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Absence of gapped broken inversion symmetry phase of electrons in bilayer graphene under the
renormalized ring-diagram approximation
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On a lattice model, we study the possible existence of a gapped broken inversion symmetry phase (GBISP) of
electrons with long-range Coulomb interactions in bilayer graphene using both the self-consistent Hartree-Fock
approximation (SCHFA) and the renormalized ring-diagram approximation (RRDA). The RRDA takes into
account the charge density fluctuations beyond the SCHFA. Although the GBISP at low temperature and low
carrier concentration is predicted by the SCHFA, we show here that this state can be substantially suppressed by
the charge density fluctuations in the RRDA. We also present a numerical algorithm for calculating the self-energy
of electrons with the singular long-range Coulomb interaction on the lattice model.
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I. INTRODUCTION

Because of its tunable band gap, which can be changed
through an external gate voltage, bilayer graphene is a
promising material with a great potential for application to
new electronic devices.1–4 In the low-carrier-doping regime of
bilayer graphene, electrons are strongly coupled via Coulomb
interactions. The phase of bilayer graphene in this low carrier
concentration, and at low temperature, is still not completely
understood. Several candidates have been suggested for the
ground state, such as a ferroelectric-layer asymmetric state,5–9

a layer-polarized antiferromagnetic state,10,11 a quantum
anomalous Hall state,8,12,13 a quantum spin Hall state,8,13 a
quantum valley Hall state,14 a charge density wave state,15 and
the possibility of gapless states, such as the nematic state.16,17

The experimental observations on the ground state of bilayer
graphene, all performed on high-quality suspended samples,
are also controversial. Some experimental results showed that
the system is gapped at the neutrality point,18–21 whereas
one experiment found a gapless state.22 So far, most of the
theoretical studies are based on the self-consistent Hartree-
Fock approximation (SCHFA),5,9,14 many-body perturbation
theory,7 and the renormalization group approach.11,16,17 All
the above approaches have been applied to the simplified two-
5,7,9,11,14,17 and four-band16 continuum models. It is well known
that the SCHFA usually overestimates the order parameter
characterizing a broken-symmetry phase and the transition
temperature because it neglects the fluctuations of the effective
one-body interaction field and of other one-body observables
such as the charge density. Since the understanding of the
electronic state of bilayer graphene at low carrier doping and
low temperature is a fundamental issue for graphene physics,
it is necessary to investigate the state with a more sophisticated
approach that takes into account the effect of charge density
fluctuations on top of the mean-field ground state.

In this work, we study the existence of a gapped broken
inversion symmetry phase (GBISP) using both the SCHFA and
the renormalized ring-diagram approximation (RRDA).23 The
RRDA takes into account the charge density fluctuation (CDF)
effect beyond the mean field and satisfies the microscopic
conservation laws.24 For an electron system with long-range
Coulomb interactions, CDF is the predominant contribution

to the self-energy of electrons. It has been shown25 that
the RRDA results for the ground-state energy of two- and
three-dimensional interacting electron gases are more accurate
than the random-phase approximation (RPA) results when
compared with Monte Carlo simulations.

In the RRDA, the Green’s function and self-energy are self-
consistently determined by coupled integral equations. The
self-consistent calculation of the self-energy in momentum
space involves carrying out many convolutions, which are
numerically expensive. In order to reduce the computational
time required by our approach, we convert the convolutions
in momentum space to multiplications in real space. Since
the continuum model is the low-energy limiting case of the
lattice model, the momentum of the electrons is confined
within two valleys around the Dirac points.26,27 Because of the
finite momentum cutoff for each valley, the conversion of the
convolution from momentum space to real space is no longer
valid for the two- and four-band continuum models. Instead of
modeling bilayer graphene with an effective continuum model,
we therefore sketch it as a bilayer of a hexagonal lattice model.
The lattice model does not require a momentum-space cutoff
and is therefore immune to the aforementioned problems of
the continuum models.

The key problem in calculating the self-energy is to manage
to deal with the long-range Coulomb interaction between
electrons accurately. For the two-dimensional system under
consideration, this interaction is inversely proportional to
the momentum transfer q in the long-wavelength limit. In a
continuum model, one can transform the 1/q singularity to the
logarithmic one after performing the azimuthal integration28

and then get rid of the logarithmic singularity by special
treatment. In a lattice model, however, we cannot perform
the azimuthal integration analytically and must face the 1/q

singularity. Since dealing with the long-range Coulomb inter-
action is inevitable in many-body problems, we now present a
numerical algorithm to tackle the interaction divergence issues
systematically.

II. LATTICE MODEL

The lattice structure of bilayer graphene is shown in Fig. 1.
The unit cell in each layer is represented by a diamond. The
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FIG. 1. (Color online) Left: Structure of Bernal stacking bilayer
graphene. Right: Top view of the bilayer graphene. The parameters
t and t1 are the electron hopping energies between one atom and its
nearest neighbor belonging to the same layer, and to the neighboring
layer above or below, respectively. The unit cell of each layer is
represented by the green-sided diamond.

unit cell of the bilayer system contains four atoms denoted as
a1, b1, a2, and b2. The lattice constant of monolayer graphene is
defined as the distance between two nearest corner atoms in the
diamond and is given by a ≈ 2.4 Å. The interlayer distance is
z0 = 3.34 Å ≈ 1.4a. The energy of electron hopping between
the nearest-neighbor (NN) carbon atoms in each layer is t ≈
2.82 eV,29 while the interlayer NN hopping is t1 ≈ 0.39 eV.30

The Hamiltonian describing the electrons is given by

H = −
∑
ijσ

tij c
†
iσ cjσ + 1

2

∑
ij

δnivij δnj , (1)

where c
†
iσ creates an electron at site i with spin σ , δnj =

nj − n with nj as the electron density operator at site j and
n the average occupation number of electrons per site (which
is also the charge number of the neutralizing background),
and vij is the Coulomb interaction between electrons at sites
i and j . The model is restricted to NN hopping within the
same layer and between the adjacent sites on top and bottom
layers as shown in Fig. 1. As described by Eq. (1), we consider
here only the charge-charge interactions. Since the long-range
antiferromagnetic order is prohibited31 in two-dimensional
space, we neglect the antiferromagnetic coupling due to the
on-site repulsion in the present work.

We now consider the behavior of Coulomb interaction vij

between two electrons at sites i and j . At long distance, vij

is given by vij = e2/εrij with ε the dielectric constant in
the high-frequency limit of the system and rij the distance.
However, at short distances, because of the spread of the
π -orbital wave function of the conduction electrons, vij is
weakened from the behavior 1/rij . Taking the effect of the
wave function spread into account, we model the interaction
as

vij = e2

εrij

[1 − exp(−rij /r0)] (2)

with r0 = a. Clearly, vij behaves as e2/εrij at large rij ,
while it is suppressed from the “bare” Coulomb interaction
(e2/εrij ) at small rij . In particular, at rij = 0, it is given
by a finite value e2/εr0. For the present electron system
with long-range Coulomb interactions, the final result under
consideration should not be sensitively dependent upon the
details of the short-range behavior of the interaction. This can
be understood from the behavior of its Fourier component in

momentum space. The Fourier component is singular at the
long-wavelength limit and the singular part is independent
of the short-range behavior. At low carrier concentration,
the electron’s state is mainly determined by the singular
part of the interaction. We use the dimensionless constant
g ≡ e2/εat to denote the strength of Coulomb coupling. The
range 0.4 � g < 1.8 covers the cases of various experimental
setups, from suspended bilayer graphene (BLG) to BLG placed
on substrates32 as SiO2 and ice.

The system defined by Eq. (1) satisfies the particle-
hole symmetry. To see this, we denote the doped electron
concentration per carbon atom as δ and have n = 1 + δ.
Under the transformation δ → −δ and cj,σ → +(−)c†j,σ
and c

†
j,σ → +(−)cj,σ for electrons at aj (bj ) sites, H is

unchanged. Furthermore, K = H − μ(N̂ − N0) (N̂ being the
total electron number operator and N0 being the total number
of lattice sites, so that the operator N − N0 refers to the total
number of doped electrons) is also unchanged under the above
electron-hole transformation, provided μ → −μ. Thus, the
chemical potential μ must be an odd function of δ.

The Green’s function G of the electron system is defined as

G(i,j,τ − τ ′) = −〈TτCiσ (τ )C†
jσ (τ ′)〉, (3)

where C
†
jσ = (c†a1jσ ,c

†
b1jσ ,c

†
a2jσ ,c

†
b2jσ ) with c

†
al (bl )jσ creating an

electron of spin σ at site al (bl) of the lth (= 1,2, respectively,
for top and bottom) layer of the j th unit cell. In momentum-
frequency space, G (a 4 × 4 matrix) can be expressed in terms
of the self-energy �(k,iω	) as

G(k,iω	) = [iω	 + μ − hk − �(k,iω	)]−1 (4)

with

hk =

⎛
⎜⎜⎜⎝

0 εk 0 0

ε∗
k 0 −t1 0

0 −t1 0 εk

0 0 ε∗
k 0

⎞
⎟⎟⎟⎠, (5)

where ω	 = (2	 + 1)πT is the fermionic Matsubara frequency
with 	 as integer number and T the temperature, and
εk = −t[1 + exp(−ikx) + exp(−iky)]. Here μ is the chemical
potential and is determined by

n = 2T

N0

∑
k	

Tr G(k,iω	) exp(iω	η), (6)

where the factor 2 stems from the spin degeneracy and η is an
infinitesimally small positive constant. To proceed, we need
to provide an approximation for �(k,iω	). In the following
sections, we investigate the possibility of the existence of the
GBISP using the SCHFA and the RRDA for the self-energy,
respectively.

III. STUDYING THE EXISTENCE OF THE GBISP USING
THE SCHFA

Let us first consider the physical meaning of the GBISP.
As can be seen in Fig. 1, supposing the origin is at the middle
point of a b1a2 bond, when changing each atom at site rj

to −rj , the whole lattice is unchanged. This transformation
is equivalent to interchanging the top and bottom layers and
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FIG. 2. (Color online) Self-energy of the SCHFA. Left: Hartree
term. Right: Fock exchange term. The solid line with an arrow denotes
the Green’s function. The wavy line is the Coulomb interaction.

then rotating the lattice by an angle π around the b1a2 bond.
In the non-symmetry-broken state, the electron system is
unchanged with respect to such a transformation. However,
when the strong Coulomb interactions drive the system to a
GBISP, the two layers cease to be equivalent by inversion
symmetry, and the electrons experience different fields on the
two layers. Specifically, there may exist net electronic charge
accumulation at each atom. We denote the deviations of the
electronic charge density from the average value n at each of
the four sites of the unit cell as (δ1,δ2, − δ2, − δ1).

Under the SCHFA or the mean-field approximation, the
self-energy is diagrammatically given by Fig. 2. The Hartree
term is diagonal, �H

μν = �μδμν , with

�μ = δ1uμ1 + δ2uμ2, (7)

uμ1 = lim
q→0

[vμ1(q) − vμ4(q)], (8)

uμ2 = lim
q→0

[vμ2(q) − vμ3(q)], (9)

where vμν(q) (with the subscripts μν being the same as those
used in the definition of the Green’s function, denoting the
four sublattices a1, b1, a2, and b2) is the Fourier component of
the Coulomb interaction. In the long-wavelength limit, vμν(q)
behaves like

vμν(q) → 2πe2

S0εQ
exp(−zμνQ) + ṽμν,q → 0, (10)

where S0 = √
3a2/2 is the area of the two-dimensional unit

cell of monolayer graphene, and Q is the magnitude of the
vector 
Q = M̂ 
q with33

M̂ =
(

1 0

− 1√
3

2√
3

)
(11)

and where the components of 
q are along the nonorthogonal
axes of the diamond-shaped Brillouin zone. The value of
zμν = 0 or z0 (the distance of the two layers) depends on
μν denoting the same layer or two different layers. The last
term in Eq. (10), ṽμν , is the regular part of the Coulomb
potential for q → 0. The q dependence in Eq. (10) is different
from the conventional form because the coordinate axes of
the reciprocal lattice where 
q is defined are nonorthogonal.
The wave vector 
Q is defined in an orthogonal basis.33 The
relations �1 = −�4 and �2 = −�3 can be easily checked.

The Fock exchange term is given by

�F
μν(k) = − 1

M

∑
q

vμν(q)ñμν(k − q), (12)

where M = N0/4 is the total number of unit cells in one layer,
and ñμν(k) is given as

ñμν(k) = T
∑

	

Gμν(k,iω	) exp(iω	η) − δμν/2, (13)

which corresponds to the quasiparticle distribution function,
the term −δμν/2 stemming from the non-normal order of
the electronic interaction operator. Under the mean-field
approximation, the self-energy �μν(k) = �H

μν + �F
μν(k) is

independent of the frequency. By diagonalizing the effective
Hamiltonian hk + �(k), one can explicitly carry out the
frequency summation in Eq. (13).

The parameters δ1 and δ2 are determined by

δ1 = 1

M

∑
k

[ñ11(k) − ñ44(k)], (14)

δ2 = 1

M

∑
k

[ñ22(k) − ñ33(k)]. (15)

So far, all the components of self-energy and parameters are
self-consistently determined by Eqs. (4)–(15). The magnitude
of δ1 is larger than that of δ2. To see it, consider temporarily
the isolated b1 and a2 atoms without Coulomb interaction.
Since they are bonded by t1, their atomic degenerate states are
split in two bonding-antibonding states with eigenvalue ±t1.
Therefore, the states of the b1 and a2 sublattices contribute
mostly to the eigenstates corresponding to the noninteracting
energy bands of overall energy separation ±t1 from the zero
energy. At low temperature, the lower band is occupied while
the upper band is empty. On the other hand, the valence
and conduction bands close to zero energy have eigenvectors
which are composed predominantly of the linear combination
of atomic states of the a1 and b2 sublattices. The atoms of
these two latter sublattices are the first to be affected by the
Coulomb interaction, and they are subject to the most charge
accumulation in the case of the GBISP. The two parameters
δ1 and δ2 are not independent but are correlated through the
Green’s functions as described by Eqs. (4) and (12)–(15).
We can chose δ1 as the independent order parameter of the
GBISP.

To determine the the GBISP phase boundary, that is, the
relation between the critical temperature T0 and the carrier
doping concentration δ, we expand the self-energy and the
Green’s function to first order in the order parameter δ1. Let
us define the matrix

D(k) = ∂

∂δ1
[�(k) − S†�∗(k)S]/2 (16)

with

S =

⎛
⎜⎜⎜⎝

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎞
⎟⎟⎟⎠. (17)

Notice that �∗(k) = �t (k) (the transpose of �) since �†(k) =
�(k). By this symmetry relation and by the definition in

125438-3



XIN-ZHONG YAN AND C. S. TING PHYSICAL REVIEW B 86, 125438 (2012)

Eq. (16), D(k) has the following structure:

D =

⎛
⎜⎜⎜⎝

D11 D12 D13 0

D∗
12 D22 0 −D13

D∗
13 0 −D22 −D12

0 −D∗
13 −D∗

12 −D11

⎞
⎟⎟⎟⎠. (18)

Therefore, only four elements D11, D12, D13, and D22 need to
be determined. Under the mean-field approximation, we have
the following equation for D(k):

Dμν(k) = dμδμν − 1

M

∑
k′λλ′

vμν(k − k′)f λλ′
μν (k′)Dλλ′(k′) (19)

with

dμ = uμ1 + uμ2
∂δ2

∂δ1
, (20)

f λλ′
μν (k) = T

∑
	

Gμλ(k,iω	)Gλ′μ(k,iω	), (21)

where G(k,iω	)’s are the normal-state Green’s functions
in which δ1 = δ2 = 0. Again, the frequency summation in
Eq. (21) can be performed analytically. For the normal state,
the Green’s functions satisfy the relation Gμν = Gν̄μ̄ with
μ̄ = 5 − μ. We therefore have f λλ′

μν = f λ̄′λ̄
ν̄μ̄ . By noting these

relations, ∂δ2/∂δ1 can be expressed as

∂δ2

∂δ1
= 2

M

∑
kλλ′

f λλ′
22 (k)Dλλ′(k). (22)

Taking the partial derivative of Eq. (14) with respect to δ1, we
obtain the condition for the phase transition,

2

M

∑
kλλ′

f λλ′
11 (k)Dλλ′(k) = 1. (23)

Note that dμ can be formally expressed as

dμ = 2

M

∑
kλλ′

[
uμ1f

λλ′
11 (k) + uμ2f

λλ′
22 (k)

]
Dλλ′(k)

= 2

M

∑
kκλλ′

vμκ (0)f λλ′
κκ (k)Dλλ′(k),

where, in the second line, the definition of uμ1(2), f λλ′
μν =

f λ̄′λ̄
ν̄μ̄ , and Dλ̄λ̄′(k) = −Dλ′λ(k) has been used. (The factor 2

originates from the spin degeneracy.) Putting this result into
Eq. (19), one obtains the coupled linear equations for D’s.
The equations are diagrammatically shown in Fig. 3. The
function D(k) is actually the particle-hole propagator. The
effective interaction between particles and holes is the result
of disconnecting a Green’s function in the self-energy as given
in Fig. 2, by following the procedure explained in Fig. 3.
Clearly, these equations are equivalent to solving the problem
of a particle-hole propagator with a unity eigenvalue.

Instead of solving the eigenvalue equations as given in
Fig. 3, D(k)’s can be determined more easily from Eqs. (19),
(20), and (22) by self-consistent iteration. For a given carrier
doping concentration δ, the transition temperature T0 can be
found by gradually lowering temperature T from a value higher
than the critical one and solving the equations for D’s in the
normal state at each step of the process. When the left-hand

=

= +

kμ

kν

k’λ

k’λ’

μ κ

μ

ν

FIG. 3. (Color online) Equation for the particle-hole propagator
D(k). The triangle denotes D(k). The effective interaction between
particles and holes is obtained by disconnecting a Green’s function
line in the self-energy given in Fig. 2.

side of Eq. (23) becomes equal to 1, the critical temperature
T0 is reached.

To numerically solve Eqs. (4), (12), and (19)–(23), we need
to carefully treat the convolution of the Coulomb interaction
vμν(q) and the function ñμν(k − q) as appearing in Eq. (12)
[and the similar one appearing in Eq. (19)] because vμν(q) is
singular at q = 0. In Appendix A, we present an algorithm to
deal with this problem.

In Fig. 4, we show the phase diagram of the electron
system in the δ-T plane for coupling constant g = 1. At
low temperature and low carrier doping, the system is in
the GBISP. The transition temperature as a function of δ is
uniquely defined only at low δ < 0.24 × 10−4. However, in
the region 0.24 × 10−4 < δ < 0.3 × 10−4, each δ corresponds
to two transition temperatures. In the latter case, the phase
boundary was determined by adjusting δ for every given T .

The numerical results for the order parameters δ1 and δ2 as
functions of T at δ = 0 for coupling constants g = 0.5, 1, and
1.8 are shown in Fig. 5. The SCHFA results are denoted as
HF. We notice that |δ1| > |δ2|, but δ2 is not negligibly small,
which is different from what has been assumed in the two-
band model.5 From Fig. 5 one can understand that the charge

Free electrons

HF at δ = 0, T = 0

δ (10−4)

0.0 0.1 0.2 0.3 0.4 0.5

T
 /t

0.000

0.005

0.010

0.015

g = 1

GBISP

Normal

FIG. 4. (Color online) Phase diagram of bilayer graphene in the
SCHFA for coupling constant g = 1. The symbols are the numerical
solution for transition points. The dashed line is an extrapolation of
the finite-temperature results to low temperature.
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Free electrons

HF at δ = 0, T = 0

T/t 

0.00 0.01 0.02 0.03

δ i  (
10

−3
)

-1.5

-1.0

-0.5

0.0

0.5

1.0

g = 1g = 0.5

RRDA 

g = 1.8

HF δ1

HF δ2

FIG. 5. (Color online) Order parameters δ1 and δ2 as functions
of temperature T at δ = 0 for coupling constants g = 0.5, 1, and
1.8. The symbols refer to numerical results. Circles and squares
denoted as HF are the SCHFA results for δ1 and δ2, respectively. The
RRDA results denoted by triangles (δ1) and inverse triangles (δ2) are
vanishingly small.

configuration at the four sites in the unit cell is (−|δ1|,|δ2|,
− |δ2|,|δ1|) [another solution is (|δ1|, − |δ2|,|δ2|, − |δ1|)]. The
signs of δ1 and δ2 are the opposite of each other because, with
such a charge distribution, the Coulomb interaction between
sites a and b in the same plane is attractive and stabilizes the
GBISP. It is also seen from Fig. 5 that the transition temperature
is higher for a system with stronger coupling.

Our lattice model is different from both the two- and four-
band continuum effective models.5,9,26,27 The two- and four-
band continuum models are established under the considera-
tion that the energy scale of quasiparticle spectral resonances
involved in the problem is small with respect to a characteristic
energy taken from bilayer graphene noninteracting band
structure. For the four-band continuum model, the energy
should be much less than the bandwidth of the π orbitals of
graphene. The two-band model for BLG is accurate only in the
case in which the quasiparticle energy is much smaller than the
gap t1. In the presence of long-range Coulomb interaction v(q),
the energy transfer at small q is very large and the assumption
for the validity of the two- and four-band continuum models
becomes problematic. In this sense, the lattice model appears
to be more reasonable.

Another important difference between the lattice model
and the two- and four-band continuum models relates to the
valley physics in the Brillouin zone. In the two- and four-band
continuum models, the two valleys are independent of each
other and the valley index is treated as an overall degeneracy
index. On the contrary, within the lattice model two states
belonging to different valleys can be connected by nonzero
intervalley Hamiltonian matrix elements.

IV. SUPPRESSION OF THE GBISP IN THE RRDA

The order parameters δ1 and δ2 so obtained by the SCHFA
are overestimated because charge fluctuations have been
ignored. We here reexamine the possibility of the existence
of the GBISP using the RRDA.

Under the RRDA, besides the Hartree-Fock terms given
in Fig. 2, the additional part of the self-energy, denoted by

+ + ······

FIG. 6. (Color online) Additional part of the self-energy besides
the Hartree-Fock terms.

�c(k,iω	), is shown in Fig. 6. Each bubble in Fig. 6 is
composed of two Green’s functions G, representing the charge
polarizability. In terms of G, the elements of �c(k,iω	) are
expressed as

�c
μν(k,iω	) = − T

M

∑
q,m

Gμν(k − q,iω	 − iνm)Wc
μν(q,iνm),

where νm is the bosonic Matsubara frequency and Wc
μν(q,iνm)

is an effective interaction. The matrix form of Wc is given by

Wc(q,iνm) = [1 − v(q)χ (q,iνm)]−1v(q) − v(q) (24)

with

χμν(q,iνm) = 2T

M

∑
k,	

Gμν(k,iω	)Gνμ(k − q,iω	 − iνm)

and v(q) is the Fourier component (4 × 4 matrix) of the
Coulomb interaction. The total self-energy is given by

�μν(k,iω	) = �μδμν + �F
μν(k) + �c

μν(k,iω	). (25)

The Green’s function G is self-consistently determined and
satisfies the microscopic conservation laws.24

Note that �c is a convolution of G and Wc, and χ is a
convolution of two G’s in momentum and frequency space.
The easy way to calculate them is by Fourier transform. At
low temperature, the summations index over the Matsubara
frequencies should run up to a large frequency cutoff. To
reduce the requirement of computer memory storage and
accelerating the numerical computation, the special algorithm
of Ref. 25 can be used.

The interaction Wc(q,iνm) vanishes for m → ∞. For finite
νm, we need to carefully deal with the singularity at q = 0.
The Fourier transform Wc(q,iνm) to Wc(r,iνm) is discussed in
Appendix B.

At the ground state for T = 0, the Matsubara frequencies
ω	 and νm are treated as the continuous variables ω and ν,
respectively, and the summations over them are replaced by
integrals,

T
∑
ω	

→
∫ ∞

−∞

dω

2π
, T

∑
νm

→
∫ ∞

−∞

dν

2π
.

We computed the Green’s function within the RRDA. The
results for the order parameters δ1 and δ2 for g = 0.5, 1,
and 1.8 at δ = 0 are shown in Fig. 5 and compared with
the SCHFA. The doping concentration chosen corresponds
to δ = 0, for which the SCHFA transition temperature reaches
its maximum. Though δ = 0 is the most favorable case for the
GBISP predicted by the SCHFA, the two order parameters
are substantially suppressed by CDF in the RRDA; the
magnitude of the two parameters is three orders smaller than
that of the SCHFA. For inspecting the GBISP ordering at low
temperature, the RRDA calculation for g = 1.8 is performed
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down to T = 0. From the numerical results, we conclude that
there is no GBISP in systems with g � 1.8 under the RRDA.

We also computed the Green’s function within the RPA, in
which the polarizability χ (q,iνm) in Wc(q,iνm) [see Eq. (24)]
is replaced by the polarizability for noninteracting electrons.
At δ = 0, similar to the RRDA, the parameters δ1 and δ2 so
obtained are vanishingly small. In the RRDA, a replacement
of the bare Coulomb interaction in the Hartree term by the
screened one is prohibited because the ring diagrams are equiv-
alent to a self-energy insertion to the Green’s function to be
renormalized. When performing the RPA calculation, we also
need to keep the bare Coulomb interaction in the Hartree term.

The reason for the suppression of the GBISP under
the RRDA is that the exchange interaction is significantly
weakened by the screening due to electronic charge density
fluctuations while the Hartree term opposing the charge trans-
fer between the two layers5 is not changed. At low temperature,
in a wide range of Matsubara frequencies, the exchange
interaction is short ranged and weakened and does not favor
the GBISP transition. We point out that the suppression of the
GBISP here is not due to prohibition by the Mermin-Wagner
theorem.31 The theorem applies to a system with continu-
ous symmetry; if the symmetry were broken, there would
be a logarithmically diverging number of long-wavelength
collective fluctuations accompanying the excitations on top
of the broken-symmetry ground state of the two-dimensional
system. In the present case, the inversion is a discrete symmetry
operation, and there is no diverging long-wavelength collective
fluctuation arising from the breaking of such a symmetry.

V. SUMMARY

In summary, we have studied the physics of interacting
electrons in bilayer graphene using the lattice model. The
possibility of the existence of a GBISP at low temperature and
low-carrier-doping concentration is reinvestigated with both
the SCHFA and the RRDA. The latter approach takes into
account the charge density fluctuations beyond the SCHFA or
the mean-field approximation. Under the RRDA, the exchange
interaction is weakened substantially, and the existence of a
GBISP becomes unsustainable. We have also presented the
numerical method for dealing with convolution of a singular
Coulomb interaction and the Green’s function on the lattice
model. This numerical method should be usable for solving
problems in many-particle systems.
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APPENDIX A: CALCULATION OF THE
MOMENTUM-SPACE CONVOLUTION OF COULOMB

INTERACTION WITH A SMOOTH FUNCTION FOR
A LATTICE MODEL

For solving problems of a two-dimensional electron system
in the presence of long-range Coulomb interaction, we

sometimes need to deal with the convolution

C(k) = 1

M

∑
q

V (q)f (k − q), (A1)

where the q summation runs over the first Brillouin zone, V (q)
is the Coulomb interaction, and f (k) is a smooth function of k.
On a lattice, an analytical expression for V (q) is not available
but its long-wavelength behavior is known. For the honeycomb
lattice, it is given by Eq. (10). V (q) can be divided into long-
range and short-range parts. For the honeycomb lattice under
consideration, define

vl(q) =
∑

n

c

| 
Qn + 
Q| exp(−a0| 
Qn + 
Q|), (A2)

where c = 2πe2/S0ε is the same factor that appeared in
Eq. (10), 
Qn is the reciprocal lattice vector, 
Q = M̂ 
q is
as given in the text, and a0 is an auxiliary parameter. By
taking a0 = 2a, the summation in Eq. (A2) converges quickly
and only a few terms need to be summed up. Clearly, vl(q)
represents a long-range interaction. With vl(q), V (q) can be
written as

V (q) = vl(q) + vs(q), (A3)

where vs(q) is so defined by the equation and is the short-
range part of V (q). Note that both vl(q) and vs(q) are periodic
functions of q. Equation (A1) now is given by

C(k) = 1

M

∑
q

vs(q)f (k − q) + 1

M

∑
q

vl(q)f (k − q).

(A4)

The first integral in Eq. (A4) can be safely performed by
Fourier transform. In the second integral, the singularity
appears at q = 0. To find out an auxiliary function for this
integral, we pay attention to the expanding form of f (k − q),

f (k − q) → f (k) − qxfx(k) − qyfy(k), (A5)

where fx(y)(k) = df (k)/dkx(y). Define two auxiliary functions
vx(q) and vy(q) by

vx(y)(q) =
∑

n

c[qx(y) + (M̂−1 
Qn)x(y)]

| 
Qn + 
Q| exp(−a0| 
Qn + 
Q|),

where vx(y)(q) is periodic and odd under 
q → −
q. The second
integral in Eq. (A4) can be written as

1

M

∑
q

vl(q)f (k − q) = 1

M

∑
k′

{vl(k − k′)[f (k′) − f (k)]

+ vx(k − k′)fx(k) + vy(k −k′)fy(k)}
+ f (k)vl(r)|r=0. (A6)

Now, there is no singularity in the integrand in Eq. (A6).
The leading term of vl(k − k′)[f (k′) − f (k)] as k′ → k is
proportional to the derivative of f multiplied with a sign factor
since vl(k − k′) ∝ 1/|M̂(
k′ − 
k)|. This leading term varies
discontinuously at k′ = k. The discontinuity is canceled out
by the remaining term vx(k − k′)fx(k) + vy(k − k′)fy(k). As
a result, the integrand is a smooth function. The integral can
then be carried out numerically. The last term stems from the
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introduction of the auxiliary functions to the integrand. The
value vl(r)|r=0 is given by

vl(r)|r=0 = 1

M

∑
q

vl(q), (A7)

which can be calculated explicitly. Replace q summation by

1

M

∑
q

→ S0

V

∑
Q

= S0

∫
BZ

d 
Q
(2π )2

, (A8)

where S0 = √
3a2/2 is the area of the unit cell of the

honeycomb lattice as appearing in the text, and BZ means
the integral is performed over the first Brillouin zone. The
combination of the integration over BZ and the Qn summation
in the definition of vl(q) equals the integration of the function
c exp(−a0Q)/Q over the total space of Q,

vl(r)|r=0 = S0

∫
d 
Q

(2π )2

c

Q
exp(−a0Q) = e2/a0. (A9)

The function f (k) is assumed to be smooth here. However,
for calculating the Fock exchange self-energy, f (k) corre-
sponds to the distribution function and varies dramatically at
the Fermi surface at low temperature. In this case, extremely
dense grids in a momentum regime covering the Fermi surface
should be used to denote the variation of f (k).

The term vx(k − k′)fx(k) + vy(k − k′)fy(k) was intro-
duced in the right-hand side of Eq. (A6) in order to smooth
the integrand. Because vx(q) and vy(q) are periodic and
odd functions of q, the contribution from the integral of
vx(k − k′)fx(k) + vy(k − k′)fy(k) is zero. At T = 0, there is
a discontinuity in f (k) at the Fermi surface and its derivatives
fx(k) and fy(k) are δ functions. Therefore, the use of this term
at T = 0 is unworthy. At T = 0, this term should be removed,
keeping the discontinuity in the integrand. The cost is to use
dense grids near the Fermi surface to ensure the accuracy of
the result.

APPENDIX B: FOURIER TRANSFORM OF THE
SCREENING POTENTIAL W c(q,iνm)

To take the Fourier transform of Wc(q,iνm) given by
Eq. (24) from momentum space to real space, we first pay
attention to its singularity at q = 0. For small νm, because
χ (q,iνm) is finite, the singularity exists only in the second term
v(q) on the right-hand side of Eq. (24). Its real-space form is
known as that given by Eq. (2) for its elements. However, at
large νm, because χ (q,iνm) is vanishingly small, there is also
a singularity in the first term on the right-hand side of Eq. (24)
and both terms cancel with each other. We need a systematic
numerical scheme for the Fourier transform at any νm.

Note that in the limit q → 0, v(q) → v0(q)Â with v0(q) =
c/Q (again c = 2πe2/S0ε and Q = |M̂ 
q|) and

Â =

⎛
⎜⎜⎜⎝

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎞
⎟⎟⎟⎠.

In the same limit, we have

Wc(q,iνm) → − αmc

Q(Q + αm)
Â

= Wm(Q)Â, (B1)

with

αm = −c
∑
μν

χμν(0,iνm) (B2)

and Wm(Q) so defined by Eq. (B1). By observing this
asymptotic form, we take the auxiliary function for the Fourier
transform as

Wa(q) =
∑

n

Wm(| 
Q + 
Qn|) exp(−a0| 
Q + 
Qn|), (B3)

where a0 again is a parameter for fast convergence of
the summation over the reciprocal lattice vectors 
Qn. The
Fourier transform of Wc(q,iνm) is separated into two parts,
[Wc(q,iνm) − Wa(q)Â] and Wa(q)Â. There is no singularity
in the first one and it can be safely transformed by numerical
computation. For the second one, Wa(q) is transformed as

Wa(r) = a2
∫

BZ

d 
q
(2π )2

Wa(q) exp(i 
q · 
r)

= S0

∫
BZ

d 
Q
(2π )2

Wa(q) exp(i 
Q · 
R)

= S0

∫
d 
Q

(2π )2
Wm(Q) exp(i 
Q · 
R − a0Q)

= −S0αmc

2π

∫ ∞

0
dQ

exp(−a0Q)

Q + αm

J0(QR), (B4)

where the first line is the definition with 
q and 
r given in the
quadrilateral coordinate system, the second line converts 
q to

Q = M̂ 
q and 
R = (M̂t )−1
r (with M̂t the transpose of M̂) in

the orthogonal systems with d 
q = d 
Q/|M̂| = √
3d 
Q/2, the

third line comes from the definition of Wa(q) given by Eq. (B3),
the last line is obtained after the azimuthal integration, and
J0(QR) is the Bessel function. Now the singularity in the
integrand exists only when αm = 0, but αm also appears in the
front factor and the integral vanishes. However, for large R,
J0(QR) oscillates rapidly with Q. By observing the large-QR

behavior of J0(QR), we choose the auxiliary function28

JA(z) =
√

1

πz + 1

{[
1 + π2z

8(πz + 1)2

]
sin(z)

+
[

1 − π2z

8(πz + 1)2

]
cos(z)

}
(B5)

and separate J0(QR) to J0(QR) − JA(QR) and JA(QR). By
replacing J0(QR) with J0(QR) − JA(QR) in Eq. (B4), the
integral can be accurately carried out by a simple numerical
method. The remaining integral with J0(QR) replaced by
JA(QR) can be performed using Filon’s method.
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