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Nonlinear magnetization of graphene
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We compute the magnetization of graphene in a magnetic field, taking into account for generality the possibility
of a mass gap. We concentrate on the physical regime where quantum oscillations are not observed due to the
effect of the temperature or disorder and show that the magnetization exhibits nonlinear behavior as a function of
the applied field, reflecting the strong nonanalyticity of the two-dimensional effective action of Dirac electrons.
The necessary values of the magnetic field to observe this nonlinearity vary from a few teslas for very clean
suspended samples to 20–30 T for good samples on substrate. In the light of these calculations, we discuss the
effects of disorder and interactions as well as the experimental conditions under which the predictions can be
observed.
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I. INTRODUCTION

The physics of graphene has attracted a huge amount
of interest since its discovery1 due to its unique physical
properties as well as its potential technological importance.
The electronic properties and its behavior in a strong magnetic
field have been the focus of wide activity as recent reviews
summarize.2,3

The Dirac-like spectrum of clean graphene has been
established; see, e.g., Ref. 4 and references therein. Moreover,
the partition function of two-dimensional massless systems is
known to exhibit strong nonanalytic behavior as a function of
external fields.5,6 This kind of behavior can lead, for example,
to non-Ohmic conductivity due to Schwinger pair production
at certain conditions7,8 or signatures of quantum criticality.9 In
the case of conventional metals, the magnetism is a result of
two contributions, coming from the spin (Pauli contribution) or
the orbitals (Landau diamagnetism). In this work, we examine
in detail the orbital magnetization of graphene in a magnetic
field, including for generality the possibility of a mass gap, and
show the appearance of a nonlinear dependence on the applied
field, as a consequence of nonquadratic field dependence of
the partition function. The Pauli magnetization of graphene
is linear as a function of doping and much smaller than
the orbital magnetization especially for low carrier densities
(chemical potential close to 0).10 The possible nonlinearity
due to the Pauli contribution, which is a known phenomenon,
a consequence of the saturation of localized moments at
higher fields, is discussed in the part of this work where the
experimental verification is proposed.

The nonlinearity happens as a result of the failure of the
linear response approximation, which is applicable when there
is a mass scale larger than the applied perturbation. This
scale controls the perturbative expansion. For the case of
graphene this could be, e.g., a mass gap, the temperature, or
the impurity scattering rate. Since the magnetic energy scale
in graphene is known to be exceptionally large due its linear
dispersion, even at moderate magnetic fields the magnetic
energy scale becomes dominant, and therefore it violates the
basic assumptions of the linear response regime.

The nonlinearity survives even at relatively small magnetic
field for sufficiently clean samples; therefore it is not suffi-
cient to compute only the zero-field magnetic susceptibility.

Typically, the observed nonlinear effect of strong magnetic
field is the magnetic oscillations, but these oscillations average
out at elevated temperatures or due to impurities producing the
linear magnetization. Here we focus on the regime where the
magnetic oscillations average out but, nevertheless, a smooth
nonlinearity remains. In the following sections we discuss
the effects of temperature, mass gap, disorder, as well as
interaction effects at a phenomenological level and propose
an experiment which can demonstrate these predictions.

II. CLEAN GRAPHENE WITH POSSIBLE MASS GAP

At zero temperature, the grand canonical potential of clean
graphene in a magnetic field when Landau levels (LLs) are
formed, at zero chemical potential, with energy of the LLs
En = sign(n)

√
α|nB| where α = 2h̄ev2

F and n is an integer,
reads

�vac = gsgv

√
α|B|3/2C

(
ζ (3/2)

4π
− 0.1654 a

√
|B|C

)

with a = 0.142 nm being the distance between the carbon
atoms and the degeneracy factor C = e

2πh̄
, gv = 2, gs = 2

accounts for spin and valley degeneracy, ζ is the zeta function:
ζ (3/2)

4π
= −ζ (−1/2) ≈ 0.2079.

The subleading terms are lattice corrections which are
discussed elsewhere;10,11 the numerical factor corresponds
to nearest-neighbor tight-binding model calculation and de-
scribes orbital paramagnetic contributions due to higher energy
levels having non-Dirac dispersion. The corrections as a result
of the deviation of the dispersion from the Dirac-like appear
either due to interaction effects—which we discuss below—or
due to lattice effects when B � 100 T and are not discussed
further here.

The leading term, though, is nonanalytic in the magnetic
field and naturally leads to divergent diamagnetic suscepti-
bility at the Dirac point. Such nonanalyticities are typical
not only in the effective action of massless systems but at
quantum critical points12–15 or even in corrections to Fermi
liquid theory.16

When temperature-averaged over many Landau levels
(LLs), this nonanalytic contribution cancels out, as first shown
by McClure.17 When the magnetic field overcomes the energy
scale set up by the temperature (or impurity scattering), this
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nonlinearity can be observed. For generality and to compare
energy scales, we take into account a mass gap � in the
dispersion relation, which can be experimentally created, e.g.,
due to A-B sublattice asymmetry caused by SiC substrate or by
regular deposition of impurities.20,21 At zero magnetic field it
was demonstrated that the pseudospin degree of freedom (due
to valleys) produces diamagnetic susceptibility which is22–24

χ (ε) = −gsgv

αC

12|�|θ (|�| − ε). (1)

It is evident that the mass gap resolves the formal δ-function
singularity in the susceptibility, but when the magnetic energy
scale exceeds that of the gap, the nonanalyticities of the free
energy become again dominant, as we will show.

In a magnetic field B and in the presence of the mass gap,
the spectrum at low energies becomes

En�=0 = sign(n)
√

α|nB| + �2, E0 = (−1)v�, (2)

where v = 0,1 enumerates the two Dirac valleys. In the
absence of the gap or when its size is smaller than the distance
between the first LLs � <

√
α|B|, the linear expression (1) is

not applicable and, as we will show, the correct result leads to
the nonlinear magnetization.

The regularized free energy reads (at chemical potential
μ = 0, temperature T = 0)

�(�,0,0) = −gsC|B|
( ∞∑

n=0

+
∞∑

n=1

) √
αn|B| + �2

=reg −gsCα1/2|B|3/2

[
−

(
�2

α|B|
)1/2

+ 2 ζ

(
−1

2
,

�2

α|B|
)

+ 4

3

(
�2

α|B|
)3/2 ]

, (3)

where we have regularized and subtracted the B = 0 expres-
sion; ζ is a generalized Hurwitz ζ function. It also agrees with
related formula in Ref. 22. The above expression is exact in the
limit of free electrons and has a strong-field expansion valid
for δ2 ≡ �2

α|B| � 1 (when the gap is less than or comparable to
the distance between the first LLs), leading to the strong-field
expansion of the magnetization (μ = 0, T = 0):

M(�,0,0) = gsC
√

α|B|
[

3ζ (−1/2) + δ + ζ (1/2)

2
δ2

+ ζ (3/2)

8
δ4 − 3ζ (5/2)

16
δ6 + O(δ8)

]
, (4)

where δ ≡
√

�2

α|B| = 27.5 �(eV)√|B|(T)
; for example, for � =

0.1 eV this formula works starting from approximately 7.5 T,
indicating the scale from which the nonlinearities occur.

At T = 0 and as � → 0 the range of the values of B where
linear magnetization occurs decreases to zero. Therefore, the
nonlinearity of magnetization gets stronger with the reduction
of the gap and temperature. The susceptibility, following from

Eq. (3), reads

χ (�,0,0) = gsC
√

α

2
√|B|

[
3ζ

(
−1

2
,

�2

α|B|
)

− 2
�2

α|B|ζ
(

1

2
,

�2

α|B|
)

− �4

α2|B|2 ζ

(
3

2
,

�2

α|B|
)]

.

(5)

At finite temperature and chemical potential, after per-
forming the same subtraction as for the regularization of
�(�,μ = 0,T = 0), and additionally subtracting μN (μ =
0,T = 0) which is independent of B, we obtain25

�(�,μ,T )

= �(�,0,0) − gsCBkT

[
ln

(
1 + exp

(−� + μ

kBT

))

+ 2
∞∑

n=1

ln

(
1 + exp

(−En + μ

kBT

))]
− [μ → −μ] .

(6)

At zero chemical potential the temperature plays a role
similar to the gap. It is instructive to note that if we
compare McClure’s result for magnetic susceptibility at finite
temperature,

χ = −gsgvC

24

α

kBT
sech2 μ

2kBT
,

with the one for the magnetization with gap but at zero
temperature, we see that at 2kBT = � the linear magnetization
is the same (with μ = 0), while the nonlinear parts are different
as is shown in Fig. 1.

For nonzero chemical potential and temperature there
are two regimes, the well-known low-field regime and the
high-field regime which sets in when E1 = √

α|B| � 2μ.
When the chemical potential exceeds the temperature scale,
the magnetization rapidly decreases as expected, but it starts
to grow when the separation between the LLs becomes
comparable to the chemical potential; this behavior is shown
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FIG. 1. (Color online) The magnetization at T = 300 K, μ = 0
and at gap values � = 0 and 52 meV is compared to the linear
behavior. In addition, the magnetization at fixed chemical potential
100 meV and at fixed electron concentration 1012 cm−2 at T =
300 K is plotted. Low and high field asymptotic are shown.

125440-2



NONLINEAR MAGNETIZATION OF GRAPHENE PHYSICAL REVIEW B 86, 125440 (2012)

by the upper curve in Fig. 1. At such fields the zeroth
LL gives the leading constant paramagnetic contribution to
the magnetization, but the same nonlinear vacuum energy
contribution remains: For

√
α|B| � 2(μ + �) � kBT ,

M(�,μ,T ) ≈ gsC (μ − �) + M(�,0,0). (7)

This asymptotic regime is shown by the upper green dot-
dashed line in Fig. 1. When the temperature decreases we
get de Haas–van Alphen oscillations for nonzero chemical
potential, as expected.22 The non-linearity we discuss can be
alternatively interpreted as being connected to these dHvA
oscillations, as its remnant behavior.

When the number of particles is fixed, instead of
the chemical potential (both situations are experimentally
realizable in cases of graphene on substrate or suspended
flakes) then μ is expressed through the relation N = − ∂�

∂μ
.

At small temperature, the de Haas–van Alphen oscillations are
observed. At high fields the chemical potential inevitably tends
to zero since almost all the electrons (or holes if μ < 0) can
be hosted by the zero LL. This leads to the |B|1/2 asymptotic
behavior of magnetization, corresponding to Eq. (3), shown
by the black solid curve in Fig. 1.

For completeness, we briefly comment on the case
of bilayer graphene where the zero-field susceptibility26,27

diverges logarithmically with the Fermi energy εF → 0 and the
divergence is cut by the greatest of trigonal warping scale εtrig

and εF . When we increase the magnetic field, the magnetic
energy scale

√
α|B| eventually becomes the greatest, thus

leading to weak logarithmic nonlinearity of the magnetization.
The asymptotic form of the magnetic thermodynamic potential

is28 � = gsgv

8π

e2v2
F

γ1
ln[γ1/(

√
α|B|)]B2, where γ1 ≈ 0.4 eV is the

interlayer hopping energy and the magnetic scale
√

α|B| is
assumed to be larger than the trigonal warping energy εtrig and
εF ; otherwise one replaces

√
α|B| → εF . Then one gets

M ≈ −|B|gsgve
2v2

F

8πγ1
ln

(
γ 2

1

|B|α
)

. (8)

At even larger magnetic fields B � 100 T, the magnetic
energy becomes larger than the interlayer hopping γ1, thus
effectively reducing the bilayer to two monolayers. Since
the nonlinearity of magnetization of the graphene bilayer is
significantly weaker than for the monolayer, we expect that
the impurities would make this effect hard to observe. So, we
concentrate on the monolayer in what follows. The N-layered
graphene was shown to have [N/2] bilayer bands and N mod
2 monolayer bands.26

III. EFFECT OF IMPURITIES

Besides the mass gap and temperature, the nonlinearity of
the magnetization is influenced by impurities and interactions.
We consider first the short-range scattering impurities and then
the effect of charge inhomogeneities: the electron and hole
puddles.

A. Short-range impurities

Consider for simplicity the short-range impurities with
momentum-independent scattering. It is sufficient to adopt
the self-consistent Born approximation (SCBA).29,31 The

treatment of the vacancy-type impurities32 or the commonly
used phenomenological Lorentzian broadening leads to similar
conclusions qualitatively, as we have checked.

In SCBA,29 the self-energy reads

(ε) = Wα|B|
2

∑
n

g(εn)

ε − εn − (ε)
, (9)

where εn is a full spectrum and g(ε) is some smooth cutoff
function. This is valid for small strength of disorder W =
niu

2
i

4πv2
F

	 1, where ni is the impurity concentration and ui

a measure of the strength of the random on-site impurity
interaction. For a discrete LL spectrum and for small W we
obtain the solution iteratively. The density of states is

ρ(ε) = − gvgs

2π2h̄2v2
F W

Im (ε + i0). (10)

For the strong-field regime the single-level approximation of
the level width works well, as has been checked numerically.
Solving Eq. (9) with a single energy level we obtain two
roots and the relevant solution is (ε) = 1

2 [ε − εn − sign(ε −
εn)

√
(ε − εn)2 − 2αWB]; therefore the density of states can

be approximated by a semicircle form

ρ(ε) = gvgsC

παW

√
2αW |B| − ε2 θ (2αW |B| − ε2), (11)

where θ is a step function and ε means the deviation from the
LL of the clean system. In the single-level approximation, we
neglect the shift of the level center due to the real part of the
self-energy. Similar form for the density of states is supported
by more elaborate computations; see, e.g., Ref. 30. Note that
the level width scales as

√|B|. The above approximation can
be applied for levels εn up to n � 1

8W
; for higher levels their

overlap would become essential. Since at medium or strong
fields the higher levels are typically far from the Fermi surface,
we may use the same level-broadening for all the levels, since
this does not alter the result for the magnetization.

Under the assumption that all the levels are broadened with
the same profile ρ(ε), the partition function can be computed
by integrating Eq. (6) with the broadened chemical potential:

�imp =
∫

dε
ρ(ε − μ)∫
ρ2(ε′)dε′ �(�,ε,T ). (12)

We note that this equation automatically inherits the regu-
larization from �(�,ε,T ). For the magnetization one gets a
similar formula, but with an extra contribution coming from
the B derivative of the broadening profile. At high fields this
contribution is paramagnetic due to broadening of the zero
LL. As mentioned above, there is no significant dependence
on the actual width of higher LLs. The effect of temperature
may be alternatively taken into account, by convolving the
impurity broadening with the derivative of the Fermi function
with respect to energy f ′.33

The typical linewidth of the high-quality sample34,37 is
estimated to be δ ≈ 3

√
B(T) meV, so W ≈ 0.003 and the

Fermi energy is μ ≈ 14 meV. Such high-quality sample is
close to the ideal case and exhibits strongly nonlinear ∼√|B|
magnetization already at 1 T, as illustrated in Fig. 2.

From this subsection we conclude that low concentra-
tions of short-range impurities do not significantly alter the
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FIG. 2. (Color online) Nonlinear magnetization with short-range
impurities for fixed μ or for fixed N . Green dashed curve takes into
account the linear in B splitting of zero LL due to interactions, while
the green dot-dashed curve is for ∼√

B splitting of zero LL; see
Sec. IV.

magnetization. For larger concentrations of impurities the
above analysis is not applicable.

B. Charge inhomogeneities

It was shown experimentally that for many graphene
samples the charge inhomogeneities play the dominant role.38

The effect of charge inhomogeneities can be modeled as long-
range smooth variation of carrier density N (electron and hole
puddles), and the range may be assumed to be comparable to
the size of cyclotron orbits. A simple model proposed in Ref. 38
fits well the experiment. It assumes Gaussian variation of N

with standard deviation of order δN ≈ 4 × 1011 cm−2. Since
N ∼ μ2, the variation δN leads to large δμ close to the tip of
the Dirac cone and results in the large broadening of the zeroth
LL. This contrasts with the equal profile broadening, coming
from the scattering on short-range impurities. Apart from
variation of the charge density, the charged impurities cause
a usual broadening of the levels. We use the simple model of
constant Lorentzian broadening, independent of the magnetic
field, as compared to short-ranged impurities, where we
got the

√
B dependence. This does not significantly change

the result and is partly justified by computations in Ref. 35,
where the B dependence was shown to be more shallow than√

B due to the fact that the screening increases with B.
To perform calculations, we broaden the levels with Lorentz

profile, getting the density of states ρε(E) then integrate it to
find N (EF ) and its inverse EF (N ), and then contract with
Gaussian density fluctuation profile:

P (N,N,δN ) = 1√
2πδN

exp

(
− (N − N )2

2δN2

)
. (13)

For example, the density of states is given by

ρ(N ) =
∫

dN ρε(EF (N )) P (N,N,δN ). (14)

The consideration of graphene with fixed total number of
electrons is equivalent to the situation of graphene on substrate
and the particle number being proportional to gate voltage. For
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FIG. 3. (Color online) Density of states for 16 T (solid) and
10 T (dotted) as a function of chemical potential of neutral spot
with Gaussian carrier density fluctuation δN ≈ 4 × 1011 cm−2 and
Lorentzian broadening of levels with half-width ε = 15 meV.

suspended graphene (or exfoliated flake) one may imagine a
situation of the fixed local chemical potential at spots where
it touches a contact. Assuming that these spots are far from
the charged impurity (neutral spot), the local electron density
at such spots would coincide with the average value N , so we
may use the same as above function N (EF ) to convert ρ(N ) to
ρ(N (μ)). The resulting density of states (DOS) as a function
of the chemical potential is plotted in Fig. 3 for magnetic
fields of 10 and 16 T, δN ≈ 4 × 1011 cm−2, and Lorentzian
broadening with half-width ε = 15 meV. The same figure but
plotted against the electron density N (or gate voltage) can be
found in Ref. 38. For high temperatures, the level broadening
is dominated by temperature, and for low temperatures, by
impurities.

For low temperatures and Lorentz impurity broadening
ε Eq. (6) for the grand canonical potential combined with
Eq. (12) gives at T = 0

�(�,μ,ε) = �(�,0,0)

+ gsCB

[
F (μ + �) + 2

∞∑
n=1

F (μ + En)

]

+ [μ → −μ], (15)

where En =
√

αn|B| + �2,

F (e) = e

π
{arctan[max(�,e)/ε] − arctan[max(−�,e)/ε]}

+ ε

2π
ln

max(e, − �)2 + ε2

max(e,�)2 + ε2
, (16)

and � is a large cutoff for Lorentzian broadening.
To see the effect of charge puddles on magnetization, we

compute the magnetization as a function of electron density N

and then convolve with Gaussian profile:

M(N,δN,T ) = 1√
2πδN

∫
dNM(N,T )e

− (N−N)2

2(δN)2 . (17)

This prescription follows from summation over separate
puddles; N denotes the average electron density.

The results for fixed average carrier number N and for
fixed chemical potential μ of neutral spot are shown in Figs. 4
and 5. From these plots we see that charge disorder observed in
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FIG. 4. (Color online) Nonlinear magnetization with charged
impurities for fixed average electron density. Bottom to top: N =
0, 5 × 1011, 1012, 1.5 × 1012 cm−2; temperature T = 300 K (black
solid) and T = 0 (red dashed); Lorentz broadening ε = 15 meV;
density fluctuation dispersion is δN = 4 × 1011 cm−2. A plot for
smaller δN = 4 × 1010 cm−2 with N = 1012 cm−2 and T = 0 (blue
dotted) is shown for comparison. Inset: Dependence on the impurity
strength. Red dashed curve is the same as the bottom one on
the main plot: N = 0, T = 0, ε = 15 meV, δN = 4 × 1011 cm−2;
green dotted: Lorentz broadening increased to ε = 30 meV; blue
dot-dashed: density fluctuation increased to δN = 6 × 1011 cm−2.

experiments plays an important role in smearing the magnetic
oscillations (the plot for lower charged disorder shows clear
magnetic oscillations), as does also the temperature, but the
resulting magnetization is still nonlinear. The nonlinearity of
magnetization gets weaker with increase of both types of
disorder, but in a different way; see the insets to Figs. 4 and 5.
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FIG. 5. (Color online) Nonlinear magnetization charged impu-
rities for fixed chemical potential of neutral spot. Bottom to top:
μ = 0, 50, 100, 150 meV; temperature T = 300 K (black solid)
and T = 0 (red dashed); Lorentz broadening is ε = 15 meV; density
fluctuation dispersion is δN = 4 × 1011 cm−2. A plot for smaller
δN = 4 × 1010 cm−2, μ = 100 meV, T = 0 (blue dotted) is shown
for comparison. Inset: Dependence on the impurity strength. Red
dashed curve is the same as on the main plot: μ = 150 meV,
T = 0, ε = 15 meV, δN = 4 × 1011 cm−2; green dotted: Lorentz
broadening increased to ε = 30 meV; blue dot-dashed: density
fluctuation increased to δN = 6 × 1011 cm−2.

IV. EFFECT OF INTERACTIONS

It is worth noting that the most drastic effect of interactions
is the splitting of the zero LL into two levels separated by a
new gap 2�̃ (different from the initial �), when μ ≈ 0 and the
zero LL is not completely filled.36,37,39 �̃ grows with magnetic
field. The precise form of its dependence on the magnetic field
is an open question and depends on the sample. Generally,
there are the following kinds of energy gaps as a consequence
of the magnetic field: (i) linear in B dependence, coming from
the Zeeman spin splitting �Z = 2μBB ≈ 0.11B(T) meV
and from the potential pseudospin splitting (from Kekulé-
type distortion of the lattice) �Kekule ≈ 0.2B(T) meV, and
(ii) interaction contributions, scaling as

√
B, as explained,

e.g., in Ref. 3 and references therein.
The experimental data in Ref. 37 contain significant

uncertainty, allowing for various fits. For samples with high
mobility 17 000 cm2/(V s) the fit by

√
B looks reasonable:

�̃ ≈ k1/2
√|B|, with k1/2 ≈ 3 meV/

√
T. For samples with

lower mobility a fit linear in B is within the error bars:
�̃ ≈ klinear |B| with klinear ≈ 0.8 meV/T at half-filling. This is
7 times larger than the Zeeman splitting, indicating a different
mechanism.

The splitting of the zeroth LL leads to an extra param-
agnetic contribution, as compared to Eq. (6) with �̃ = 0,
μ = 0. The correction to thermodynamic potential is easily
computed by replacing ln 2 → 1

2 ln(1 + e−�̃/(kBT )) + 1
2 ln(1 +

e+�̃/(kBT )). For the linear dependence on B, defining x =
klinear|B|/kBT we have in the single-particle approximation:

δM = CgskBT

(
2 ln cosh

x

2
+ x tanh

x

2

)
.

This is shown by the dot-dashed curve on Fig. 2. The
paramagnetic nature of this contribution can be understood
as due to the reduction in energy of the filled half of the zeroth
LL by interactions. The correction is quadratic for small x and
linear at large x.

For
√

B splitting, the correction of the magnetization is

δM = CgskBT

(
2 ln cosh

x

2
+ 1

2
x tanh

x

2

)

with x = k1/2
√|B|

kBT
.

The different fittings of the splitting of the zeroth LL
as a function of B lead to different B dependence of the
magnetization, which, in turn, can provide one more method
to distinguish between the main possibilities. We note that
still there is no fully satisfactory theoretical explanation of
the level-splitting effect,37 and its microscopic explanation is
beyond the scope of this work.

V. EXPERIMENTAL PROPOSAL AND DISCUSSION

The measurements of nonlinear magnetization can be
used to study various properties of a graphene sample:
Magnetization is sensitive to the number of carriers, mass gap,
and disorder as well as the number of layers. In particular, one
can extract the magnetic field dependence of the interaction-
induced splitting of the zero LL. One possible way to measure
the nonlinear magnetization is to measure the magnetization of
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a suspended graphene flake with scanning SQUID microscopy.
Alternatively, one may go to higher magnetic fields (up to 50 T)
with a larger amount of lower quality graphene samples, e.g.,
the graphene laminate, used in Ref. 40. At high fields the
cyclotron orbits would fit better in the small-sized flakes and
one can neglect the boundary effects. In real samples there
will be a significant nonlinear part of the magnetization,
coming from localized impurity spins (Pauli contribution),
but this effect can be fitted at lower magnetic fields or
fields parallel to the surface, and consistently subtracted.41

Moreover, at magnetic fields greater than or of the order of
10 T and at low temperatures T < 4 K, it is expected that
all the localized moments will come to saturation; therefore
the detected nonlinearity will be a consequence of the orbital
contribution.

In conclusion, the two-dimensional nature and the linear
spectrum of graphene are the necessary conditions to observe
nonlinear magnetization at accessible magnetic fields. The
underlying reason is the breakdown of the linear response
theory due to the fact that the magnetic energy is the dominant
in the system. The linear dispersion relation gives relatively

large distances between the LLs and the two-dimensionality
leads to absence of kz dispersion of LLs. We have found that
even at room temperature and with moderate concentration
of impurities the nonlinearity should be revealed at about
10–20 T, while with very clean suspended samples at low
temperatures a lower value of magnetic field is sufficient. There
are two types of nonlinear behavior that are present: Near half
filling, the magnetization scales as

√
B at higher fields, due to

nonanalyticity of the effective action; then at higher values of
the chemical potential, the magnetization is small and linear
at small fields, while it increases the slope after the first LL
crosses the Fermi energy, and at even higher magnetic fields
one can also observe the

√
B behavior.
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