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A topological phase is a phase of matter which cannot be characterized by a local order parameter. It has been
shown that gapped symmetric phases in one-dimensional (1D) systems can be completely characterized using
tools related to projective representations of the symmetry groups. We explain two ways to detect these symmetry
protected topological phases in 1D. First, we give a numerical approach for directly extracting the projective
representations from a matrix-product state representation. Second, we derive nonlocal order parameters for
time-reversal and inversion symmetry, and discuss a generalized string order for local symmetries for which the
regular string-order parameter cannot be applied. We furthermore point out that the nonlocal order parameter for
these topological phases is actually related to topological surfaces.
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I. INTRODUCTION

Most phases of matter can be identified by measuring a local
order parameter. These order parameters reveal spontaneous
symmetry breaking.1 In the Z2-symmetric Ising model we
find, for example, an ordered and a disordered phase which
can be distinguished by an order parameter that measures the
magnetization. Over recent decades, it has been discovered
that distinct quantum phases (separated by quantum phase
transitions) can occur even when there is no local order
parameter or spontaneous breaking of a global symmetry.
These phases are usually referred to as “nontrivial topological
phases”.2 One of the simplest examples of a topological phase
is the Haldane phase in quantum spin chains with odd integer
spin.3,4 By tuning various parameters, such as anisotropy
terms, this state can be driven through a critical point. Yet
on both sides of the critical point, there is no spontaneous
symmetry breaking. A mystery then is to find some nonlocal
order parameter or another property that changes at the critical
point. Such a property was first found by considering the
ground state of an exactly solvable model (the “AKLT state”
introduced by Affleck, Kennedy, Lieb, and Tasaki5,6). This
state was found to exhibit several unexpected properties, such
as a nonlocal “string order” and edge states. Both extend also
to states within the same phase.7

It turns out that the topological phases in the spin-1 chain
can be understood in terms of “fractionalization” of symmetry
operations at the edges, and that these are reflected in the
bulk as well, by nontrivial degeneracies in the entanglement.8

In other words, different phases correspond to inequivalent
projective representation of the symmetries present. These
topological phases can be protected by any of the following
symmetries: spatial-inversion symmetry, time-reversal sym-
metry, or the Z2 × Z2 symmetry (rotations by π about a pair
of orthogonal axes).8,9 The same approach can be applied to
phases with other symmetry groups—the phases can simply
be classified by enumerating the possible types of projective
representation of the appropriate group. This approach was
furthermore shown to give a complete classification of phases
in one dimension, and elaborated in various directions.9–11

As the symmetry-protected phases (by definition) cannot be
characterized by any symmetry breaking, there exist no local
properties in the bulk which can be measured to distinguish
the phases. On the other hand, for certain cases, nonlocal
order parameters have been derived to distinguish different
symmetry-protected phases. For example, the string order
mentioned above can be applied whenever the phases are
stabilized by a Z2 × Z2 symmetry,7 and some aspects of it
have recently been generalized to other local symmetries.12,13

Furthermore, it has been found recently that string order can
actually be observed experimentally: Endres et al., using high-
resolution imaging, observed string order in low-dimensional
quantum gases in an optical lattice.14

In this paper, we show how to convert the mathematical
description of topological phases into concrete characteri-
zations (such as were found for the AKLT state). First, we
introduce a practical numerical procedure for calculating the
projective representation of the symmetries of a given state,
starting from a matrix-product state (MPS). The projective
representations can then be used to identify any symmetry-
protected phase. However, this procedure is practical only
when one has a matrix-product representation of the state
(or at least has a way of determining its entanglement
spectrum). Second, we therefore also discuss other nonlocal
order parameters, generalizations of string order, which can be
calculated from any representation of the wave function using,
e.g., Monte Carlo simulations, or possibly even measured
experimentally. In particular, we reconsider and generalize the
den Nijs and Rommelse string order for local symmetries7 and
show that it works because of a selection rule that changes at the
critical point. We conclude with an alternative order parameter
for local symmetries (introduced in Ref. 13). The former type
of order parameter is an easier way to identify phases for
many symmetry groups. However, we point out that there are
some groups to which it does not apply, while Haegeman
et al.’s13 order parameter always works. This order parameter
also has a conceptual interpretation: it can be represented as
partition functions on surfaces such as tori, which gives an
actual topological interpretation to topological phases.

125441-11098-0121/2012/86(12)/125441(13) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.125441


FRANK POLLMANN AND ARI M. TURNER PHYSICAL REVIEW B 86, 125441 (2012)

This paper is organized as follows: We first briefly review
properties of MPS’s and their transformation under symmetry
operations in Sec. II. In Sec. III, we show how to distin-
guish MPS representations of different symmetry-protected
topological phases and present numerical results for a spin-1
Heisenberg chain. In Sec. IV, we analyze nonlocal order
parameters which can be calculated from any representation of
the wave function. (The Appendix gives an example of a phase
that cannot be identified using the den Nijs–Rommelse string
order, but can be identified with the more general order of
Ref. 13.) In Sec. V we show how the nonlocal order parameter
can be interpreted as a topological quantity. We conclude the
paper by summarizing our results in Sec. VI.

II. SYMMETRIES IN MATRIX-PRODUCT STATES

A. Matrix-product states

We use a matrix-product-state representation15 to under-
stand and to define nonlocal order parameters for topological
phases in one dimension (1D). We consider translationally
invariant MPS’s, using the framework contained in Ref. 16. A
translationally invariant quantum state on a chain of length L

can be written in the following MPS form:

|ψ〉 =
∑

j1,...,jL

BT Aj1 · · · AjL
B|j1, . . . ,jL〉, (1)

where Aj are χ × χ matrices, and |jk〉 represents local states
at site k. The χ × 1 matrix B determines the boundary
conditions. In this paper we consider the case of infinite
chains and the boundary matrices can be ignored. Ground
states of one-dimensional, gapped systems can be efficiently
approximated by an MPS representation,17–19 in the sense that
the value of χ needed to approximate the ground-state wave
function to a given accuracy converges to a finite value as
L → ∞. We follow Ref. 16 and use infinite matrix-product
states (iMPS’s) for translationally invariant, infinite chains. In
the iMPS representation, we write the matrices Aj as a product
of χ × χ complex matrices �j and positive, real, diagonal
matrices � [see Fig. 1(a) for a diagrammatic representation].
The matrices �j and � can be chosen to be in a canonical

(a)

(b)

FIG. 1. (Color online) (a) Diagrammatic representation of an
iMPS formed by the tensors � and �. The horizontal line represents
the bond indices 1, . . . ,χ and the vertical lines the physical indices
1, . . . ,d . (b) Condition for the MPS to be in the canonical form [i.e.,
the transfer matrices Eqs. (2) and (3) have the identity as eigenvectors
with eigenvalue 1].

form; that is, the transfer matrix

Tαα′;ββ ′ =
∑

j

�j,αβ(�j,α′β ′ )∗�β�β ′ (2)

should have a right eigenvector δββ ′(=1) with eigenvalue η =
1 (∗ denotes complex conjugation). Similarly,

T̃αα′;ββ ′ =
∑

j

�α�α′(�j,α′β ′ )∗�j,αβ (3)

has a left eigenvector δαα′ with η = 1 [see Fig. 1(b) for a
diagrammatic representation]. In this case, the diagonal matrix
� contains the Schmidt values λα for a decomposition into two
half-infinite chains,

|ψ〉 =
∑

α

λα|αL〉|αR〉, (4)

where |αL〉 and |αR〉 (α = 1, . . . ,χ ) are orthonormal basis
vectors of the left and right partitions, respectively. The states
|αL〉 and |αR〉 can be obtained by multiplying together all the
matrices to the left and right of the bond, i.e., if the broken
bond is between sites 0 and 1, then the right Schmidt states are
given by

|αR〉 =
∑

{jk},k>0

[∏
l>0

�jl
�

]
αγ

|j1,j2, . . . 〉. (5)

Here, γ is the index of the row of the matrix; when the chain is
infinitely long, the value of γ affects only an overall factor in
the wave function. Reviews of MPS’s as well as the canonical
form can be found in Refs. 16, 20, and 21.

Furthermore, we must require that our state is not a cat state.
The condition turns out to be that1 is the only eigenvector with
eigenvalue |η| = 1.12 The second largest (in terms of absolute
value) eigenvalue ε2 determines the largest correlation length

ξ = − 1

ln |ε2| . (6)

B. Symmetry protected topological phases

If a state |ψ〉 is invariant under an internal symmetry, which
is represented in the spin basis as a unitary matrix �jj ′ , then the
�j matrices must transform under �jj ′ in such a way that the
product in Eq. (1) does not change (up to a phase). Thus
the transformed matrices can be shown to satisfy8,12∑

j ′
�jj ′�j ′ = eiθU †�jU , (7)

where U is a unitary matrix which commutes with the �

matrices, and eiθ is a phase factor [see Fig. 2(a) for a
diagrammatic representation]. As the symmetry element g is
varied over the whole group, a set of phases and matrices
eiθg and Ug results. The phases form a 1D representation (i.e.,
a character) of the symmetry group. The matrices Ug form
a χ -dimensional (projective) representation of the symmetry
group. A projective representation is like an ordinary regular
representation up to phase factors; i.e., if �g�h = �gh, then

UgUh = eiρ(g,h)Ugh. (8)
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(a) (b)

(c)

(d)

FIG. 2. (Color online) (a) Transformation of an iMPS which is
invariant under an internal symmetry operation �. Here �̃ can be �,
�∗, or �T . (b) Eigenvalue equation T �X = ηX for the generalized
transfer matrix. The upper part corresponds to the transformed wave
function and the lower part to the original one. We find |η| =1 if and
only if the state is symmetric under this transformation. (c) Overlap
of Schmidt states |αR〉 with their symmetry-transformed partners. If
the chain is assumed to be very long, the overlap can be expressed
in terms of the eigenvector X corresponding to the largest-magnitude
eigenvector |η| = 1 of the generalized transfer matrix (filled gray
circles). The right boundary yields an overall phase factor which we
ignore here (see text for details).

The phases ρ(g,h), called the “factor set” of the representation,
can be used to classify different topological phases.8,9,11,22

Consider for example a model which is invariant under a
Z2 × Z2 symmetry of rotations Rx = exp(iπSx) and Rz =
exp(iπSz). The phases for each spin rotation individually
(e.g., U 2

x = eiα1) can be removed by redefining the phase
of the corresponding U matrix. However, the representations
of RxRz and RzRx can also differ by a phase, which it turns
out must be ±1:

UxUz = ±UzUx. (9)

That is, the matrices either commute or anticommute. This
resulting phase cannot be gauged away because the phases
of Ux and Uz enter both sides of the equation in the
same way. Thus we have two different classes of projective
representations.

We can derive a similar relation to Eq. (7) for time-reversal
and inversion symmetry.8 For a time-reversal transformation
�j ′ is replaced by �∗

j ′ (complex conjugate) on the left-hand
side. In the case of inversion symmetry �j ′ is replaced by �T

j ′
(transpose) on the left-hand side of Eq. (7). In both cases we
can distinguish two different phases depending on whether
UIU

∗
I = ±1 and UTRU ∗

TR = ±1. Details on the classification
of topological phases can be found in, e.g., Refs. 8–11 and 22.

III. DETECTING SYMMETRY-PROTECTED
TOPOLOGICAL PHASES IN MPS REPRESENTATIONS

The definitions in the previous section tell us exactly
what kind of topological phases exist in 1D and how to
classify them. This does not, however, give us a direct method
to detect different phases. In Ref. 8 it is pointed out that
topologically nontrivial phases must have degeneracies in the
entanglement spectrum. However, this does not distinguish
among various nontrivial topological states (when there is
more than one). Furthermore, density matrix renormalization
group (DMRG) calculations sometimes produce states which
have a degenerate entanglement spectrum for another reason
(such as cat states for a phase with broken symmetry).

In this section we show how to directly obtain the projective
representations U , for a state that is respresented in the form of
an iMPS; i.e., we have access to the �j and � matrices. These
matrices can be conveniently obtained using various numerical
methods, e.g., the infinite time-evolving block decimation
(iTEBD) method.16 The iTEBD method is a descendant of
the density matrix renormalization group method.23 Once the
algorithm has converged to the ground state, the matrices are
already in the desired canonical form.

We will now explain how the U matrices may be obtained
by diagonalizing transfer matrices.12 First of all, we determine
the implications of the fact that the iMPS is invariant under
certain symmetry operations, i.e., we require that |〈ψ |ψ̃〉| =
1 with |ψ̃〉 being the transformed state. This implies that a
“generalized” transfer matrix

T �
αα′;ββ ′ =

∑
j

⎛
⎝∑

j ′
�jj ′ �̃j ′,αβ

⎞
⎠ (�j,α′β ′)∗�β�β ′ (10)

must have a largest eigenvalue |η| = 1,

T �
αα′;ββ ′Xββ ′ = ηXαα′ ; (11)

see also the diagrammatic representation in Fig. 1(b). Here
� is an internal symmetry operation and �̃j is equal to
�j , �∗

j , or �T
j , depending on the symmetry of the system

(the complex conjugate and transpose are required for time-
reversal and inversion, respectively). If |η| < 1, the overlap
between the original and the transformed wave functions
decays exponentially with the length of the chain and |ψ〉
is thus not invariant. Given that |η| = 1, the information about
the symmetry-protected topological phase of the system is
encoded in the corresponding eigenvector Xβ ′β . We will see
that U is related to X, specifically

Uββ ′ = X∗
β ′β. (12)

[If the iMPS is not obtained in the canonical form, we need
to multiply the right-hand side (RHS) by the inverse of the
eigenstate of the transfer matrix Eq. (2).]

This convenient expression for finding U can be understood
from the symmetry transformation of the Schmidt states |αR〉
defined in Eq. (5). Figure 1(c) shows the overlap of the
Schmidt states |αR〉 with their transformed partners �|α̃R〉.
The overlap corresponds to applying the generalized transfer
matrix T � many times; hence only the dominant eigenvector
Xββ ′ remains in the thermodynamic limit. On the other hand,
we can apply the transformation Eq. (7) to each transformed
matrix and see that only the U † at the left end remains
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FIG. 3. (Color online) Phase diagram of a spin-1 Heisenberg
Hamiltonian in the presence of a single-ion anisotropy D and a
transverse magnetic field in the x direction with magnitude B.

[Fig. 1(d)]. Using the fact that the matrices �j and � are
chosen to be in the canonical form, we can read off that
(U †)ββ ′ = Xββ ′ (where we normalize X such that XX† = 1

and ignore a constant phase factor which results from the
right end). Thus the U matrices can be obtained by finding
the dominant eigenvector of the generalized transfer matrix,
i.e., T �U † = eiθU †. Once we have obtained the U † of each
symmetry operation, we can read off the factor set [see Eq. (8)]
and hence determine in which phase the state is. Furthermore,
we can directly see the block structure of the matrices, which
is discussed in Ref. 8.

A. Example: Spin-1 chain

In this section we give an example of how we can use
this approach to distinguish different symmetric phases. We
consider the spin-1 model Hamiltonian

H = J
∑

i

�S(i) · �S(i + 1) + B
∑

i

Sx(i) + D
∑

i

[Sz(i)]2,

(13)

in which symmetry-protected topological phases occur.
This model is invariant under translation and under spatial
inversion as well as under a combined π rotation around the y

axis and complex conjugation [(Sx,Sy,Sz) → (Sx, − Sy,Sz)].
The phase diagram has been studied in Ref. 24 and is shown
in Fig. 3. The point D = B = 0 is the Heisenberg point,
around which one finds the gapped Haldane phase. When
D increases, there is a transition into another phase which
also does not break any symmetry. Even for B 	= 0, there is
a transition between these two phases (with an intervening
phase). At large D, the phase is trivial and can be visualized
by a state where all the sites are in the |Sz = 0〉 state; hence
the phase containing the Heisenberg point must be a nontrivial
topological phase. Furthermore, two antiferromagnetic phases
Z

y

2 and Zz
2 with spontaneous nonzero expectation values of

〈Sy〉 and 〈Sz〉, respectively, are present.
We now show how to use the method introduced in the

previous section to distinguish different symmetry-protected
topological phases for this model. In the presence of a Z2 ×
Z2 symmetry (Bx = 0), we can use the symmetry operations
Rx = exp(iπSx) and Rz = exp(iπSz) (or alternatively any

other pair of orthogonal 180◦ spin rotations) to calculate the
χ × χ matrices URx and URz as above. From them we can
then define the commutator which distinguishes the different
topological phases:

OZ2×Z2 =
{

0 if |ηRx | < 1 or |ηRz | < 1,
1
χ

tr(UxUzU
†
xU

†
z ) if |ηRx | = |ηRz | = 1.

(14)

Here ηRx and ηRz are the largest eigenvalues of the generalized
transfer matrix Eq. (2). Thus OZ2×Z2 = 0 if the state is not
Z2 × Z2 symmetric, while the two symmetric phases are
distinguished by the properties of the U matrices. If Ux and
Uz commute (OZ2×Z2 = 1) the system is in a trivial phase
(i.e., the same class as a site-factorizable state) and if they
anticommute (OZ2×Z2 = −1), the system is in a nontrivial
phase (i.e., the Haldane phase). We proceed in a similar way for
the other symmetries. In the presence of inversion symmetry
(i.e., � → �T ), we define

OI =
{

0 if |ηI | < 1,
1
χ

tr(UIU
∗
I ) if |ηI | = 1.

(15)

For time-reversal symmetry the matrices transform as �j →∑
j ′[exp(iπSy)]jj ′�∗

j ′ and the corresponding order parameter
reads

OTR =
{

0 if |ηTR| < 1,
1
χ

tr(UTRU ∗
TR) if |ηTR| = 1.

(16)

These quantities behave similarly to OZ2×Z2 , i.e., OI/TR =
0 if the symmetry is broken and OI/TR = ±1 for the two
symmetric phases.

FIG. 4. (Color online) Different phases of Hamiltonian (13) are
distinguished byOZ2×Z2 andOI (defined in the text). These quantities
are equal to zero if the symmetry is broken and ±1 distinguishes the
trivial and nontrivial phases.
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The procedure to calculate the quantities defined above is
summarized by Eqs. (10)–(12) and the formulas Eqs. (14)–(16)
for the appropriate symmetry. We use the iTEBD method16 to
obtain the ground state of the Hamiltonian Eq. (13) in the
desired canonical form. Then we construct the generalized
transfer matrices Eq. (10) for the appropriate symmetry
operations and find their largest eigenvalues η with correspond-
ing eigenvectors X using sparse matrix diagonalization (the
iTEBD algorithm breaks the translational symmetry, yielding
two matrices �

A/B

j , and thus we construct the transfer matrix
using a two-site unit cell). From η and X we can determine
the quantities defined in Eqs. (14)–(16). We calculated the
Z2 × Z2 and inversion order parameters for the spin chain
in this way, with the results that are shown in Fig. 4. The
phase transition shows up clearly. Interestingly, the sharp
distinctions between the phases can be achieved using MPS’s
with rather small bond dimensions (we used MPS’s with up to
only χ = 50). For studying the direct vicinity of the critical
point it is necessary to use a larger χ because an iMPS ansatz
yields a symmetry-broken state when χ is chosen too small.25

IV. NONLOCAL ORDER PARAMETERS
FROM A WAVE FUNCTION

In the previous section we showed how to detect different
phases from an iMPS representation of the ground state. Now
we derive expressions which can be evaluated when the wave
function is given in another form, for example, using Monte
Carlo simulations, or possibly experimentally (as proposed
in Ref. 14). The basic idea is to find some operators on the
physical Hilbert space which give us some access to the U

matrices which exist in the “entanglement Hilbert space.”

A. String order in the presence of internal symmetries

Although the spin-1 antiferromagnet is disordered, it
has a string order.7 This is easiest to see at an exactly
solvable point in the phase diagram, where the ground
state can be found exactly, in the form of a matrix product
state, the AKLT state.5 The state is defined by the matrices
A±1 = ±σ±; A0 = − 1√

2
σz. From Eq. (1), any snapshot of

the values of the spins Sz on all the sites must have an
unusual order: if one discards the sites with an Sz value of
0, then the remaining spins have perfect antiferromagnetic
order (as can easily be checked). This is not reflected in an
ordinary long-range correlation, however. The mathematical
description of this ordering is Sz,j (−1)

∑
j<l<kSz,l Sz,k = −1;

this operator is called a string operator. Away from this
exactly solvable point, the order is no longer perfect, but
the expectation value of the string operator is still nonzero:
Sα

str ≡ lim|j−k|→∞〈ψ0|Sα
j eiπ

∑
j�l<k Sα

l Sα
k |ψ0〉 	= 0.

Pérez-Garcı́a et al.12 showed that this string order parame-
ter, which is relevant for Z2 × Z2 symmetric spin chains, can
be generalized for systems with other symmetry groups. The
generalized form for a state which is invariant under symmetry
operations �(k) reads

S(�,OA,OB) = lim
n→∞〈ψ0|OA(1)

(
n−1∏
k=2

�(k)

)
OB(n)|ψ0〉.

(17)

The nonvanishing of this expression for generic operators
means only that the state is symmetric, but does not distinguish
among topologically distinct states.

Nevertheless, we will now show that if the operators OA(1)
and OB(n) are chosen appropriately, this order parameter
can distinguish some topological states. However, it is not
a complete characterization, and we give a specific example
below showing that it does not necessarily work in the presence
of more complicated symmetries.

The most basic result about the string-order correlator
Eq. (17) is that a phase must be symmetric under � for the
string order to be nonzero. This criterion does not help to
distinguish among topologically different symmetric phases.
However, there is a second more refined condition for when
the string order is nonzero, which can distinguish them. For
example, the string order defined by OA = OB = Sz vanishes
in the large-D phase. Why does this occur even though the state
is symmetric? The same string order is nonzero in the Haldane
phase; hence it seems to be connected to the topological order
of the phase, as we will show now.

Intuitively, the string order corresponds to calculating the
overlap between the wave function with � applied to L

consecutive sites and the wave function itself. Since � is a
symmetry of the wave function, it does not change anything
in the bulk of this segment and the overlap should not
vanish, generically speaking. A diagrammatic representation
of the string order is shown in Fig. 5(a). We represent the
symmetry that is sandwiched in the middle using Eq. (7),
i.e.,

∑
j ′ �jj ′�j ′ = eiθU

†
��jU� . Ignoring the overall phase

factor einθ , we obtain the expression shown in Fig. 5(b). If
n is large, the part in between U

†
� and U� is a product of

(a)

(b)

(c)

FIG. 5. (Color online) Diagrammatic derivation of the string
order S for a wave function which is symmetric under an internal
transformation � and represented by an MPS in canonical form:
(a) String order involving a segment of transformed sites terminated
by operators OA and OB . (b) The matrices �j transform according
to Eq. (7) and all matrices U and U † vanish except the ones at the
edges. (c) Using the properties of the transfer matrices (defined in the
text), the expectation value can be simplified for long segments.
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orthogonal Schmidt states of the segment yielding a product of
delta functions δαα′ on the left and δββ ′ on the right [compare
Fig. 5(c)]. That is, the string order is equal to the product
(tr�ŌA�U

†
�)(tr�ŌB�UT

� ), where

ŌA
α′α := 〈α′L|OA|αL〉 =

∑
β

λ2
β

λαλα′
T OA

ββ,αα′ (18)

with the generalized transfer matrix T OA

as defined in Eq. (10),
and ŌB

α′α = 〈α′R|OB |αR〉 = ∑
β T OB

αα′,ββ . This expression is
nonzero unless at least one of the two factors is equal to zero.
Thus, the string order is generically nonzero in a symmetric
phase.

Whether the factors vanish depends on the symmetry
of the operators OA(1) and OB(n) and can be seen as a
selection rule for string order. Such selection rules exist only
in the presence of additional symmetry. Thus, suppose that
there are two symmetry operations �a and �b which commute
but UbUaU

†
bU

†
a = eiφ in the projective representation. We

consider the string correlator S(�a,OA,OB), and focus on
the left end of the interval. The operator OA can be
chosen to have a particular quantum number under �b, i.e.,
�bOA(�b)† = eiσ OA. Then a short calculation shows that ŌA

transforms in the same way under Ub, i.e., UbŌ
AU

†
b = eiσ ŌA.

It follows that

tr�ŌA�U †
a = tr(Ub�ŌA�U †

aU
†
b ) = ei(σ−φ)tr�ŌA�U †

a .

(19)

Thus we obtain a string-order selection rule: the string-order
parameter vanishes if σ 	= φ. Without the second symmetry
�b, the string order would not vanish. Hence a nonzero string
order in a state (although intuitively surprising) is actually
not so unusual; it is the vanishing of a string order that is the
signature of a topological phase. Note that the string order
might accidentally vanish (or become very small) at some
points even in a phase where σ = φ. In that case one would
have to find different operators OA and OB to distinguish
the phases. We refer to the next section for a nonlocal order
parameter which does not rely on finding the right operators
to unambiguously detect symmetry-protected topological
phases. To summarize, the second criterion for the string
order is that σ = φ or else the string order vanishes.

The string order for the spin-1 Heisenberg chain, for
example, can be derived simply in this way. Consider the
Heisenberg chain with the symmetries Rx = exp(iπSx) and
Rz = exp(iπSz). Then the selection rule implies that the string
order vanishes in the trivial phase if one of the operators
OA,OB is odd under 180◦ flips about the x axis. The string
order vanishes in the nontrivial phase if one of these operators
is even (since Uz is odd under flips about the x axis in this
phase). Thus, 〈ψ0|1[

∏n−1
k=2 Rz(k)]1|ψ0〉 vanishes in the non-

trivial (φ = π ) phase and 〈ψ0|Sz(1)[
∏n−1

k=2 Rz(k)]Sz(n)|ψ0〉
does not, while the situation is reversed in the trivial (φ = 0)
phase. This is different from ordinary ordering transitions
such as, e.g., for the Ising model, where even operators have
long-range correlations in both phases.

This approach may be used to give an order parameter
that is sensitive to certain phase factors, those of the form
UaUbU

†
aU

†
b = eiφ for commuting symmetries. In order to

determine φ systematically, find test operators O with each
possible transformation under �b, and then see which of these
has a nonzero string correlation. In more detail, note first that
φ = 2πk

r
where r is the order of �b and where k is some

integer, and thus finding φ is equivalent to finding k. We
can then choose “test operators” that are powers of a single
operator O1 that transforms as (�b)†O1�

b = e2πi/nO1. For
0 � l � n − 1 calculate the string order Sl = S(�a,OA,OB)
with OA = (O1)l , translated to the left end of the segment,
and OB = (O†

1)l , translated to the right end. The result will be
nonzero only for one value of l, namely, l = k.

In general, the possible phases of a system with a given
symmetry group can be classified by finding all the consistent
phase factors for a projective representation [see Eq. (8)].
A phase can thus be identified by measuring the gauge-
invariant combinations of these phase factors. The term
“gauge-invariant” refers here to phase factors which cannot
be removed by rephasing the U matrices.

The procedure just given works for phase factors that
arise from a pair of symmetries that commute in the original
symmetry group. However, for complicated groups, these
might not be the only parameters that one needs. If �a

and �b do not commute, e.g., �a�b(�a)−1(�b)−1 = �x

(another symmetry), then there can be a phase in the
projective representation, UaUbU

−1
a U−1

b = eiφ1Ux . This
phase cannot be detected using the string-order selection rule,
but it also does not matter since it is not gauge invariant:
it can be absorbed into Ux . However, a modification of this
symmetry group does give an example of a gauge-invariant
phase that cannot be detected by a selection rule. Suppose
there is another pair of symmetries �c and �d with the same
commutator, i.e., �c�d (�c)−1(�d )−1 = �x . Then, in the
projective representation, UcUdU

−1
c U−1

d = eiφ2Ux . Either φ1

or φ2 may be absorbed into Ux , but not both. In fact, we can
write

UaUbU
−1
a U−1

b UdUcU
−1
d U−1

c = ei(φ1−φ2)1. (20)

Thus, ei(φ1−φ2) is an example of a phase factor that is gauge
invariant but cannot be detected by the string order just de-
veloped. (Appendix A fleshes out the details of this example.)
This phase factor can be detected by the general approach we
started with, of diagonalizing transfer matrices to find the U ’s
and then just calculating the appropriate products of them.

In the next section, we will explain that there is also another
type of nonlocal order parameter that is sensitive to these more
complicated local phase factors. This type of order parameter
can also be used to identify phases protected by time-reversal
or inversion symmetry. In fact, these types of order parameter
can detect any gauge-invariant phase factor, so they give a
complete way to determine what type of symmetry protected
topological order a system has.

B. Nonlocal order parameters that measure the phase factors

Phases that are protected by inversion symmetry, time-
reversal symmetry, or more complicated internal symmetries
(see the example above) cannot be detected using the selection
rules. However, there is another type of nonlocal order
parameter (for example introduced in Ref. 26 for inversion).
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The important aspect of the values of these order parameters is
not whether they vanish or not but what their complex phases
are; these phases coincide with the phases from the projective
representation (such as U ∗

IUI ). However, they can be measured
using the physical degrees of freedom (rather than the ancillary
states of a matrix-product representation).

Inversion symmetry. In this case we can define an order
parameter by simply reversing a part of the chain with an even
length and then calculating the overlap:

SI (2n) = 〈ψ |I1,2n|ψ〉, (21)

where I1,2n is the inversion on the segment from 1 to 2n.
This expectation value can be evaluated using, e.g., Monte
Carlo methods, and it distinguishes the two possible symmetric
phases by

lim
n→∞SI (2n) = ±tr�4, (22)

where � is a diagonal matrix which contains the Schmidt
values (as defined in Sec. II). The sign of this quantity
determines which of the two inversion-protected phases the
chain is in. The expression SI (2n) can be described by the
following thought experiment: Form pairs of sites that are
symmetric about the midpoint of the segment, and perform a
measurement of the parity Pk = ±1 of the state of each pair.
Then SI (2n) is 〈∏n

k=1 Pk〉. A nonzero value for SI means that
there is a nonlocal correlation according to which the number
of odd pairs is more likely to be either an even or odd number,
even when the segment is very long. Generically, one expects
that even and odd numbers of pairs with a given parity are
equally likely, not because of any symmetry between even and
odd numbers but just because of statistical independence: in
a million flips of a coin, an even number of heads is almost
equally likely to occur as an odd number, even if the coin is
unfair, as long as there is no hidden correlation between the
coins. In a system with inversion symmetry, however, there
will be a correlation of this type. This experiment could even
be carried out in practice, but it could be difficult to see the
effect, since independent errors in measuring individual pairs
will make even and odd numbers equally likely.

We now derive the string order SI (2n) formally using the
iMPS representation together with the identities defined in
Sec. II. The result of reversing a segment and taking the
overlap, shown in Fig. 6(a), is that the segments attaching
the two chains to each other become twisted. These may be
untwisted by reversing the orientation of the segment on the
top level of the chain, at the expense of introducing a twist in
it [see Fig. 6(b)]; the explicit calculation uses the relationship
�T

j = eiθU
†
I�jUI , and so factors of UI appear in the diagram.

Now, each of the ladders is a product of several copies of the
transfer matrix T , and so, if n is large, it becomes a projection
onto the largest eigenvector of T , which is δαβ [see Eq. (2)],
allowing the diagram to be simplified again [see Figs. 6(c) and
6(d)]. Reading along the loop in this figure gives the value of
the string-order parameter (the factors of eiθ cancel):

lim
n→∞SI (n) = tr�UT

I �2U
†
I� = trUT

I U
†
I�

4 = ±tr�4. (23)

Note that the line goes backwards through UI so it is
transposed. Unlike the ordinary string order (which vanishes

(a)

(b)

(c)

FIG. 6. (Color online) Diagrammatic derivation of the string
order SI for a wave function which is inversion symmetric and
represented by an iMPS in canonical form: (a) Overlap of a wave
function with the wave function for an infinite chain in which
a segment of n sites has been inverted. (b) The overlap can be
untwisted by reversing the segment using the unitaries UI . (c) For
large L and n, the expression can be simplified by keeping only the
largest-magnitude eigenvector of the transfer matrix T , yielding SI .

in one phase), it is the sign of this parameter that distinguishes
among phases. As a specific example, we calculated SI for
the spin-1 Heisenberg chain (13) in the presence of a finite
transverse field. In this case, the Haldane phase is stabilized
by inversion symmetry. The results, which have been obtained
using the iTEBD algorithm, are shown in Fig. 7. The order
parameter shows a clear distinction between the two phases.
As we approach the phase transition, the correlation length
gets longer and we have to make the segment longer to see the
convergence of SI /tr (�4) to ±1.

Time-reversal symmetry. A more complicated expectation
value can be used to distinguish between phases protected by

FIG. 7. (Color online) The nonlocal order parameter SI distin-
guishing the Haldane (D = 0.0,0.5) and large-D (D = 1.5) phases
in the presence of inversion symmetry.
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time-reversal symmetry. This order parameter is more subtle
to devise because there is no way to apply time reversal to just
a portion of a system (as there is for inversion symmetry) since
time reversal is antiunitary. For example, consider the state

1√
2

[(|1〉)|0〉 + (i|0〉)|1〉] = 1√
2

[|1〉)|0〉 + |0〉(i|1〉)] (24)

formed from two qubits. One cannot apply time-reversal
symmetry to just the first qubit in a unique way, since the
result of applying T to just the first atom comes out differently
for the two ways of grouping the factors. However, there is a
way to express the overlap on the full chain 〈ψ |T |ψ〉 without
using antiunitary operators, and this is the starting point for a
nonlocal order parameter. Consider first a single spin S = 1
with j = −1,0,1. Then

κ = 〈ψ |T |ψ〉 =
∑
j,j ′

[
eiπSy ]

j ′jψ
∗
j ψ∗

j ′ (25)

is not the ordinary expectation value of eiπSy

because both
factors of ψ have complex conjugates. To relate this to an
expectation value, let us take two copies of the spin and
introduce the two states

|ψ2〉 = |ψ〉 ⊗ |ψ〉, (26)

|R〉 = 1√
3

∑
j

[
eiπSy ]

jj ′ |j 〉 ⊗ |j ′〉, (27)

so that κ = √
3〈ψ2|R〉. The phase of κ is not well defined,

since it depends on how one chooses the phase of ψ , so
|κ|2 = 3〈ψ2| (|R〉〈R|) |ψ2〉 is a more useful quantity. This can
be related to an experiment where one takes two unentangled
copies of the system and measures their state in a basis
including R. The probability that the state is R is then given
by |κ2|/3.

Now the generalization of |κ|2 to an entire chain is
useful for testing whether time-reversal symmetry is broken
spontaneously, but it does not help to distinguish between
different phases. For that, an operator has to be applied over
part of the chain in order to create “domain walls” which
depend on UT . Therefore, we introduce an entangled state on
just n sites,

|R1n〉 =
n∏

k=1

⎛
⎝ 1√

3

∑
jk

[eiπSy

]jkj
′
k
|jk〉 ⊗ |j ′

k〉
⎞
⎠ . (28)

To define an order parameter that can distinguish different
symmetric phases, we also have to introduce a swapping
operator (defined as in Ref. 27). Let Swapn+1,2n swap the
parts of the chains between n + 1 and 2n. Then we find that

STR(n) = dn〈ψ2| (|R1n〉〈R1n|) Swapn+1,2n|ψ2〉 = ±(tr�4)3,

(29)

where the sign is what we want to measure, eiφT . Here
d is the local dimension of the Hilbert space. The swap-
ping operator Swapn+1,2n is introduced because, without it,
〈ψ2 (|R1n〉〈R1n|) |ψ2〉 does not depend on the sign of UT U ∗

T
(it is clearly positive). Multiplying by Swapn+1,2n makes it
possible to isolate the phase eiφT .

(a)

(b)

(c)

FIG. 8. (Color online) Diagrammatic derivation of the string
order STR for a wave function which is time-reversal symmetric and
represented by an MPS in canonical form: (a) Representation of
the wave function dn/2〈R1n|Swapn+1,2n|ψ2〉 containing three domain
walls, where � = exp(iπSy)/

√
d and d is the physical dimension.

The � may be replaced by the operator UTR and the complex
conjugation of the segment in the upper row. (b) Representation of
the wave function dn/2〈ψ2|R1n〉. (c) Contraction of the two wave
functions over open indices with the same letter (a–h) and keeping
only the largest-magnitude eigenvector of the transfer matrix T yields
for larger m,n the order parameter STR. The dashed red lines indicate
the positions of the domain walls.

Figure 8 shows how to work out the order parameter
STR. The expectation value is evaluated in two parts: First,
we calculate dn/2〈R1n|Swapn+1,2n|ψ2〉 [Fig. 8(a)] and then
dn/2〈ψ2|R1n〉 [Fig. 8(b)]. Since |R1n〉 extends only over n

sites, these are partial inner products, giving a wave function
in which n spins have been removed. The short sticks coming
out of the other sites represent the sites that have not been
contracted yet. Next, we transform Fig. 8(a) using Eq. (7)
in the conjugate form

∑
j ′ [eiπSy

]jj ′�j ′ = UT
TR�∗

j U
∗
TR and take

the overlap between Figs. 8(a) and 8(b), by contracting the
short sticks with one another. There will be three domain-wall
regions that we have to concentrate on (the bonds between 0,1,
n,n + 1, and 2n,2n + 1); everything else can be simplified by
replacing the ladders by projections onto the identity (in the
same way as we have done several times before). The three do-
main walls can be replaced by the product of loops in Fig. 8(c).
Contracting these expressions gives limn→∞ STR(n) =
(trU †

TR�4UTR)(trU ∗
TR�4UTR)(tr�4), which is equal to Eq. (29).

(If the swap had not been included, the domain wall on the
right of the region contracted with R would be proportional
to U

†
TRUTR = 1. The swap reverses the orientation of one
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of the paths so that U ∗
TR appears instead of U

†
TR, yielding

the desired phase factor.) This string order is nonzero in
both the time-reversal-protected phases, but when it is nega-
tive, the phase is nontrivial, just as for the inversion symmetry.

Combinations of multiple local symmetries. For local
symmetries, there are also string-order parameters that directly
measure the topological phase factors, as in Eq. (22). This type
of string order was introduced in Ref. 13. We show that it can
identify tricky phase factors like the one in Eq. (20), which
ordinary string order cannot. To be general, note that there
is a gauge-invariant phase any time there is a sequence of
symmetries aj which can be multiplied together to give the
identity in more than one way, a1a2 · · · am = ak1ak2 · · · akm

=
1 (where the indices k1, . . . ,km are a permutation of 1, . . . ,m).
When these symmetries are replaced by the U ’s, a phase factor
appears, Uk1 · · · Ukm

= eiφU1 · · · Um, and the phase factor is
gauge invariant. For example, in Eq. (20), the symmetries can
be multiplied together in the order aba−1b−1dcd−1c−1, which
gives the identity by assumption, or each symmetry can be
grouped with its inverse, which also cancels to 1. We will now
see that such phase factors can be identified by taking multiple
chains and applying symmetries and permutations to them.
This order parameter succeeds at identifying phase factors
that the string-order selection rule fails to detect. In fact, it
gives a complete way to distinguish between topological states,
because Schur showed that every gauge-invariant phase factor
in a projective representation has this form; see Appendix B.

The string order that isolates such a phase is illustrated
in Fig. 9 for m = 4. Take m identical copies of the given
state and place them side by side. Take three successive long
segments L, M , and R. Now apply the symmetries to the
middle segment and different permutations to the two ends
(similar to the swap operator used in the case of time-reversal
symmetry). This causes the U matrices at each of the ends
of M to get multiplied together in two orders, which allows
one to detect the phase factor. Figure 9 illustrates the order
parameter for the simplest case of UaUbU

−1
a U−1

b (where �a

FIG. 9. (Color online) An illustration of a nonlocal order param-
eter for measuring the phases of local symmetries directly. A segment
is chosen from the chains and divided into three consecutive sections.
The symmetry operations are applied to the middle sections. The
left and right sections are permuted such that the end points with
the same number were connected to each other before applying the
permutation. The order parameter is then obtained by calculating the
overlap with the four original replicas of the state. The labels � and
� have been left out so that the figure does not become too busy;
furthermore, there are additional domain walls at the other ends of
the segments L and R which are not shown.

and �b commute). The order parameter and its value are

S = 〈ψm|π(1 2···m−1 m)(L)�a1 (M1)�a2 (M2) · · ·
×�am (Mm)π(k1 k2···km−1 km)(R)|ψm〉

= (tr�2m)4eiφ. (30)

Here πX(L) consists of permuting the left segments of the
chains according to the permutation X (written as a cycle),
�ak (Mk) means to apply the symmetry ak to the middle
segment of the kth chain, and πX(R) indicates permuting the
right segments. The wave function |ψ4〉 is simply a product
of m replicas of the ground state. To identify the phase factor
in Eq. (20), (which cannot be found from the selection rule,
unlike the m = 4 example), take m = 8 chains, and apply
the symmetries a,b,a−1,b−1,d,c,d−1,c−1 to the legs of the
ladder in the middle segment. Then apply the permutations
(12345678) on the left segment and (13245768) on the right
one, in order to get the U ’s to cancel with their inverses on the
right and to obtain (UaUbU

−1
a U−1

b UdUcU
−1
d U−1

c )∗ on the left,
which is the phase we want to find. (We could also apply a
bunch of two-cycles on the right end to get the same phase
factor but multiplied by a different combination of Renyi
entropies.)

This type of nonlocal order parameter distinguishes be-
tween all phases with a local symmetry group. Time-reversal
and inversion symmetry phase factors can be determined as in
the previous section. By combining all these ideas together, it
should also be possible to measure phase factors that arise from
combining spatiotemporal symmetries with local symmetries.
(We have not yet worked out order parameters for groups that
contain either inversion or time-reversal symmetry together
with local symmetries, but it looks likely to work.)

V. TOPOLOGY OF NONLOCAL ORDER PARAMETERS

The phase-detecting string order (see Sec. IV B) is actually
related to topological surfaces (which gives a justification
in hindsight for calling these phases “topological”). It can
be represented by a path integral on a topological surface,
such as a torus, like the one in Fig. 10(a). To derive such a
representation, the ground state is first expressed as

|ψ〉 = lim
β→∞

e−βH |arbitrary state〉, (31)

i.e., time evolution from time −∞ to zero. This is interpreted
as a sum over all possible histories of the system in the half
plane −∞ < τ < 0, −∞ < x < ∞ (by subdividing time and
introducing complete sets of intermediate states, as in the usual
derivation of path integrals). Therefore the ground state is a
partition function on the half plane with boundary conditions.
The procedure for evaluating the wave function is then as
follows: The system consists of a half plane with bonds sticking
off the upper edge as in Fig. 10(b). The spins on the bonds on
the edge are set equal to (ji) and the partition function Z({ji})
is calculated as a function of these spins. The ground-state
wave function is then given by |ψ〉 = ∑

{ji } Z({ji})|{ji}〉.
To evaluate a string operator such as 〈a1a2 · · · an〉 we

sandwich the string between two copies of the wave function
and contract all the bonds; see Figs. 10(c) and 10(d). The inner
product 〈ψ |ψ〉 without the a’s is represented by a partition
function on the whole plane. Inserting the a’s modifies the
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(a) (b)

(c) (d)

FIG. 10. (Color online) (a) String-order parameters are equivalent
to path integrals on topological surfaces. This is derived by piecing
different regions together. (b) The ground-state wave function is
represented by a partition function on a half plane with bonds sticking
off the lower edge. (c),(d) A simple string operator

∏
ai sandwiched

between two copies of the wave function is represented by a plane with
a branch cut in it. The torus in (a) is derived by a more complicated
gluing procedure.

partition function by imposing a boundary condition that the
state jumps by the symmetry operation a as the cut is crossed.

String orders that are proportional to topological quantities,
as in Eq. (30), are more complicated combinations of strings.
This string order can be translated into a geometrical represen-
tation by the same method—gluing together half planes in an
appropriate way. As the half planes are joined together, they
will fit together into a surface such as the torus in Fig. 10(a).
The branch cuts will turn out to form closed loops. Such loops
can be moved around arbitrarily without changing the value
of the partition, which will explain why the partition function
represents a topologically stable quantity.

The torus in Fig. 10(a) is built up like a paper model—the
permutations play the role of instructions describing which
tabs to glue together. We will illustrate this with the following
string order:

S = 〈ψ4|π(1 3)(2 4)(L)�a(M1)�b(M2)�a−1

× (M3)�b−1
(M4)π(1 2 3 4)(R)|ψ4〉. (32)

This gives the same topological quantity as in Fig. 9 (although
it has a slightly different combination of permutations). For
simplicity we let L and R extend off to infinity. To visualize the
path integral representingS, we will have to glue together eight
copies of the wave function (four for the bra and four for the
ket). We will start by gluing together these four copies along the
middle section after applying the appropriate symmetry—see
Fig. 11. Next deform all the shapes, as in Figs. 12(a)–12(d).
This just prepares the shapes so that they will fit together
nicely. Now paste the triangles together; see Fig. 12(e). Last,
glue together all the other matching edges—that means gluing
opposites sides of the square together so that a torus forms,
as in Fig. 10(d); we call the partition function on this torus
Ztorus(a,b); it is a function of the group elements on the branch
cuts.

We can now understand why the string order is topologi-
cally invariant. The partition function, or actually its ratio to

(a) (b)

(c) (d)

FIG. 11. (Color online) The first step in the gluing. Applying the
symmetries to the four copies of the wave functions and then summing
over the middle section produces these four patches. Applying the
permutation operators and summing over the remaining spins will
glue these together into a single surface: the rule for gluing is
described by the black and the white dots, which are supposed to
be matched with one another. In this figure, the orientation of the
arrow represents whether the symmetry is supposed to be a or a−1.

(a) (b)

(c)

(e)

(d)

FIG. 12. Middle steps in the gluing. (a)–(d) Distorting the planar
regions of the previous step into triangles. (e) Pasting the triangles
together to form a square. The last gluings cause the square to be
rolled into a torus.
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FIG. 13. (Color online) How one proves that the branch cuts
can be moved around. The partition function has a microscopic
representation as a grid of contracted tensors (each site of the lattice
corresponds to a tensor T ), and the branch cut is represented by
matrices on the bonds of the tensors. The symmetry of each tensor
implies that the branch cut can hop over a single site, and iterating
this allows it to be transferred anywhere.

the one without branches, Ztorus(a,b)/Ztorus(1,1), is constant
in each phase. The branch curves can be moved around with
negligible changes in the value of the partition function (as
justified below). This implies that changing the Hamiltonian
does not affect the ratio either, unless there is a phase transition.
The change can be carried out over one part of the surface
at a time. If it is changed first over a region that does
not overlap the branch lines, then the change affects the
numerator and denominator in the same way (because the
correlations are short ranged), so the ratio is constant. Then
the Hamiltonian can be changed in regions through which
branch lines pass—-you can first move the branch line out of
the way and then change the Hamiltonian.

That the branch cuts can be moved around depends on
three properties. First, the branch cuts, after the surface
is pasted, form closed curves (with matching arrows). If
they had end points, the end points would not be able to
move without changing the partition function. That is why
only certain combinations of permutations give topological
expectation values. Second, the a’s must be symmetries of the
Hamiltonian. If they are, the string can be moved around: this
is easiest to see if the partition function is represented by a
tensor network, as in Fig. 13. Each vertex is labeled with a
tensor T . Since the system is symmetric, applying the right
combination of a and a−1 operators to all the legs of T gives
T back (

∑
u′l′r ′d ′ auu′ ãll′a

−1
dd ′ ã

−1
rr ′ Tl′r ′u′d ′ = Tlrud, where a and ã

stand for the symmetry on the horizontal and vertical bonds,
respectively). Applying this relation allows one to move the
string from one site to another, and repeating it many times
can move the string anywhere. Third, the symmetries must
commute. This is necessary so that the crossing points of the
a and b loops can be moved around.

The inversion-symmetry and time-reversal-symmetry
string orders also are related to a topological surface (a
projective plane). The more general string-order parameters
for complicated groups would be described by surfaces with
a higher genus and more branch cuts on them. (The branch
cuts generally do not have to form closed loops—three branch
cuts can come together like branching leaf veins as long
as the product of the three group elements on them is the
identity.) These partition functions describe a surface with
a gauge flux through its holes; this is a foreshadowing of
how symmetry-protected phases in two dimensions can be
understood by applying gauge fields with the same symmetry
group as the phase.28

VI. SUMMARY

We have given two ways to distinguish among topological
phases in one dimension (phases which cannot be character-
ized by local order parameters). The first approach is more
suitable for numerical calculations: given a wave function in
matrix-product form, one can directly calculate the projective
representations of the symmetry group (by diagonalizing a
transfer matrix), and from that the factor set, which is known
to define these phases. Note that, while degeneracies in the
entanglement spectrum can indicate a nontrivial topological
state, they might also be caused by other effects. Actually
calculating the factor set gives definite proof that a state is
topological. Furthermore, for a given symmetry group, there
may be several distinct topological states, all of which would
have similar degeneracies in the entanglement spectrum, but
which have distinct factor sets.

The second approach is more physical, as it involves
measurements on the actual spins or atoms that make up
the system, rather than on the matrix-product state. In this
approach, a phase is defined by the value of a nonlocal
string order. This characterization provides more insight into
the nature of these phases and could be implemented on a
state defined by Monte Carlo simulations, or possibly a real
system. The ordinary string order of the Haldane phase can
be explained using a selection rule that changes at the critical
point: there are two types of string order (depending on the
operators at the ends of the string) one which vanishes in the
trivial phase, and one which vanishes in the nontrivial one.
This order parameter can be generalized to many cases, but
not to all groups. An alternative order parameter that directly
measures the “projective phases” is required to distinguish
among phases in general. Such an order parameter works
for all cases, including time-reversal and inversion symmetry,
and complicated local symmetry groups. Intriguingly, this
parameter involves measuring expectation values of string
operators on multiple copies of the system, even though these
copies are uncorrelated. We show for this generalized nonlocal
order parameter how it is actually related to topological
surfaces.
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APPENDIX A: EXAMPLE OF A PHASE THAT CANNOT BE
DETECTED BY STRING-ORDER SELECTION RULES

Let us assume that a state is invariant under a symmetry
group G which fulfills the group algebra aba−1b−1 = x =
cdc−1d−1. (We simplify the expressions by writing a,b, . . .

instead of �a,�b, . . . .) Then UaUbU
−1
a U−1

b UdUcU
−1
d U−1

c =
eiφ1 is gauge invariant and does not look easy to detect
by using the selection rule for string order from Sec. IV A.
But this is not completely obvious. In fact, if a and b

both commute with both c and d, then we can rearrange
aba−1b−1dcd−1c−1 into (ad)(bc)(ad)−1(bc)−1 = 1. Thus ad
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and bc commute, allowing us to define a phase φad;bc (in
general, we define φg1,g2 for commuting symmetries g1,g2 as
the phase of Ug1Ug2U

−1
g1

U−1
g2

). The phase φ can be expressed
in terms of it. In fact, rearranging the expression for eiφ and
remembering to keep track of the phases that might arise from
exchanging, e.g., Ua and Uc (on account of the topological
order), we find that φ = φb;d − φa;c + φad;bc, so φ reduces to
simpler phase factors which can all be determined by using
the string-order selection rule.

More pairs of symmetries must be noncommuting to
ensure that there is no way to simplify φ. We will introduce
the following group algebra, with c and d relabeled c1

and c2:

aba−1b−1 = x, c1c2c
−1
1 c−1

2 = x, ac1a
−1c−1

1 = y1,
(A1)

ac2a
−1c−1

2 = y2, bc1b
−1c−1

1 = bc2b
−1c−1

2 = 1.

Besides the original symmetries a,b,c1,c2,x we have intro-
duced additional symmetries y1,y2 as the commutators of some
of them. Aside from these conditions, we assume that all the
generators square to 1. This group has 128 elements. The
algebraic relations defining it are complicated generalizations
of the quaternion group; for example, the first equation
corresponds to the commutator of iσx and iσy being −1, which
commutes with everything and squares to 1 as x does.

Example of “undetectable” projective phase factors for
this group. We can write the elements in the group as products
of a,b,c1,c2 and x,y1,y2. The numbers of a,b,c1,c2 factors
are each the same modulo 2 no matter how we rearrange the
factors. So define na(g) and nb(g) to be the number of a’s
and b’s appearing modulo 2. Assume the following projective
phase factors:

Ug1Ug2 = eiρ(g1,g2)Ug1g2 = eiπna (g2)nb(g1)Ug1g2 . (A2)

[To create an example of an undetectable phase factor, we want
a minus sign to appear in the first of Eqs. (A1) on replacing
the symmetries by their U matrices, and we want this to be
the only phase factor that appears. These conditions lead to
Eq. (A2).] It is easy to check that this definition is consistent,
i.e., that ρ(g1g2,g3) + ρ(g1,g2) = ρ(g2,g3) + ρ(g1,g2g3) The
calculation starts from the linearity of na and nb, e.g.,
na(g1g2) = na(g1) + na(g2) (mod 2).

Now let us show first that this is a nontrivial phase (by
showing that there is a nontrivial phase factor defined using
four symmetries) and second that this phase cannot be detected
using a string-order selection rule, because all the commuting
pairs of elements g1 and g2 also commute in the projective
representation. Hence this is a nontrivial phase without any
signature in the ordinary string order.

The phase is nontrivial as UaUbU
−1
a U−1

b = −Ux while
Uc1

Uc2
U−1

c1
U−1

c2
= Ux . Hence the gauge-invariant phase factor

from these four symmetries is −1.
However, all two-symmetryphase factors are trivial. To

show this, we have to enumerate (at least partly) all the pairs
g,g′ of symmetries that commute, and then check that the U ’s
for them also commute. Write g = zanabnbc

n1
1 c

n2
2 and g′ =

z′an′
a bn′

b c
n′

1
1 c

n′
2

2 , where the n’s are each 0 or 1 and the z’s are
products of some combination of x, y1, and y2 (i.e., elements
of the center of the group). Since the commutators of any two
of a,b,c1,c2 are in the center, the commutator of g and g′ can

be calculated by evaluating the commutators of their factors
one pair at a time:

gg′g−1g
′−1 = xnan

′
b+nbn

′
a+n1n

′
2+n2n

′
1y

nan
′
1+n1n

′
a

1 y
nan

′
2+n2n

′
a

2 . (A3)

We want g and g′ to commute, so the exponents of x, y1, and
y2 must be zero modulo 2. We will then want to calculate
UgUg′U−1

g U−1
g′ , which according to Eq. (A2) is (−1)nan

′
b+nbn

′
a .

In order for g and g′ to commute, the exponents of the y’s
must vanish:

nan
′
1 + n′

an1 ≡ nan
′
2 + n′

an2 ≡ 0 mod 2. (A4)

Consider all four possible combinations of values for na and
n′

a . First, if na = n′
a = 0, then Ug and Ug′ commute because

nan
′
b + nbn

′
a = 0. Second, if na = 1 and n′

a = 0, then we must
have n′

1 = n′
2 = 0 by Eq. (A4). This implies that g′ = z′ or z′b.

But this commutes with g only in the former case (since g has
a factor of a in it and this does not commute with b), while
there is a nontrivial phase factor only in the latter case. The
remaining two cases are similar.

Hence this group is an example where the regular string-
order selection rule we described in Sec. IV A does not help
to identify this phase, while the alternative type of order in
Sec. IV B does.

APPENDIX B: SCHUR’S THEOREM ON PROJECTIVE
REPRESENTATIONS

Schur classified the types of projective representations
(which are also known as the “Schur multipliers”); the
result29 implies that all one-dimensional phases, at least those
with local symmetry groups, can be recognized using the
order parameter of Sec. IV B. Schur’s theorem says that
the classes of projective representations of a group are in
one-to-one correspondence with the characters eiφ(γ ) on the
group ([F,F ] ∩ R)/[R,F ].

We will now explain what these terms mean and
how the theorem comes about. The gauge-invariant
phase factors we have found involve products such as
UaUbU

−1
a U−1

b UdUcU
−1
d U−1

c where a,b,c,d are generators
of the group. This phase factor can be defined by listing
the sequence of group elements that have to be multiplied
together: {a,b,a−1,b−1,d,c,d−1,c−1}, without actually mul-
tiplying them. It is convenient to regard such sequences as
forming a group (a “free group”): to multiply two sequences,
juxtapose them and cancel elements with their inverses when
they meet each other. This structure is useful because it
makes it possible to break phase factors down to simpler
ones (for example, repeating the string just given twice does
not give a new phase factor, just the square of the original
one).

The sequences that give a gauge-invariant phase factor form
a group, which Schur’s theorem describes. In general, let the
symmetry group be G and let x1, . . . ,xk be a set of symmetries
that generate it; call the set of sequences of these generators
the free group F . Let [F,F ] be the group generated by
commutators of two elements of F . (Similarly, one can define
the commutator of any two subgroups [A,B].) Consider also
the set R of sequences whose product is equal to the identity.
A sequence that lies in both these subgroups determines a
gauge-invariant phase factor; that is, there is a function eiφ(γ )
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defined on γ ∈ [F,F ] ∩ R. Because γ is an element of R,
it gives a phase when the corresponding U ’s are multiplied
together, and these phases are invariant because elements of
[F,F ] are products of commutators, that is, they have the form
{a1,b1,a

−1
1 ,b−1

1 , . . . ,al,bl,a
−1
l ,b−1

l } where the a’s and b’s are
various elements of F . The theorem of Schur states that all
gauge-invariant phase factors are contained in this function. In
addition, the theorem finds all the conditions that have to be
satisfied by these phases (such as when one of the phases has
to be ±1); the general rule is that φ(γ ) = 0 when γ ∈ [R,F ].
Relations such as eiφ(γ ) = ±1 follow: squaring eiφ(γ ) gives
eiφ(γ 2), which must equal 1 if γ 2 ∈ [R,F ]. Now all these
statements can be recast by saying that eiφ(γ ) is a character for

the group ([F,F ] ∩ R)/[R,F ], and that is essentially Schur’s
theorem.

For example, consider Z2 × Z2. Let a and b be the two
generators. Then x = {a,b,a−1,b−1} is an element of R

because a and b commute as elements of the group Z2 × Z2.
It is also an element of [F,F ], so it defines a phase factor
eiφab . Now the second part of the theorem implies that this
phase factor is equal to ±1. To see this, we will show
that x2 ∈ [R,F ], which implies (eiφ(x))2 = eiφ(x2) = 1. That
x2 ∈ [R,F ] is implied by the following relationship (where
the commas represent multiplication in the free group): x2 =
({x,a,x−1,a−1},{a2,b,a−2,b−1}). This is in [R,F ] because x

and a2 are both in R.
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