corresponding
expressions for the dipole-dipole interactions for all three
configurations, which are simply proportional to those given
in Eq. (36) for FOs in the ion-ion interaction, and are scaled
by the factor [μqTF/(Ze)]2 for dipoles. With the amplitude of
FOs retaining the ∼d−3 dependence on distance from Eq. (36),
one expects that FOs in the dipole-dipole interaction would be
absorbed by the dominant long-ranged Columbic repulsion in
the configuration (a), but would show up in the configurations
(b) and (c) with the much shorter-ranged TF asymptotics.

We also show in Fig. 8 the screened dipole-dipole interac-
tion for a free m2DEG, evaluated with the same parameters as
those used in Fig. 7 for the m2DEG case. One notices in Fig. 8
that FOs in this system give rise to prominent minima in the
dipole-dipole interaction energy for all three configurations,
with amplitudes that far exceed those seen for graphene with
the same density as the m2DEG, n = 1011 cm−2. Such strong
manifestation of FOs, especially for two dipoles perpendicular
to m2DEG, is at variance with the observations in Ref. 9,
which may be explained by a possibly strong suppression
of FOs in the m2DEG due to the screening by a metallic
substrate.19

Finally, it is worth mentioning that the statically screened
dipole-dipole interaction may be evaluated analytically for
intrinsic graphene above a substrate with zero gap and with
static dielectric constant εsub by using Eqs. (30) and (32)
with the coefficients Vk from Eq. (31) given in the form
Vk = Wk[d2 + (2z0)2]−5/2(1/ε0

eff − 1), where W0 = 8z2
0−d2,

W1 = 6z0d, and W2 = 3d2. In order to compare this simple
result in the case of free graphene with those shown for doped
graphene in Fig. 8(a), we show in Fig. 10(b) the total screened
interaction energy for static dipoles with dipole moments
perpendicular to graphene, U d

scr, normalized by U d
C = μ2/d3,

as a function of the reduced interdipole separation d/(2z0) with
z0 = 5 Å, for several doping densities n. One may conclude that
the screening efficiency of intrinsic graphene is comparable
with that of doped graphene for all charge carrier densities
in Fig. 10(b) for separations d � 2z0. However, the screening
ratio U d

scr/U d
C for intrinsic graphene approaches a constant

value of 2 − 1/ε0
eff ≈ 1.775 at large separations d � 2z0,

whereas this ratio for doped graphene tends to oscillate about
the value 2 at finite separations d � 2/kF .

3. Moving pair of ions

Relative motion of ion fragments during Coulomb explo-
sion of a molecule with an incident velocity v may be treated
as adiabatic in the frame of reference that moves with the
same velocity, but the dynamics of the Coulomb explosion

125442-12



DYNAMIC POLARIZATION OF GRAPHENE BY EXTERNAL . . . PHYSICAL REVIEW B 86, 125442 (2012)

on a slow time scale in that frame is necessarily affected
by the dynamical effects in the screened interaction energy
between the ion fragments when v = ‖v‖ is comparable to
vF .55–57,75 Hence, we evaluate the total screened interaction
energy U i

scr from Eq. (27) for two ions with equal charges
Ze, moving parallel to free, doped graphene with equal
velocities at equal distances z0 from graphene, and with a
relative position vector d. The results for a randomly oriented
d are normalized by U i

0 = Z2e2kF and are displayed by the
solid lines in Fig. 9 as a function of the reduced separation
kF d between the ions, for the speed of v = 2vF , for three
distances z0, and for four doping densities n. One notices
that oscillations develop in the interaction energy, which are
more pronounced at shorter distances z0 and lower densities
n (within the given normalization). A comparison with the
bare Coulomb interaction, also displayed in Fig. 9, shows

FIG. 9. (Color online) The total screened interaction energy
〈U i

scr〉, normalized by U i
0 = Z2e2kF with kF = √

πn, is shown as
a function of the reduced interionic separation kF d for two ions of
equal charges Ze, moving parallel to free graphene at the speed
v = 2vF (solid lines) with randomly oriented interionic axis and at
equal distances above free graphene: z0 = 5 Å (a), 10 Å (b), and
20 Å (c) for four doping densities: n = 1011 cm−2 (black lines:
thin solid, dotted, and dashed-dotted), n = 1012 cm−2 [thin solid
gray (red) lines], n = 1013 cm−2 [medium solid gray (blue) lines],
and n = 1014 cm−2 [thick solid gray (olive) lines]. Also shown is
the normalized 〈U i

scr〉 for two ions moving at the speeds v = vF

(dashed-dotted black lines) and v = 4vF (dotted black lines), both
for doping density of n = 1011 cm−2. The bare Coulomb interaction
U i

C is shown by the dashed gray (wine) lines.

that the screening by graphene at short and intermediate
separations is still effective at such high speeds for all densities.
As a consequence, the dynamical effects in screening of the
interaction energy between the two ions may be responsible for
slowing down the Coulomb explosion, whereas the oscillations
in that energy may even give rise to the so-called wake-riding
bound states for the correlated ions, as was observed in solids75

and on surfaces.56,57 In that context, it may be worthwhile
examining the actual values of the screened interaction energy
at the first minima U 1

min seen, e.g., in Fig. 9(a) with z0 = 5 Å
and v = 2vF for two protons (Z = 1), where we find the
coordinates (dmin,U

1
min) of those minima to be (35.7 nm,

−10.5 meV), (11.6 nm, −30.4 meV), (4.2 nm, −65.6 meV),
and (2.1 nm, −6.9 meV) for n = 1011, 1012, 1013, and 1014

cm−2, respectively. Moreover, by inverting the signs of the
curves shown in Fig. 9, one would obtain a dynamically
screened interaction energy between an electron and a proton
that are comoving above graphene, whereby a wake-riding
bound state of the electron may occur around the electron-
proton separations where the first peaks arise in the curves
seen in Fig. 9 (at d ≈ 7/kF for v = 2vF ).76

In Fig. 9, we also show the total screened interaction energy
for two ions moving at the speeds v = vF and v = 4vF at
the three distances z0 for graphene’s doping density of n =
1011 cm−2. By a comparison with the curves at v = 2vF for the
same doping density, one notices that the period of oscillations
in the screened interaction energy and the rate of their damping
with increasing separation d strongly depend on the speed v of
the comoving ions in such a manner that the period increases
and the damping rate decreases with increasing v (notice
how the amplitude of the oscillations at v = 4vF becomes
comparable with the bare Coulomb interaction at the largest
separation shown in Fig. 9, d = 20/kF ). Thus, v arises as
yet another (in addition to n) parameter that could be used
to control the wake-riding states. However, noting that the
oscillations seen in Fig. 9 are directly related to the wake
effect in the ion-induced charge in graphene, which is seen in
Fig. 2(b) and was previously studied in detail,35 we emphasize
that the rate of damping of those oscillations with the increas-
ing d may be expected to be substantially higher if a finite
damping constant γ is introduced in the dielectric function for
graphene.35

Considering the case of intrinsic graphene above a substrate
with zero gap and with static dielectric constant εsub, we
note that oscillations in the total screened interaction energy
between two comoving ions vanish for all speeds. In that
case, the total screened interaction energy with randomly
oriented interionic axis 〈U i

scr〉 is given by the right-hand side
of Eq. (38) with εeff(0) replaced by a velocity-dependent
effective dielectric constant εeff(v), which was discussed in
Fig. 5 of Ref. 33. In order to compare this simple result
in the case of free intrinsic graphene with those shown for
doped graphene in Fig. 9(a), we show in Fig. 10(c) the
total screened interaction energy for two comoving ions with
v = 2vF , 〈U i

scr〉, normalized by U i
C = Z2e2/d, as a function

of the reduced interionic separation d/(2z0) with z0 = 5 Å,
for several doping densities n. One may conclude that the
screening efficiency of intrinsic graphene is comparable with
that of doped graphene with the lowest charge carrier density
of n = 1011 cm−2 in Fig. 10(c) for interionic separations
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FIG. 10. (Color online) The dependence on the reduced interpar-
ticle separation d/(2z0) with z0 = 5 Å is shown for the total screened
interaction energy between (a) two static ions U i

scr normalized by
U i

C = Z2e2/d , (b) two static dipoles U d
scr normalized by U d

C = μ2/d3,
and (c) two ions moving at the speed v = 2vF with randomly oriented
interionic axis 〈U i

scr〉, normalized by U i
C = Z2e2/d , for free intrinsic

graphene n = 0 (thin solid black lines), and for three doping densities:
n = 1011 cm−2 [thin solid gray (red) lines], n = 1012 cm−2 [medium
solid gray (blue) lines], and n = 1013 cm−2 [thick solid gray (olive)
lines].

d � 2z0. However, the screening ratio U i
scr/U i

C for intrinsic
graphene approaches a constant value of 1/εeff(2vF ) ≈ 0.150
at large separations d � 2z0, whereas this ratio for doped
graphene undergoes large-amplitude oscillates about zero at
finite separations d � 2/kF .

On the other hand, the interference effects in energy loss
to the underlying medium due to the spatial correlation of
ion fragments in Coulomb explosion may be responsible for
an enhancement or reduction of the stopping of correlated
ion fragments.55–57,75 The corresponding vicinage effect ratio
R = (dE/dt)vic/[2(dE/dt)ion] is evaluated from Eq. (28) for
two ions with equal charges, moving parallel to a free
graphene with equal velocities v at equal distances z0 for
several orientational configurations of the interionic axis d
with respect to v. We first consider in Fig. 11 the case
of intrinsic graphene for ions with v > vF , where R may
actually be obtained in an analytic form as a function of
the reduced interionic separation d/(2z0) for d parallel to v
(directed motion of ion fragments), d perpendicular to v, and
randomly oriented d. One notices that R generally decays from

FIG. 11. (Color online) The energy-loss ratio R =
(dE/dt)vic/[2(dE/dt)ion] displays vicinage effects as a function of
the reduced interionic separation d/(2z0) for two ions with equal
charges, moving parallel to a free, intrinsic graphene (doping density
n = 0) at equal distances z0 from graphene with four speeds: v = vF

(solid lines), 2vF (dashed lines), 3vF (dotted lines), and 4vF (short
dotted lines) for three orientations of the interionic axis: parallel
to the direction of motion (Rdir, thin black lines), perpendicular
to the direction of motion [Rperp, thick gray (blue) lines], and
random orientations [Rrand, dashed-dotted gray (red) line for all four
speeds].

a maximum R = 1 at d = 0 towards zero at d � 2z0, but does
so in a manner that strongly depends on the orientation and
speed v. As expected, the dependence of Rdir for directed
motion on d is nonmonotonic, showing that the trailing ion
fragment may experience significantly reduced energy loss
by simply coasting in the wake of the leading fragment, so
that the total energy loss may even be reduced compared to
the total energy loss of two independent fragments. In the
case of perpendicular direction, the two ion fragments always
experience increased energy loss, Rperp > 0, whereas the case
of random orientations always lies between the other two
cases and is, in fact, given by Rrand = [1 + d2/(2z0)2]−3/2,
corresponding to the v → ∞ limit of the results for either the
directed or perpendicular configurations.

Finally, we study in Fig. 12 the effects of finite graphene
doping density n on the ratio R as a function of the reduced
separation kF d between two ions for two speeds v = vF and
2vF , and for two cases corresponding to a directed motion
and random orientations of the interionic axis. One notices
that, in both cases, higher speed and higher density n give
rise to a more pronounced quasioscillatory dependence of the
ratio R on the distance d. For the highest density shown in
Fig. 12, n = 1013 cm−2, those oscillations are surprisingly
persistent at large distances d, even for random orientations,
which may be attributed to the interferences in the energy loss
arising due to plasmon excitations in heavily doped graphene.
On the other hand, considering the lowest density shown in
Fig. 12, n = 1011 cm−2, one sees that both Rdir and Rrand

are close to the corresponding results in Fig. 11 (where n =
0) for v = 2vF , but not for v = vF , showing that interesting
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FIG. 12. (Color online) The energy-loss ratio R =
(dE/dt)vic/[2(dE/dt)ion] displays vicinage effects as a function of
the reduced interionic separation kF d , where kF = √

πn, for two
ions with equal charges, moving parallel to a free graphene at equal
distances z0 = 10 Å with two speeds: v = vF (solid lines) and
v = 2vF (dashed lines) for three doping densities: n = 1011 cm−2

(thin black lines), n = 1012 cm−2 [medium gray (red) lines], and
n = 1013 cm−2 [thick gray (blue) lines] for two orientations of the
interionic axis: parallel to the direction of motion (Rdir, panel a) and
random orientations (Rrand, panel b).

vicinage effects in the energy loss may occur due to doping
when the ion speed matches the phase velocity in the (q,ω)
plane of graphene’s polarization function that corresponds to
the boundary between the interband and intraband SPEs.18,31

IV. CONCLUDING REMARKS

We have studied polarization of the π -electron system in
a single-layer graphene by the spatially correlated external
charges, which either move over the graphene at a finite speed,
or are statically adsorbed on graphene. A point dipole model
is used to discuss (a) nondissociative grazing scattering of a
molecule with permanent dipole moment from graphene, and
(b) electrostatic interaction between two dipolar molecules
physisorbed on graphene. Two point ions are used as a model
to discuss (a) the comoving ion fragments during Coulomb
explosion of a grazingly scattered diatomic molecule from
graphene, and (b) electrostatic interaction in the coadsorption
of, e.g., alkali-metal atoms on graphene.

Among the many parameters in this study, we have concen-
trated on the effects of graphene doping with finite-equilibrium
charge carrier density n, and we found that the interaction
of graphene with all the above model systems may be
effectively controlled by n. While the response of graphene’s

π electrons was mostly described by a dielectric function for
free graphene within the random phase approximation with
zero damping, the effect of finite damping and the effect of a
polar substrate that supports a surface phonon were also briefly
discussed. Moreover, several comparisons of results were
made by replacing graphene with a 2DEG with a parabolic
energy band that was also described within the random phase
approximation.

For a moving dipole, we obtained the self-energy (image
potential) and calculated the image force and the stopping
force in the direction of motion, and we showed that there
also exists a dissipative force perpendicular to the direction
of motion. Using suitable scaling factors, we demonstrated
qualitative similarity between the stopping and the image
forces on a moving dipole and these forces on a moving ion,
with a notable exception that the image force on the dipole
may become repulsive at high enough doping densities of
graphene, large enough distances from graphene, and high
enough dipole speeds. Moreover, we showed that the wake
effect in the induced charge density due to a moving dipole
may be asymmetric with respect to the direction of motion.
We have also evaluated a torque on the moving dipole,
with components that consist of both the dissipative and
conservative interactions, showing strong propensity of the
moving molecule for rotation due to the dynamic polarization
of graphene.

For a static pair of ions with equal charges Ze that are
coadsorbed on graphene, we have evaluated the screened
interaction energy as a function of the interionic separation
d, and showed that doping of graphene provides significant
screening of the Coulomb interaction, giving rise to a repulsive
interaction of the form Z2e2/(q2

TFd
3) at large separations d �

q−1
TF , where qTF is graphene’s Thomas-Fermi wave number.

Shallow minima were found in the interaction energy at finite
separations d ∼ 2/kF , where kF = √

πn is graphene’s Fermi
wave number, which were attributed to Friedel oscillations.
A comparison with the screened ion-ion interaction on a
comparable 2DEG showed that this system exhibits much
more prominent Friedel oscillations than graphene.

For a static pair of dipoles with equal dipole moments of
magnitude μ that are coadsorbed on graphene, the screened
interaction energy was found to have the form μ2/(q2

TFd
5)

at large dipole-dipole separations d � q−1
TF in cases when

both dipoles are parallel to graphene. In those cases, we
also found shallow minima in the dipole-dipole interaction
energy at finite separations due to Friedel oscillations, which
are much less prominent than Friedel oscillations on a
comparable 2DEG. On the other hand, when both dipoles
are perpendicular to graphene, we found a strongly repulsive
interaction, which approaches 2μ2/d3 at large separations,
i.e., twice the Coulombic repulsion between the dipoles in
free space, which may be described as antiscreening due to the
dipoles’ image interaction with graphene.

The above findings for the static pairs of ions and dipoles
show that (a) electrostatic interaction energy between the
adsorbed species may be efficiently controlled by graphene’s
doping density, (b) long-range ordering due to Friedel oscil-
lations is less likely on graphene than on a surface with a
2DEG, (c) clustering of the ionic species on graphene may
be possible at higher doping densities due to reduction in

125442-15
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the range of repulsive interaction, but (d) clustering of the
dipolar species seems unlikely due to antiscreening of the
dipole-dipole interaction in the presence of graphene.

For a pair of ions that are comoving at a speed in
excess of graphene’s Fermi speed vF , our calculations of the
dynamically screened interaction energy showed prominent
oscillations with the interionic separation d, which are directly
related to the ion wake effect in the polarization of graphene.
Such oscillations could give rise to dynamically induced bound
(or wake-riding) states of the comoving ions, which may
be controlled by graphene doping and/or by ions’ speed. In
addition, an analysis of the interference, or the vicinage effects
in the energy loss to graphene due to the comoving pair of
ions with equal charges, showed that the total energy loss
may become close to four times the loss of an isolated ion
at the same speed for very short interionic separations d, but
may also become less than twice the loss of an isolated ion
for finite separations d that depend on the speed of ions and
the doping density of graphene. Such reduction of the energy
loss suggests that a wake-riding state of two ions may be the
most energetically favorable mode of propagation of correlated
charges above graphene.

Regarding the possible improvements of the model system,
we note that we found indications that screening by a substrate
may play an important role in the interaction energy among
correlated charges, especially in the static coadsorption on
graphene (and 2DEG) in the presence of a metallic substrate, as
well as in the dynamic regime at low propagation speeds when
excitations of surface phonons in a polar substrate may play a
role in the energy loss of correlated charges. Finally, probably
the most intriguing aspect of the problem at hand is the regime
close to a neutral, or intrinsic graphene, where a system of
electron-hole puddles usually develops on graphene. In such a
situation, screening of the interaction between charges that are
separated by distances comparable to the size of those puddles
would require substantial modifications of the present model,
which will be tackled in the future.
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APPENDIX: WAKE EFFECT

An expression for the Fourier transform (FT) of the charge
density nind(r,t), induced by an external charge distribution
ρ(R,t), follows from the definition of graphene’s polarization
function ñind(q,ω) = e�(q,ω)	̃tot(q,z,ω)|z=0, where the FT
of the total potential is given in terms of the FT of the total
Green’s function by

	̃tot(q,z,ω) =
∫

dz′
∫ ∞

−∞
dt ′ G̃(q,z,z′; ω)ρ̃(q,z′,ω). (A1)

One may then show that

nind(r,t) = e

∫
d3R′

∫ ∞

−∞
dt ′H (R,R′; t − t ′)|z=0 ρ(R′,t ′),

(A2)

where H (R,R′; t − t ′) = H (r − r′,z,z′,t − t ′) is an inverse
FT of the product �(q,ω)G̃(q,z,z′; ω).

By using the charge density ρ(R,t) = Ze δ[R − R0(t)] for
a point ion that moves parallel to graphene along the trajectory
R0(t) = {vt,z0}, and referring to Eqs. (1) and (2), one may
show that the induced charge density is stationary in the
moving frame attached to the ion, and is given by35

nind(r,t) ≡ ni
ind(ξ ,z0)

= Z

∫
d2q

(2π )2
e−qz0eiq·ξ

[
1 − εbg(q,q·v)

ε(q,q · v)

]
, (A3)

where ξ ≡ r − vt .
If one replaces the density ρ(R,t) in Eq. (A2) with

ρdip(R,t) = −μ·∇R δ[R − R0(t)], characteristic of a point
dipole with the moment μ that moves along the trajectory
R0(t) = {vt,z0}, one may show that then

nind(r,t) = e

∫ ∞

−∞
dt ′ μ · ∇R′H (R,R′; t − t ′)|z=0, R′=R0(t ′).

(A4)

Hence, the charge density induced in graphene by a dipole
may be related to the one induced by the ion in Eq. (A3)
via nd

ind(X) = (Ze)−1μ·∇Xni
ind(X), where X ≡ {ξ ,z0} = {x −

vt,y,z0} for particles moving in the direction of the x axis.

*zmiskovi@math.uwaterloo.ca
1A. H. Castro Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and
A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

2S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod.
Phys. 83, 407 (2011).

3Q. Li, E. H. Hwang, E. Rossi, and S. Das Sarma, Phys. Rev. Lett.
107, 156601 (2011).

4J. Yan and M. S. Fuhrer, Phys. Rev. Lett. 107, 206601 (2011).
5K. M. McCreary, K. Pi, A. G. Swartz, W. Han, W. Bao, C. N. Lau,
F. Guinea, M. I. Katsnelson, and R. K. Kawakami, Phys. Rev. B 81,
115453 (2010).

6P. Han and P. S. Weiss, Surf. Sci. Rep. 67, 19 (2012).

7N. Knorr, H. Brune, M. Epple, A. Hirstein, M. A. Schneider, and
K. Kern, Phys. Rev. B 65, 115420 (2002).

8H. Bentmann, A. Buchter, and F. Reinert, Phys. Rev. B 85,
121412(R) (2012).

9T. Yokoyama, T. Takahasi, K. Shinozaki, and M. Okamoto, Phys.
Rev. Lett. 98, 206102 (2007).

10T. O. Wehling, M. I. Katsnelson, and A. I. Lichtenstein, Chem.
Phys. Lett. 476, 125 (2009).

11K. T. Chan, J. B. Neaton, and M. L. Cohen, Phys. Rev. B 77, 235430
(2008).

12R. R. Q. Freitas, R. Rivelino, F. de Brito Mota, and C. M. C. de
Castilho, J. Phys. Chem. A 115, 12348 (2011).

125442-16

http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/PhysRevLett.107.156601
http://dx.doi.org/10.1103/PhysRevLett.107.156601
http://dx.doi.org/10.1103/PhysRevLett.107.206601
http://dx.doi.org/10.1103/PhysRevB.81.115453
http://dx.doi.org/10.1103/PhysRevB.81.115453
http://dx.doi.org/10.1016/j.surfrep.2011.11.001
http://dx.doi.org/10.1103/PhysRevB.65.115420
http://dx.doi.org/10.1103/PhysRevB.85.121412
http://dx.doi.org/10.1103/PhysRevB.85.121412
http://dx.doi.org/10.1103/PhysRevLett.98.206102
http://dx.doi.org/10.1103/PhysRevLett.98.206102
http://dx.doi.org/10.1016/j.cplett.2009.06.005
http://dx.doi.org/10.1016/j.cplett.2009.06.005
http://dx.doi.org/10.1103/PhysRevB.77.235430
http://dx.doi.org/10.1103/PhysRevB.77.235430
http://dx.doi.org/10.1021/jp208279a


DYNAMIC POLARIZATION OF GRAPHENE BY EXTERNAL . . . PHYSICAL REVIEW B 86, 125442 (2012)

13J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and
M. Ishigami, Nat. Phys. 4, 377 (2008).

14S. Adam, E. H. Hwang, V. M. Galiskii, and S. Das Sarma, Proc.
Natl. Acad. Sci. USA 104, 18392 (2007).

15J. Renard, M. B. Lundeberg, J. A. Folk, and Y. Pennec, Phys. Rev.
Lett. 106, 156101 (2011).

16C.-L. Song, B. Sun, Y.-L. Wang, Y.-P. Jiang, L. Wang, K. He,
X. Chen, P. Zhang, X.-C. Ma, and Q.-K. Xue, Phys. Rev. Lett. 108,
156803 (2012).

17V. V. Cheianov and V. I. Falko, Phys. Rev. Lett. 97, 226801 (2006).
18B. Wunsch, T. Stauber, F. Sols, and F. Guinea, New J. Phys. 8, 318

(2006).
19V. M. Silkin, I. A. Nechaev, E. V. Chulkov, and P. M. Echenique,

Surf. Sci. 600, 3875 (2006).
20M. Urbakh and J. Klafter, J. Phys. Chem. 97, 3344 (1993).
21D. V. Talapin, E. V. Shevchenko, C. B. Murray, A. V. Titov, and

P. Kral, Nano Lett. 7, 1213 (2007).
22A. Kokalj, Phys. Rev. B 84, 045418 (2011).
23Y. Liu, R. F. Willis, K. V. Emtsev, and Th. Seyller, Phys. Rev. B 78,

201403(R) (2008).
24Y. Liu and R. F. Willis, Phys. Rev. B 81, 081406(R) (2010).
25T. Langer, J. Baringhaus, H. Pfnür, H. W. Schumacher, and

C. Tegenkamp, New J. Phys. 12, 033017 (2010).
26T. Langer, D. F. Förster, C. Busse, T. Michely, H. Pfnür, and

C. Tegenkamp, New J. Phys. 13, 053006 (2011).
27M. A. Romero, A. Iglesias-Garcia, and E. C. Goldberg, Phys. Rev.

B 83, 125411 (2011).
28M. A. Romero, A. Iglesias-Garcia, and E. C. Goldberg, J. Phys.:

Condens. Matter 24, 045004 (2012).
29I. Radovic, Lj. Hadzievski, and Z. L. Miskovic, Phys. Rev. B 77,

075428 (2008).
30Kenneth W.-K. Shung, Phys. Rev. B 34, 979 (1986).
31E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418 (2007).
32Y. Barlas, T. Pereg-Barnea, M. Polini, R. Asgari, and A. H.

MacDonald, Phys. Rev. Lett. 98, 236601 (2007).
33K. F. Allison, D. Borka, I. Radovic, Lj. Hadzievski, and Z. L.

Miskovic, Phys. Rev. B 80, 195405 (2009).
34K. F. Allison and Z. L. Miskovic, Nanotechnology 21, 134017

(2010).
35I. Radovic, D. Borka, and Z. L. Miskovic, Phys. Lett. A 375, 3720

(2011).
36E. H. Hwang, R. Sensarma, and S. Das Sarma, Phys. Rev. B 82,

195406 (2010).
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