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Computational study of the thermal conductivity in defective carbon nanostructures
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We use nonequilibrium molecular dynamics simulations to study the adverse role of defects including isotopic
impurities on the thermal conductivity of carbon nanotubes, graphene, and graphene nanoribbons. We find that
even in structurally perfect nanotubes and graphene, isotopic impurities reduce thermal conductivity by up to
one half by decreasing the phonon mean-free path. An even larger thermal conductivity reduction, with the
same physical origin, occurs in presence of structural defects including vacancies and edges in narrow graphene
nanoribbons. Our calculations reconcile results of former studies, which differed by up to an order of magnitude,
by identifying limitations of various computational approaches.
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I. INTRODUCTION

With increasing performance of microprocessors, rising
heat evolution poses a serious problem.1 To prevent damage,
excess heat is conducted away to a heat sink using intercon-
nects with high thermal conductivity. In diamond, which is
used for this purpose and which conducts heat by phonons,
isotopic impurities reduce its excellent thermal conduction by
up to one half.2,3 The initial prediction that thermal conduc-
tivity of perfect carbon nanotubes and graphene monolayers
(not graphite) should be similar and even surpass the diamond
values4 was subsequently confirmed experimentally, albeit
with a large scatter in the observed values.5 The added benefit
of nanotubes and graphene is their dual role as thermal
conductors and active elements in electronic circuits. Unlike
in heavier elements, the 13C/12C mass ratio does modify
the phonon spectra of graphitic nanostructures significantly,
causing a large reduction in thermal conductivity of systems
with both isotopes.6,7

To obtain microscopic understanding of factors limiting
thermal conductivity in graphitic nanostructures, we perform
large-scale nonequilibrium molecular dynamics (MD) simula-
tions of defective carbon nanotubes, graphene, and graphene
nanoribbons. We determine the temperature-dependent ther-
mal conductivity of 12C-based systems as a function of 13C
concentration and compare the effect of isotopic impurities to
that of divacancies. We show that, depending on temperature,
the thermal conductivity of 13Cx

12C1−x nanostructures may
be quenched by up to one half with respect to isotopically
pure systems. Even at low concentrations, atomic vacancies
quench thermal conductance more efficiently than isotopic
impurities. Whereas freely suspended graphene monolayers
conduct heat almost as well as isolated carbon nanotubes,
edge scattering reduces significantly the thermal conductivity
of graphene nanoribbons. Our calculations reconcile results
of former studies, which differed by up to an order of
magnitude, by identifying limitations of various computational
approaches.

Since in carbon nanostructures the electronic density of
states at the Fermi level is either zero (diamond, graphene)
or very small (nanotubes, graphene nanoribbons), thermal
transport in these systems is dominated by phonons. According
to Fourier law, the thermal conductivity λ is given by the heat
current dQ/dt through area A in response to a temperature

gradient dT /dz as

1

A

dQ

dt
= −λ

dT

dz
. (1)

The phonon component of the thermal conductivity, which is
dominant, is the product λ = (1/3)cV vs〈l〉, where cV is the
specific heat per volume, vs the speed of sound, and 〈l〉 is
the phonon mean-free path. Rigid interatomic bonds in both
sp2 and sp3 carbon structures are responsible for a very high
speed of sound vs and hard phonon modes, which translate into
a high Debye frequency and large value of the specific heat
cV . In isotopically pure monocrystalline diamond and carbon
nanotubes, the phonon mean-free path 〈l〉 may approach a
large fraction of a micrometer, giving rise to record thermal
conductivity values2,5 as large as ≈40 000 Wm−1 K−1 near
T ≈ 100 K.

Since presence of defects, including isotopic impurities
and atomic vacancies of different types, can not be avoided
in realistic systems, it is imperative to understand their role
in thermal conductivity. We expect defects to play only a
minor role in changing the speed of sound and specific heat,
but to reduce drastically the phonon mean-free path and
thus the value of λ. We believe that the large scatter in the
observed data5 comes not only from the extreme difficulty
to measure this quantity in excellent thermal conductors, but
more importantly due to different types and concentrations of
defects in different samples. Since controlling defects on the
nanometer scale is nearly impossible experimentally, computer
simulations provide a welcome alternative to understand the
effect of particular defects on thermal conductivity.

II. METHOD

To simulate computationally the conduction of heat, we
make use of large-scale nonequilibrium molecular dynamics
(NEMD) simulations,8–11 which had been used successfully
to predict thermal conductivity of nanotubes and graphene.4

The alternative way to calculate λ using direct MD simulations
based on Eq. (1) requires applying a thermostat that maintains
a finite-temperature difference �T across a finite distance
�z. To prevent artifacts, �z must be larger than the phonon
mean-free path of up to 1 μm, which is computationally
impracticable. A second alternative, which does not suffer
from this limitation,12 is based on the Green-Kubo formula13
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that relates λ to the time-averaged autocorrelation function of
the heat flux in the system. As shown earlier,4 this time average
converges very slowly in an equilibrium MD simulation
and depends sensitively on the initial conditions, making
extensive ensemble averaging a necessary requirement that is
computationally extremely demanding for systems of interest
here.14 Due to these problems,12 thermal conductivity calcu-
lations of graphitic nanostructures based on direct MD,15,16

NEMD,17 the Green-Kubo formalism,14,18,19 or the Landauer
nonequilibrium Green’s function formalism20,21 have arrived
at inconsistent results that differed by up to an order of
magnitude and thus need to be revisited.

Our computational approach8 combines the Green-Kubo
formula13 with nonequilibrium molecular dynamics9,10 in
a computationally efficient manner.22 The dynamics of the
system is driven by forces

Fi = mi

d2ri

dt2
= −∇iU − ζmivi + �Fi , (2)

which act on individual atoms i. Here, ri is the position and vi
the velocity of atom i with mass mi .

The first term is the gradient of the total potential
energy U of the system, representing the force caused
by interatomic interactions. To reduce the unusually high
computational requirements, we represent U by the Tersoff
bond-order potential,23 which reproduces well the optimum
structure as well as vibration spectra of graphene and related
nanostructures.24 This potential also formally allows a decom-
position of the total potential energy into potential energies ui

of individual atoms U = ∑
i ui , which will be of use in the

following.
The second term describes a Nosé-Hoover thermostat25,26

that represents coupling of the system to a heat bath at
temperature T . The dynamics of the generalized coordinate
ζ of the heat bath is governed by

dζ

dt
= 1

Q

(
EK − 3N − 6

2
kBT

)
, (3)

where EK is the kinetic energy of the N -atom system and Q

the thermal inertia of the heat bath.
The third term is a small fictitious force that acts as a

perturbation, driving the system out of equilibrium to generate
a heat flux, and is given by

�Fi = �eiFe −
∑
j �=i

fij (rij ·Fe) + 1

N

∑
j

∑
k �=j

fjk(rjk·Fe).

(4)

Here, Fe is a vector parameter (with the dimension of inverse
length) representing the strength of the perturbation. rij =
rj − ri and �ei = ei − 〈e〉 is the excess energy of atom i,
where ei = miv

2
i /2 + ui is its instantaneous energy and 〈e〉 =

1/N
∑

i ei . The quantity fij = −∇iuj represents the contribu-
tion to the force on atom i stemming from its interaction with
atom j , where ∇i is the gradient with respect to the position of
atom i.

The heat flux in the system is then given by

J(t) = d

dt

N∑
i=1

ri�ei =
∑

i

vi�ei −
∑

i

∑
j �=i

rij (fij · vi). (5)

Setting Fe = Feẑ, the z component of the heat flux can be
obtained using the simplified expression9,11

Jz = 1

Fe

∑
i

vi�Fi , (6)

which leads to the thermal conductivity λ along the z direction:

λ = lim
Fe→0

lim
t→∞

〈Jz(Fe,t)〉t
FeT V

. (7)

This approach to determine λ has been shown to be equivalent
to that obtained using the Green-Kubo formula,9,11 yet is
computationally much less demanding.27

To determine λ in defect-free and defective nanotubes,
graphene, and graphene nanoribbons, we integrated the equa-
tions of motion using �t = 0.2 fs as time step. We used
the fifth-order predictor-corrector algorithm28 for Eq. (2) and
the fourth-order algorithm to integrate the coupled Eq. (3).
We used Q = 10 a.m.u. · Å2 for the thermal inertial of the
thermostat, which allowed for efficient thermalization while
not disturbing significantly the dynamics of the system. The
number of time steps needed for a reliable time average of
the heat flux in Eq. (7) varied depending on the system, the
temperature, and the value of Fe. We found that only 500 000
time steps were sufficient to reach convergence for Fe >

10−3 Å−1, but for smaller values 10−5 Å−1 < Fe < 10−3 Å−1,
we used up to 2 × 106 time steps covering a 0.4-ns time period.
The estimated 10%–20% error in the extrapolation of our
results towards Fe → 0 is shown by the error bars of λ in
Figs. 1–3.

III. RESULTS AND DISCUSSION

A. Thermal conductivity of carbon nanotubes

Our results for the thermal conductivity of perfect and
defective (10,10) carbon nanotubes are presented in Fig. 1.
We used periodic boundary conditions with a large unit cell
containing 400 C atoms, depicted in Fig. 1(d). Focusing first on
structurally perfect nanotubes with the isotopic composition
13Cx

12C1−x , we present in Figs. 1(a) and 1(b) the thermal
conductivity of isotopically pure (12C and 13C) nanotubes and
isotope mixtures with x = 0.05 and 0.10 in the temperature
range up to 600 K. In all systems, the low-temperature
behavior of λ is dominated by that of cV , which, along with λ,
approaches zero for T → 0 K and then gradually increases
with increasing temperature. After reaching its maximum,
which occurs near T ≈ 100 K in nanotubes, λ decreases
again due to the decreasing phonon mean-free path, caused
by increasing structural disorder at high temperatures. We
find the thermal conductivity to be highest in isotopically
pure 12C nanotubes, with isotopically pure 13C nanotubes
reaching almost the same value. We represented nanotubes
with an isotopic mixture x = 0.05 and 0.10 by randomly
distributing 13C atoms across the 12C lattice. Our results
for these mixtures indicate that for T < 300 K, the thermal
conductivity may decrease by up to 30% with respect to
the value in isotopically pure lattices due to the strong
reduction of the phonon mean-free path.20 Close inspection
of our results reveals that thermal conductivity of nan-
otubes remains almost unaffected by the presence of 13C
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(c)(b)(a)

(d)

FIG. 1. (Color online) Thermal conductivity λ of perfect and defective (10,10) carbon nanotubes as a function of temperature T . (a) λ in
structurally perfect 13Cx

12C1−x nanotubes with varying isotopic composition in comparison to pure 12C nanotubes with 0.5% missing atoms
forming divacancy defects. (b) Details of (a) on a reduced temperature scale. (c) λ of 12C nanotubes with divacancies, presented in (a) and (b),
on an expanded λ scale. (d) Depiction of the nanotube unit cell containing different types of defects. The lines in (a)–(c) are guides to the eye.

isotopic impurities at temperatures T � 300 K, where phonon-
phonon scattering seems to dominate the mean-free-path
reduction.

To find out the relative importance of isotopic impurities
and structural defects, we also studied thermal conductivity in
isotopically pure 12C (10,10) nanotubes containing a small
fraction of atomic vacancies. We focused on divacancies,
which are more stable than monatomic vacancies,29,30 and
considered one single divacancy per 400-atom unit cell. Our
results for λ in this system, shown in Figs. 1(a)–1(c), indicate
that even a very low concentration of structural defects may
quench thermal conductivity by roughly an order of magnitude.
These results support our intuition that vacancies scatter
phonons very efficiently and reduce the phonon mean-free path
even more than isotopic impurities. Whereas the reduction of
λ by 97% at T ≈ 100 K is extremely large, the relative role of
structural defects decreases at higher temperatures, reaching a
value of 83% at 300 K and 67% at 600 K. In accord with our

findings for isotope mixtures, we conclude that mean-free-path
reduction by phonon-phonon scattering starts dominating the
adverse effect of defects at high temperatures.

B. Thermal conductivity of graphene

Due to the present interest in graphene, we determined the
influence of defects on its thermal conductivity and present
our results in Fig. 2. Results for λ in structurally perfect,
free-standing infinite graphene monolayers with the isotopic
composition 13Cx

12C1−x are shown in Figs. 2(a) and 2(b) for
a selected set of compositions in the temperature range up to
600 K. Graphene monolayers were represented by a periodic
array of rectangular 180-atom unit cells. As in the case of
nanotubes, isotopically pure graphene has the highest thermal
conductivity. Similar to nanotubes, the maximum value of λ is
reached near T ≈ 100 K.

(a) (b) (c)

(d)

FIG. 2. (Color online) Thermal conductivity λ of perfect and defective graphene and graphene nanoribbons as a function of temperature T .
(a) λ in 13Cx

12C1−x graphene with varying isotopic composition in comparison to pure 12C graphene with 1% missing atoms forming divacancy
defects. (b) Details of (a) on a reduced temperature scale. (c) λ of 12C graphene with divacancies, presented in (a) and (b), on an expanded λ

scale. (d) Depiction of the graphene unit cells containing different types of defects. The lines in (a)–(c) are guides to the eye.
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We find the thermal conductivity to be slightly higher in
defect-free graphene consisting of 12C than of 13C. In contrast
to nanotubes, the reduction of the thermal conductivity in
isotopic mixtures is much more pronounced in graphene.
Whereas a 10% content of 13C isotopic impurities reduced
the thermal conductivity at 100 K by 30% in nanotubes, the
corresponding 50% reduction in graphene is much larger. This
is consistent with the fact that in defect-free systems, phonon-
phonon scattering limits the phonon mean-free path more
in nanotubes with a finite circumference than in graphene.
Similar to nanotubes, the presence of a single divacancy per
unit cell quenches the thermal conductivity by more than
an order of magnitude, as seen in Figs. 2(a)–2(c). Also in
graphene, the reduction of the thermal conductivity due to
isotopic and structural defects is mainly caused by the decrease
in the phonon mean-free path.

C. Thermal conductivity of graphene nanorribons

Finally, we compared thermal conductivity of graphene to
that of 11.1-Å-wide armchair graphene nanoribbons, using the
same 13Cx

12C1−x isotopic compositions as for graphene and
nanotubes. The nanoribbons were represented using periodic
boundary conditions using 131.5-Å-long unit cells containing
600 C atoms. Our results for the thermal conductivity of
nanoribbons are presented in Fig. 3.

Our results for finite-width nanoribbons should be very rel-
evant also for graphene formed by chemical vapor deposition
(CVD). Grain boundaries in CVD graphene, viewed as lines of
incorrectly coordinated carbon atoms, will scatter phonons and
limit thermal conductivity in a very similar way as nanoribbon
edges. Since the unit-cell size representing realistic grain
boundaries is prohibitively large for atomistic simulations,
we only point out the analogy between nanoribbons and
polycrystalline graphene. For isotopically pure 12C-based
systems, comparison between λ of graphene in Fig. 2(a)
and graphene nanoribbons in Fig. 3 reveals that edges in
nanoribbons quench thermal conductivity in a much more

FIG. 3. (Color online) Temperature dependence of the thermal
conductivity λ of 13Cx

12C1−x structurally perfect graphene nanorib-
bons in comparison to pure 12C graphene nanoribbons with 0.33%
missing atoms arranged as divacancies. The lines are guides to the
eye.

drastic way than sparse diatomic vacancies in an infinite
graphene monolayer. We observe reduction of λ by a factor of
700 at T = 100 K, a factor of 30 at 300 K, and by an order of
magnitude at 600 K.

Possibly unexpected at the first glance is our finding that
placing one divacancy per 600-atom unit cell, corresponding to
0.33% atomic vacancies, does not cause as drastic a reduction
of the thermal conductivity as in the case of nanotubes
and graphene. Whereas this effect is still significant at low
temperatures, amounting to a 60% reduction at T = 100 K,
it becomes negligibly small at temperatures above 400 K.
We conclude that the underlying reduction of the phonon
mean-free path in narrow graphene nanoribbons is dominated
by the presence of edges and that additional structural defects
play only a minor role, especially at higher temperatures.
Due to the dominating role of edges as scattering centers in
nanoribbons, the role of isotopic impurities is much smaller
in these systems than in nanotubes and graphene. Still, in
agreement with our results for nanotubes and graphene, we
find that isotopically pure nanoribbons based on 12C conduct
heat slightly better than those based on 13C.

D. High-temperature behavior

Even though infinitely extended graphene appears to
conduct heat better than nanotubes at low temperatures, the
difference between the two systems becomes smaller at 400 K
and above. As already mentioned above, the adverse effect
of defects on the thermal conductivity of carbon nanostruc-
tures becomes less significant at higher temperatures, when
uncorrelated atomic motion reduces the phonon mean-free
path even in defect-free systems. In practice, we find very
similar thermal conductivities in isotopically pure systems and
in isotope mixtures at very high temperatures T � 600 K. At
still higher temperatures approaching the melting point, when
vacancy production occurs naturally, presence of additional
structural defects should play a negligible role as well. At
those high temperatures, thermal conductivity of nanotubes
and graphene may drop close to that of nanoribbons.

IV. SUMMARY AND CONCLUSIONS

In conclusion, we studied the adverse role of defects
on the thermal conductivity of carbon nanotubes, graphene,
and graphene nanoribbons using nonequilibrium molecular
dynamics simulations. We found that all defects, including
divacancies, extended edges and isotopic impurities reduce
thermal conductivity significantly in all systems by introducing
phonon scattering centers and thus decreasing the phonon
mean-free path. We reconciled results of former studies, which
differed by up to an order of magnitude, by identifying
limitations of various computational approaches. We found
that infinite, defect-free graphene should conduct heat better
than any other carbon nanostructure at low temperatures.
For temperatures T � 400 K, isotopic impurities were found
to quench the thermal conductivity of graphene more than
that of carbon nanotubes. We found that even subpercent
concentrations of divacancies reduced the thermal conductivity
of all nanocarbons more than much higher concentrations of
isotopic impurities. For temperatures T � 400 K, the adverse
effect of divacancies was found to be more pronounced in
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graphene than in carbon nanotubes. Finite-width graphene
nanoribbons can be viewed as graphene with extended
vacancies and thus have not only a much lower thermal
conductivity, but also a lower susceptibility to the presence of
additional defects than graphene. At high temperatures, when
anharmonicities in the force field reduce the phonon mean-free
path more than defects, we find that thermal conductivity
decreases significantly and that differences between particular
nanocarbons become washed out to a large degree.
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