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Nature-inspired devices and architectures are attracting considerable attention for various purposes, including
developing novel computing based on spatiotemporal dynamics, exploiting stochastic processes for computing,
and reducing energy dissipation. This paper demonstrates that the optical energy transfer between quantum
nanostructures mediated by optical near-field interactions occurring at scales far below the wavelength of light
could be utilized for solving constraint satisfaction problems (CSPs). The optical energy transfer from smaller
quantum dots to larger ones, which is a quantum stochastic process, depends on the existence of resonant energy
levels between the quantum dots or a state-filling effect occurring at the larger quantum dots. Such a spatiotemporal
mechanism yields different evolutions of energy transfer patterns in multi-quantum-dot systems. We numerically
demonstrate that optical energy transfer processes can be used to solve a CSP. The work described in this paper
is a first step in showing the applicability and potential of nanometer-scale optical near-field processes toward
solving computationally demanding problems.
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I. INTRODUCTION

There is great demand for novel computing devices and
architectures that can overcome the limitations of conventional
technologies based solely on electron transfer, in terms of
reducing power dissipation, solving computationally demand-
ing problems, and so on.1 Also, nature-inspired architectures
are attracting significant attention from various research
arenas, such as brainlike computing and computational
neurosciences,2 stochastic-based computing and noise-based
logic,3 and spatiotemporal computation dynamics.4

Among these research topics, Nakagaki et al. showed that a
single-celled amoebalike organism, a plasmodium of the true
slime mold Physarum polycephalum, is capable of finding the
minimum-length solutions between two food sources.5 Also,
Aono et al. demonstrated “amoeba-based computing,” such
as solving a constraint satisfaction problem (CSP) (Ref. 4)
and the traveling salesman problem (TSP),6 by utilizing the
spatiotemporal oscillatory dynamics of the photoresponsive
amoeboid organism Physarum combined with external optical
feedback control. Aside from such experimental demonstra-
tions, Leibtnitz et al. showed an algorithm for selecting the
most suitable and robust network by utilizing fluctuations
inspired by biological experiments where the speed of flu-
orescence evolution of proteins in bacteria is observed to
have a positive correlation with the phenotypic fluctuation of
fluorescence over clone bacteria.7

These demonstrations indicate that we can utilize the
inherent spatial and temporal dynamics appearing in physical
processes in nature for novel computing architectures and

applications. Such arguments should also be applicable to
nanometer-scale light-matter interactions. In fact, Naruse et al.
demonstrated nanophotonic computing based on optical near-
field processes at scales below the wavelength of light.8 In
particular, energy transfer between quantum nanostructures
mediated by optical near-field interactions, detailed in Sec. II,
plays a crucial role. Optical near-field interactions, which are
described by a Yukawa-type potential, have realized energy
transfer that involves conventionally dipole-forbidden energy
levels. Its theoretical foundation has been explained by the
dressed photon model,9 and the process has been experimen-
tally demonstrated in various quantum nanostructures such
as InGaAs,10 ZnO,11 CdSe,12 etc. In particular, Kawazoe
et al. recently demonstrated room-temperature optical energy
transfer using two-layer InGaAs quantum dots (QDs).13 In
addition, the optical energy transfer has been shown to be 104

times more energy efficient than that of the bit-flip energy
required in conventional electrically wired devices.14

This article theoretically demonstrates that optical energy
transfer between quantum dots mediated by optical near-field
interactions can be utilized for solving a CSP. The optical
energy transfer from smaller quantum dots to larger ones
depends on the existence of resonant energy levels between
the quantum dots or a state-filling effect occurring at the
destination quantum dots. Also, as indicated by the quantum
master equations, the energy transfer process is fundamen-
tally probabilistic. Such a spatiotemporal mechanism yields
different evolutions of energy transfer patterns combined
with certain feedback mechanisms, similarly to the evolution
of the shape of Physarum demonstrated by Aono et al. in
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Ref. 4. At the same time, in contrast to biological organisms,
optical energy transfer is implemented by highly controlled
engineering means for designated structures, such as semi-
conductor quantum nanostructures based on, for instance,
molecular beam epitaxy15 or DNA-based self-assembly.16 The
operating speed of such optical-near-field–mediated quantum-
dot systems, which is on the order of nanoseconds when
radiative relaxation processes are involved, is significantly
faster than those based on biological organisms, which is on
the order of seconds or minutes.4,6 The energy efficiency,14

as indicated already above, and the possibility of room-
temperature operation13 are also strong motivations behind the
investigations described in this paper. Other interesting nano-
materials, such as nanodiamonds,17,18 could be considered in
the implementation aside from semiconductor quantum dots.
In addition, we should emphasize that the concept and the
principles discussed in this paper are fundamentally different
from those of conventional optical computing or optical signal
processing, which are limited by the properties of propagating
light.19 The concept and principles are also different from
the quantum computing paradigm where a superposition of
all possible states is exploited so as to lead to a correct
solution.20 The optical-near-field–mediated energy transfer
is a coherent process, suggesting that an optical excitation
could be transferred to all possible destination QDs via a
resonant energy level, but such coherent interaction between
QDs results in a unidirectional energy transfer by an energy
dissipation process occurring in the larger dot, as described in
Sec. II. Thus, our approach opens up the possibility of another
computing paradigm where both coherent and dissipative
processes are exploited.

This paper is organized as follows. Section II characterizes
state-dependent optical energy transfer via optical near-field
interactions. Section III formulates the satisfiability problem
studied in this paper, followed by an example demonstration.
Section IV concludes the paper.

II. STATE-DEPENDENT OPTICAL ENERGY TRANSFER
VIA OPTICAL NEAR-FIELD INTERACTIONS FOR

SOLVING A CONSTRAINT SATISFACTION
PROBLEM (CSP)

A. Energy transfer between quantum dots mediated by
optical near-field interactions

First, we briefly review the fundamental principles of opti-
cal energy transfer involving optical near-field interactions.9,21

We begin with the interaction Hamiltonian between an
electron-hole pair and an electric field, which is given by

Ĥint = −
∫

d3r
∑

i,j=e,h

ψ̂
†
i (r)er · E(r)ψ̂j (r), (1)

where e represents the electron charge, ψ̂
†
i (r) and ψ̂j (r) are,

respectively, creation and annihilation operators of either an
electron (i,j = e) or a hole (i,j = h) at position r, and E(r)
is the electric field.22 In usual light-matter interactions, E(r)
is a constant since the electric field of diffraction-limited
propagating light is homogeneous on the nanometer scale.
Therefore, we can derive optical selection rules by calculating
the dipole transition matrix elements. As a consequence, in the
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FIG. 1. (Color online) (a) Optical energy transfer between quan-
tum dots mediated by optical near-field interactions. (b) State filling
induced at the lower energy level in the larger dot by control light.

case of spherical quantum dots, for instance, only transitions
to states specified by l = m = 0 are allowed, where l and
m are the orbital angular momentum quantum number and
magnetic quantum number, respectively. In the case of optical
near-field interactions, on the other hand, due to the large
spatial inhomogeneity of the localized optical near fields at the
surface of nanoscale material, an optical transition that violates
conventional optical selection rules is allowed. Detailed theory
and experimental details can be found in Ref. 23.

Here, we assume two spherical quantum dots whose radii
are RS and RL, which we call QDS and QDL1

, respectively, as
shown in Fig. 1(a). The energy eigenvalues of states specified
by quantum numbers (n,l) are given by

Enl = Eg + Eex + h̄2α2
nl

2MR2
(n = 1,2,3, . . .), (2)

where Eg is the band-gap energy of the bulk semiconductor,
Eex is the exciton binding energy in the bulk system, M is the
effective mass of the exciton, and αnl are determined from the
boundary conditions, for example, as αn0 = nπ, α11 = 4.49.
According to Eq. (2), there exists a resonance between the
level with quantum number (1,0) in QDS, denoted by S in
Fig. 1(a), and that with quantum number (1,1) in QDL1

, denoted
by L(U)

1 , if RL/RS = 4.49/π ≈ 1.43. Note that the (1,1) level
in QDL1

is a dipole-forbidden energy level. However, optical
near fields allow this level to be populated by excitation.23

Therefore, an exciton in the (1,0) level in QDS could be
transferred to the (1,1) level in QDL1

. In QDL1
, due to the

sublevel energy relaxation with a relaxation constant �, which
is faster than the near-field interaction, the exciton relaxes
to the (1,0) level, denoted by L(L)

1 , from where it radiatively
decays. Also, because the radiation lifetime of quantum dots
is inversely proportional to their volume,24 finally we find
unidirectional optical excitation transfer from QDS to QDL1

.
In the optical excitation transfer discussed above, the

energy dissipation occurring in the destination quantum dot
determines the unidirectionality of energy transfer. Therefore,
when the lower energy level of the destination quantum dot
is filled with another excitation (called “state filling”), an
optical excitation occurring in a smaller QD can not move
to a larger one. As a result, the optical excitation will go
back and forth between these dots (optical nutation) and will
finally decay from the smaller QD, as schematically shown in
Fig. 1(b). This suggests two different patterns of optical energy
transfer, which appear depending on the occupation of the
destination quantum dots. Another mechanism for realizing
two different states is to induce resonance or nonresonance

125407-2



SPATIOTEMPORAL DYNAMICS IN OPTICAL ENERGY . . . PHYSICAL REVIEW B 86, 125407 (2012)

between QDS and QDL1
due to many-body effects; details of

this are discussed in Ref. 13.

B. Architecture for solving a constraint satisfaction problem:
State-dependent energy transfer

To solve a constraint satisfaction problem (CSP) by using
the optical energy transfer introduced in Sec. II A, we design

an architecture where a smaller QD is surrounded by multiple
larger QDs. In this paper, we assume four larger QDs,
labeled QDL1

,QDL2
,QDL3

, and QDL4
as indicated in Fig. 2(a).

Figure 2(c) shows representative parametrizations associated
with the system. The (1,0) level in QDS is denoted by S, and the
(1,1) level in QDLi

is denoted by L(U)
i . These levels are resonant

with each other and are connected by interdot interactions
denoted by USLi

(i = 1, . . . ,4). It should also be noted that
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FIG. 2. (Color online) Architecture of the optical-energy-transfer–based satisfiability solver studied in this paper and energy diagram of a
system composed of a smaller quantum dot and four larger quantum dots. (a) Radiation from the larger quantum dots is detected. (b) Control
light for inducing state filling in the larger quantum dots. (c) Energy diagram and parametrization of the system. (d) A schematic diagram
showing state filling induced at the lower energy level in QDL1

. (e), (f) The effect of state filling induced in the lower energy level in QDL1
.

(e) Population evolutions for the upper energy levels in QDLi
(i = 1, . . . ,4) with two initial excitons: one exciton sits in S and the other sits in

the lower energy level in QDL1
. (f) Population evolutions for the lower energy levels in QDLi

(i = 1, . . . ,4) with one initial exciton in S while
inducing a 100-times increase in the sublevel relaxation lifetime �−1

L1
.
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FIG. 3. (Color online) (a) Population evolutions for the lower energy levels in QDLi
(i = 1, . . . ,4) depending on the state filling induced at

the larger dots. (b) Estimated energy transfer probabilities calculated as time integrals of the populations shown in (a).

optical near-field interactions between the (1,1) levels in QDLi

and QDLj
(i �= j ) are indicated by ULiLj

in Fig. 3(c), which will
be described in detail later below. Note that the interactions
ULiLj

are not shown in Figs. 2(a) and 2(b), nor are other
illustrations regarding the architecture of the QD system in this
paper, in order to avoid too much complexity in the figures. The
lower level in QDLi

, namely, the (1,0) level, is denoted by L(L)
i ,

which could be filled via the sublevel relaxation from L(U)
i (i =

1, . . . ,4), denoted by �Li
. The radiations from the S and Li

levels are, respectively, represented by the relaxation constants
γS and γLi

(i = 1, . . . ,4). In the following discussion, we call
the inverse of the relaxation constant the radiation lifetime.

We also assume that the photons radiated from the lower
levels of QDLi

can be separately captured by photodetectors,
as schematically shown in Fig. 2(a). In addition, as introduced
in Sec. I, we assume control light, denoted by CLi

in Fig. 2(b),
so as to induce the state-filling effect at L(L)

i . Summing up,
Figs. 2(a) and 2(b) schematically represent the architecture
of the system studied in this paper for solving a CSP. In this
section, we characterize the basic behavior of optical energy
transfer in the system shown in Figs. 2(a) and 2(b).

First, we suppose that the system initially has one exciton in
S. From the initial state, through the interdot interactions USLi

,
the exciton in S could be transferred to L(U)

i (i = 1, . . . ,4).
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Also, interactions exist between L(U)
i , which are represented by

ULiLj
. Accordingly, we can derive quantum master equations in

the density matrix formalism.23,25 The interaction Hamiltonian
is given by

Hint =

⎛
⎜⎜⎜⎝

0 USL1 USL2 USL3 USL4

USL1 0 UL1L2 UL1L3 UL1L4

USL2 UL1L2 0 UL2L3 UL2L4

USL3 UL1L3 UL2L3 0 UL3L4

USL4 UL1L4 UL2L4 UL3L4 0

⎞
⎟⎟⎟⎠ . (3)

The interdot near-field interactions are given by a Yukawa-
type potential

U = A exp(−μr)

r
, (4)

where r denotes the distance between the QDs, and A and μ

are constants.9,23

The relaxation regarding these five states is described by

N� =

⎛
⎜⎜⎜⎜⎜⎝

γS

2 0 0 0 0
0

�L1
2 0 0 0

0 0
�L2

2 0 0

0 0 0
�L3

2 0
0 0 0 0

�L4
2

⎞
⎟⎟⎟⎟⎟⎠

. (5)

The Liouville equation for the system is then

dρ(t)

dt
= − i

h̄
[Hint,ρ(t)] − N�ρ(t) − ρ(t)N�, (6)

where ρ(t) is the density matrix with respect to the five
energy levels and h̄ is Planck’s constant divided by 2π .
Similarly, we can derive differential equations with respect
to the lower level of the larger dot L(L)

i , which is populated
by the relaxations from the upper energy levels with constants
�Li

, which radiatively decay with relaxation constants γLi
. In

the numerical calculation, we assume U−1
SLi

= 100 ps, �−1
i =

10 ps, γ −1
Li

= 1 ns, and γ −1
S = (RL/RS)3 × γ −1

Li
≈ 2.92 ns

as a typical parameter set. For instance, in the experimental
demonstrations based on a CdSe/ZnS core-shell QD shown
in Ref. 26, the radiation lifetime of a CdSe/ZnS quantum dot
with a diameter of 2.8 nm (larger QD) was measured to be
2.1 ns, which is close to the radiation lifetimes in the above
parameter set. Also, the interaction time between smaller and
larger quantum dots via optical near fields was estimated to
be 135 ps in Ref. 26, which is also close to the above interdot
interaction time.

The interactions between larger QDs, ULiLj
, could be

obtained by referring to the geometry of the system, which is
schematically shown in Figs. 2(a) and 2(b), and the Yukawa-
type potential given by Eq. (4). For simplicity, we assume
that these interaction times are the same as those between
smaller and larger QDs, namely, U−1

L1L2
= U−1

L2L3
= U−1

L3L4
=

U−1
L1L4

= 100 ps. On the other hand, the interactions between
nonadjacent QDs, for example, the interaction between QDL1

and QDL3
, are considered to be weaker with regard to the

geometry and the distance dependence given by Eq. (4). In
this study, we assume that U−1

L1L3
= U−1

L2L4
= 1000 ps. Based

on the above modeling and parametrizations, the calculated
populations are represented in Fig. 3(a,0), where short-dashed

(magenta), long-dashed (brown), dashed-dotted (green), and
solid (red) curves, respectively, correspond to populations
involving L(L)

1 , L(L)
2 , L(L)

3 , and L(L)
4 , which are relevant to the

radiation from the larger QDs. The population with respect to
S is also indicated by a thin solid curve (blue) in Fig. 3(a,0).
Since the interdot optical near-field interactions between QDS
and QDLi

are uniform, and the relaxation constants are also
uniform for QDLi

, the population evolutions exhibit the same
patterns for QDLi

(i = 1, . . . ,4), as shown in Fig. 3(a,0).
Second, we consider situations where one or more of

the larger QDs are subjected to state filling by the control
light CLi

(i = 1, . . . ,4). Suppose, for example, that the control
light CL1 induces state filling at the energy level L(L)

1 , as
schematically shown in Fig. 2(d). In order to take account
of such state filling, we calculate the population evolutions
with an initial state in which one exciton sits at S and another
one is located at L(L)

1 . Based on a similar formalism to that
described in Eqs. (3)–(6), we derive master equations for the
two-exciton system, and combine them with those for the
one-exciton system.21 In order to characterize the differences
of excitation transfer from QDS to QDLi

(i = 1, . . . ,4), we
evaluate the populations for the upper energy levels in QDLi

,
that is L(U)

1 (i = 1, . . . ,4). As shown in the solid curves in
Fig. 2(e), the populations for L(U)

2 , L(U)
3 , and L(U)

4 mostly exhibit
larger values compared with that for L(U)

1 , which is shown by
the dashed curve. This is a clear indication that optical energy
is more likely to be transferred to QDL2

, QDL3
,and QDL4

than
to QDL1

.
Another way of describing such an effect in the quantum

master equations introduced above is by inducing a significant
increase in the sublevel relaxation lifetime that corresponds
to the QDLi

subjected to state filling by the control light;
more specifically, we assume that �−1

Li
increases by a factor

of 1000 due to the control light CLi
. Figure 2(f) characterizes

the population evolutions associated with the energy levels
in the system when the control light CL1 is switched on. The
population for L(L)

1 , shown by the dashed curve, stays at a lower
level, whereas the populations for L(L)

2 , L(L)
3 , and L(L)

4 increase.
That is, Fig. 2(f) also shows that optical energy is more likely
be transferred to QDL2

, QDL3
,and QDL4

than to QDL1
, which

is consistent with the tendency shown in Fig. 2(e).
Looking at Figs. 2(e) and 2(f) in more detail, the populations

for L(U)
2 and L(U)

4 exhibit different evolutions compared with
that of L(U)

3 ; this is because QDL3
is located at the opposite

side of QDL1
where the control light is induced. Furthermore,

the populations for L(U)
2 and L(U)

4 initially exhibit larger values
compared with that for L(U)

3 ; such behavior is also consistent
in Figs. 2(e) and 2(f). Therefore, in the rest of this paper, we
take the approach of inducing increases in �−1

Li
by using the

control light CLi
.

Figure 3(a) summarizes the population evolutions with
respect to different numbers of control light beams.
Figure 3(a,1) is the same as Fig. 2(f), as already explained,
corresponding to the situation where L(L)

1 is subjected to state
filling. Figures 3(a,2a) and 3(a,2b) show the populations when
two levels among L(L)

i are subjected to state filling. The relative
position of the two QDs subjected to control light are different
between Figs. 3(a,2a) and 3(a,2b). Figure 3(a,3) shows the
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populations when three levels among L(L)
i are subjected to

state filling. The energy transfer preferentially flows into the
larger dots that are not subjected to state filling with the
control light. When all of the larger dots are subjected to state
filling, the exciton sitting in the level S initially goes back
and forth among the levels S and L(U)

i and decays from the
level S, as observed by the solid thin curve in Fig. 3(a,4). The
differences in the population evolutions shown in Fig. 3(a)
depending on the control light CLi

suggest differences in
energy transfer probabilities from the smaller source dot to the
larger destination dots. Taking account of such differences,
we assume that the energy transfer probability to QDLi

is
correlated with the integrals of the populations for L(L)

i , as
summarized in Fig. 3(b). More specifically, the transition
probabilities shown in Fig. 3(b) are the numerical integrations
of the populations between 0 and 20 ns divided by a factor of
1000. Note that such population integrals are indeed figures-of-
merit (FoM) indicating the trend of optical energy transfer from
the smaller quantum dot to the four larger dots. That is, they
do not satisfy the law of conservation of probability, namely,
the sum of the transition probabilities to QDLi

(i = 1, . . . ,4)
is not unity. Instead, we see that the energy transfer to QDLi

occurs if a uniformly generated random number between 0
and 1 is less than the transition probability to QDLi

shown in
Fig. 3(b); for example, in the case of Fig. 3(b,3), the energy
transfer to QDL4

is induced with high likelihood, whereas the
transfers to QDL1

, QDL2
, and QDL3

are induced with lower
probability.

The idea for problem solving is to control the optical
energy transfer by controlling the destination quantum dot
with control light in an adequate feedback mechanism. We
assume that a photon radiated, or observed, from the energy
level L(L)

i is equivalent to a binary value xi having a logical
level 1, whereas the absence of an observed photon means
xi = 0.

To end this section, we make one remark about “nonlocal”
properties of the system. The interaction Hamiltonian includes
distant interactions UL1L3

and UL2L4
, not just interactions

between adjacent dots. In that sense, a “nonlocal” nature has
been treated in this study. Furthermore, we consider that the
state-filling-dependent population differences summarized in
Fig. 3 also manifest a nonlocal property. The initial exciton
sitting in QDS can be transferred to the upper energy levels of
the larger QD via optical near-field interactions. Seemingly,
the exciton immediately senses the vacancy in the destination,
or larger, QD, and exhibits different energy transfer patterns.
For instance, in the case of Fig. 3(a,3), the probability of energy
transfer to QDL4

is significantly higher than in the other cases.
This can be viewed as a “nonlocal” property in the sense
that it is a consequence of the character of the system as a
whole.

III. APPLICATION TO SOLVING A CONSTRAINT
SATISFACTION PROBLEM

A. Problem formation

We consider the following constraint satisfaction problem
as an example regarding an array of N binary-valued vari-
ables xi ∈ {0,1} (i = 1, . . . ,N). The constraint is that xi =

S
SLU

QDL1

QDL2

QDL3

QDL4

S
SLU

QDL1

QDL2

QDL3

QDL4

CL1CL3

FIG. 4. (Color online) A schematic representation of the feedback
mechanism. When the radiation from QDL4

is detected in cycle t ,
control light beams CL1 and CL3 , which are in channels adjacent to
QDL4

, are switched on.

NOR(xi−1,xi+1) should be satisfied for all i. That is, variable
xi should be consistent with a logical NOR operation of the two
neighbors. For i = 1 and N , the constraints are respectively
given by x1 = NOR(xN,x2) and xN = NOR(xN−1,x1). We
call this problem the “NOR problem” hereafter in this paper.
Taking account of the nature of an individual NOR operation,
one important inherent character is that, if xi = 1 then its two
neighbors should be both zero (xi−1 = xi+1 = 0). Recall that
a photon radiated, or observed, from the energy level L(L)

i

corresponds to a binary value xi = 1, whereas the absence of
an observed photon means xi = 0. Therefore, xi = 1 should
mean that the optical energy transfer to both L(L)

i−1 and L(L)
i+1

is prohibited so that xi−1 = xi+1 = 0 is satisfied. Therefore,
the feedback or control mechanism is as follows: Control
mechanism. If xi = 1 at cycle t , then the control light beams
Ci−1 and Ci+1 are turned on at cycle t = t + 1. An example
scheme is illustrated in Fig. 4.

In the case of N = 4, variables satisfying the constraints
do exist, and they are given by {x1,x2,x3,x4} = {0,1,0,1} and
{1,0,1,0}, which we call “correct solutions.” There are a few
remarks that should be made regarding the NOR problem.
One is about the potential deadlock, analogous to Dijkstra’s
“dining philosophers problem,” as already argued by Aono
et al. in Ref. 4. Starting with an initial state xi = 0 for all i, and
assuming a situation where optical energy is transferred to all
larger QDs, we observe photon radiation from all energy levels
L(L)

i (i = 1, . . . ,N), namely, xi = 1 for all i. Then, based on
the feedback mechanism shown above, all control light beams
are turned on. If such a feedback mechanism perfectly inhibits
the optical energy transfer from the smaller QD to the larger
ones at the next step t + 1, the variables then go to xi = 0
for all i. This leads to all control light beams being turned
off at t + 2. In this manner, all variables constantly repeat
periodic switching between xi = 0 and 1 in a synchronized
manner. Consequently, the system can never reach the correct
solutions. However, as indicated in Fig. 3(b), the probability
of optical energy transfer to larger dots is in fact not zero
even when all larger QDs are illuminated by control light,
as shown in Fig. 3(b,4). Also, even for a nonilluminated
destination QD, the energy transfer probability may not be
exactly unity. Such a stochastic behavior of the optical energy
transfer is a key role in solving the NOR problem. This
nature is similar to the demonstrations in the amoeba-based
computer,4 where fluctuations of chaotic oscillatory behavior
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FIG. 5. (Color online) Schematic representation of all possible states of the system. States (7) and (10) correspond to the correct solutions.

involving spontaneous symmetry breaking in the amoeboid
organism guarantees such a critical property. In fact, Aono
et al. experimentally demonstrated solving the NOR problem
when N = 8 using amoeba and the feedback mechanism shown
above.4

B. Demonstration

In the case of N = 4, there are in total 24 = 16 optical
energy transfer patterns from the smaller dot to the larger
ones, as schematically summarized in Fig. 5. The numbers
shown in the lower-right corner of each inset indicate the
corresponding variables {x1,x2,x3,x4}. The correct solutions
correspond to states (7) and (10) in Fig. 5, marked by dashed

boxes. The operating dynamics cause one pattern to change to
another one in every iteration cycle. Thanks to the stochastic
nature discussed in Secs. II B and III A, each trial could
exhibit a different evolution of the energy transfer patterns. In
particular, the transition probability, shown in Fig. 3(b), affects
the behavior of the transitions. Therefore, we introduce a gain
factor (G) to be multiplied by the energy transfer probability
summarized in Fig. 3(b).

Figure 6 summarizes the incidences of states for
1000 trials evaluated at t = 1, 2, 3, 50, and 100 when G =
2.5. The initial state is {x1,x2,x3,x4} = {0,0,0,0}, meaning that
there is no energy transfer to larger dots [state (1) in Fig. 5].
The incidences of states (7) and (10), which are the correct
solutions, grow as the iteration cycle increases. The detailed
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FIG. 6. (Color online) The evolution of inci-
dence patterns of the states among 1000 trials
when the gain factor is 2.5. The incidences
corresponding to the correct solutions increase
as the iteration cycle increases.
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FIG. 7. (Color online) (a) The evolution of the ratio of the output appearance from QDLi
, or xi = 1, and (b) the ratio of the state corresponding

to the correct solutions with the initial state (1) in Fig. 5. (c), (d) Time-averaged traces of (b) and (c), respectively. (e) The evolution of the ratio
of the output appearance from QDLi

, or xi = 1, and (f) the ratio of the state corresponding to correct solutions with the initial state of (7) in
Fig. 5.

behavior of the system is characterized in Figs. 7(a) to 7(d).
The curves in Fig. 7(a) represent the evolution of the output
appearance from QDLi

, namely, the ratio of the incidence when
xi = 1 among 1000 trials evaluated at each cycle. Similarly,
the solid and dotted curves in Fig. 7(b) characterize the ratio
of the appearance of states (7) and (10), respectively. When
we closely examine the evolutions of xi in Fig. 7(a), we can
see that the pair x1 and x3 exhibit similar behavior, as do the
pair x2 and x4. Also, the former pair exhibits larger values
when the latter pair shows smaller values, and vice versa. This
corresponds to the fact that correct solutions, that is, {0,1,0,1}
[state (7)] and {1,0,1,0} [state (10)], are likely to be induced as
the iteration cycle increases, as shown in Fig. 6.

Such a tendency is more clearly represented when we
evaluate the time averages of the characteristics in Figs. 7(a)
and 7(b). Figure 7(c) shows the evolution of the ratio of the
incidences when xi = 1, and Fig. 7(d) shows the ratios of

states (7) and (10) averaged over every five cycles. We can
clearly observe a similar tendency to the one described above.
Also, we should emphasize that, thanks to the probabilistic
nature of the system, the states of correct solutions appear in an
interchangeable, or in an anticorrelated, manner. This is a clear
indication of the fact that the probabilistic nature of the system
autonomously seeks the solutions that satisfy the constraints of
the NOR problem; the state-dependent probability of energy
transfer plays a critical role in this. In other words, it should
be emphasized that a nonlocal correlation is manifested in the
evolution of xi (i = 1, . . . ,4); for instance, when the system
is in state (7), i.e., {0,1,0,1}, the probabilities of energy
transfer to QDL1

and QDL3
are equally comparably low (due

to state filling), whereas those to QDL2
and QDL4

are equally
comparably high, indicating that the probability of energy
transfer to an individual QDLi

has inherent spatial patterns
or nonlocal correlations. At the same time, the energy transfer
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FIG. 8. (Color online) (a) The incidence patterns of the states for different gain factors at the cycle t = 100. (b) Calculated accuracy rate,
or the ratio of the number of correct states among all trials. The accuracy rate is maximized when the gain factor is 2.5.

to each QDLi
is indeed probabilistic; therefore, the energy

transfer probability to, for instance, QDL1
is not zero even in

state (7), and thus, the state could transition from state (7)
to state (10), and vice versa. In fact, starting with the initial
condition of state (7), the ratio of the output appearance from
QDL1

and the ratio of the correct solutions evolve as shown in
Figs. 7(e) and 7(f), where states (7) and (10) occur equally in
the steady state around time cycles after 20.

Figure 8(a) summarizes the incidence patterns at t = 100
for 1000 trials as a function of the gain factor ranging from 1
to 10. As shown in the upper-left corner of Fig. 8(a), too high
a gain always results in incorrect solutions; this is because
energy transfers to larger dots are always induced even when
state filling is induced. On the other hand, as shown in the
lower-right corner of Fig. 8(a), too low a gain also results
in a high incidence of incorrect solutions, indicating that the
energy transfer is too strictly inhibited by the control light.
Figure 8(c) evaluates the accuracy rate, which is the number
of correct solutions among 1000 different trials at t = 100,
as a function of the gain factor. We can see that a gain of 2.5
provides the highest accuracy rate.

Finally, we make two remarks relevant to this study. The
first remark is about the relevance to a satisfiability (SAT)
problem. In the case of N = 4, solving the NOR problem
demonstrated above is equivalent to solving the following
satisfiability problem instance given in a conjunctive normal
form:

f (x1,x2,x3,x4) = (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x4)

× ∧ (¬x2 ∨ ¬x3) ∧ (¬x3 ∨ ¬x4)

× ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

× ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4). (7)

Since the maximum number of literals in clauses in Eq. (7)
is three, this is an instance of a so-called 3SAT problem.27

We presume that such a SAT problem could be dealt with
by variants of our optical-near-field–mediated systems devel-
oped in the future.28 SAT is an important nondeterministic
polynomial-time complete (NP-complete) problem, indicating
that no fast algorithm has been found yet.27 We consider that
nanophotonic principles could potentially provide a new way
to solve such computationally demanding problems.

125407-9



MAKOTO NARUSE et al. PHYSICAL REVIEW B 86, 125407 (2012)

The second remark is about implementation of optical
energy transfer for such stochastic computing applications.
As mentioned in the Introduction, the latest notable features
are the rapid advancements in nanomaterials for optical en-
ergy transfer.10–16 Among various technologies, for example,
Akahane et al. successfully demonstrated energy transfer
in multistacked InAs QDs,29 where layer-by-layer QD size
control has been accomplished.13 Adequate QD size control
also allows optical coupling between optical far fields and
optically allowed energy levels in a quantum-dot mixture,30

which could help to solve the interfacing issues of the system.
Research in the field of nanodiamonds may also be of promise
in implementing the architecture of this study;17,18 near-field
applications of nanodiamonds have already been demonstrated
by Cuche et al. in Ref. 31.

IV. SUMMARY

In summary, we have demonstrated that energy transfer
between quantum nanostructures based on optical near-field
interactions occurring at scales far below the wavelength
of light has the potential to solve a constraint satisfaction
problem. The optical energy transfer from smaller quantum
dots to larger ones, which is a quantum stochastic process,

depends on the existence of resonant energy levels between
the quantum dots or a state-filling effect occurring at the desti-
nation quantum dots. We exploit these unique spatiotemporal
mechanisms in optical energy transfer to solve a constraint
satisfaction problem, and numerically demonstrated that the
NOR problem is successfully solved. As indicated in the
Introduction, the concept and the principles demonstrated in
this paper are based on both coherent and dissipative processes
on the nanoscale, which is not the case with conventional
optical, electrical, and quantum computing paradigms. The
inherently nonlocal nature is also a unique attribute provided
by the optical-near-field–mediated optical energy transfer.
This paper paves the way for applying nanometer-scale optical
near-field processes to solving computationally demanding
applications and suggests a new computing paradigm.
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