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We present thermal and electrical transport measurements of low-density (1014 m−2), mesoscopic two-
dimensional electron systems (2DESs) in GaAs/AlGaAs heterostructures at sub-Kelvin temperatures. We find
that even in the supposedly strongly localized regime, where the electrical resistivity of the system is two
orders of magnitude greater than the quantum of resistance h/e2, the thermopower decreases linearly with
temperature indicating metallicity. Remarkably, the magnitude of the thermopower exceeds the predicted value
in noninteracting metallic 2DESs at similar carrier densities by over two orders of magnitude. Our results indicate
a new quantum state and possibly a novel class of itinerant quasiparticles in dilute 2DESs at low temperatures
where the Coulomb interaction plays a pivotal role.
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I. INTRODUCTION

The thermopower or Seebeck coefficient S of a system
is the electric voltage Vth generated in response to an
imposed temperature difference �T across its ends. In an
electron system thermally connected to a phonon bath, the
primary contributions to Vth are from “phonon drag,” which
is driven by electron-phonon scattering, and the diffusive
kinetics of the electrons themselves in order to maintain local
thermal equilibrium. The latter is dominant at sufficiently low
temperatures when most phonons freeze out and is called
the diffusion thermopower (Sd ). Within the semiclassical
Boltzmann framework, the diffusion thermopower is given
by the Mott relation1 and connects it to the conductivity σ of
the system as

Sd ≡ Vth

�T
= π2k2

BT

3q

(
d ln σ

dE

)
E=μ

, (1)

where kB is the Boltzmann constant, T is the average electron
temperature, q is the charge of the carriers, E is the energy,
and μ is the chemical potential of the system. Thus, S is
sensitive to the energy derivative of σ and consequently
various system parameters such as the electronic density of
states (DOS) and the momentum relaxation time τ . This
sets it apart from the resistivity as a spectroscopic tool and
the physics it probes. For instance, the T dependence of S

is markedly different for metals, Anderson insulators, and
gapped insulators: For metals, where there is a continuous DOS
and free charge carriers, S(T ) decreases to zero linearly as
T → 0; for 2D Anderson insulators which are characterized by
a sharp mobility edge separating the conducting (extended) and
nonconducting (localized) states in an otherwise continuous
DOS, S(T ) varies as T 1/3; in the Efros-Shklovskii regime,
where Coulomb interactions cause the opening of a soft gap
at the Fermi energy in the DOS, S(T ) → constant as T → 0;
and finally, for hard gapped insulators S(T ) diverges as 1/T .
These distinctions are far less pronounced in the resistivity
ρ(T ). Another virtue of S is its equivalence to the entropy

per carrier, thus providing a probe of this abstract quantity. We
note here that the Mott formula [Eq. (1)] was originally derived
for a strongly degenerate, noninteracting metal and hence is
not expected to be valid when strong interactions are present.

The theromopower has proved to be a powerful tool to probe
many-body phases in strongly interacting 2DESs, particularly
those involving transitions from insulating to either metallic
or fractional quantum Hall liquid phases. In the presence of
strong transverse magnetic fields, the thermopower has been
employed to investigate the nature of the insulating state near
the ν = 3/2 fractional quantum Hall state,2 the existence of an
energy gap at the ν = 5/2 fractional quantum Hall state,3 and
the possibility of a Wigner crystalline ground state near ν = 1
in a bilayer GaAs/AlGaAs hole system.4 The possibility of a
metallic ground state in low-density 2DESs at zero magnetic
field, where the metallicity is driven purely by Coulomb
interactions, has however been far more controversial.5 Several
attempts to identify such a metal have been made with
thermopower as a probe in the apparently metallic regime,
notably in low-density 2D electron or hole systems6,7 and high-
mobility Si MOSFETs.8 While these studies indicate a definite
change in the conduction mechanism and/or critical behavior
in thermopower near the transition point between insulator and
apparent metal, an unambiguous demonstration of a metallic
state has never been achieved. Much of the uncertainty could
be due to the very nature of the transition which has been
suggested to be an inhomogeneity-driven, classical percolation
transition9,10 rather than an interaction-induced one.

Recently, the possibility of a metallic phase in strongly
interacting 2DESs in zero magnetic field has resurfaced
through transport experiments with micron-scale 2DESs in
GaAs/AlGaAs heterostructures.11–14 The motivation behind
using micron-sized or “mesoscopic” samples was to cir-
cumvent the influence of the long-ranged disorder known
to exist in molecular-beam-epitaxy-grown GaAs/AlGaAs
heterostructures.15,16 This greatly reduces the tendency of
the 2DES to fragment into puddles and, consequently, the
chances that the transport be governed by percolation through
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FIG. 1. (Color online) (a) False-color SEM image of a typical
device. (b) Schematic of the device layout. D denotes the mesoscopic
device, BG1−4 are macroscopic bar gates used for thermometry (see
Sec. II A), and 1–8 represent ohmic contacts. A heating current Ih

establishes a temperature gradient along the length of the device.

these puddles. Indeed, at low ns , Baenninger et al.13 observed
striking behavior in mesoscopic 2DESs: The T dependence
of the resistance weakened drastically either saturating to a
finite value or decreasing with decreasing T even though
the absolute value of resistivity exceeded h/e2 by several
orders of magnitude. The aim of the present work is to
investigate the nature of the DOS at the Fermi energy and
many-body phenomena in these systems using thermopower
measurements.

II. EXPERIMENT

Figure 1(a) shows a micrograph of a typical device.
The devices are fabricated in Si-doped GaAs/AlGaAs
heterostructures in which the distance between the dopant layer
and 2DES is 40 nm. The as-grown mobility was 220 m2/V s
at carrier densities of 2.2 × 1015 m−2. The mesoscopic 2DES
is defined using a top-gate of dimensions L × W = 2 μm ×
8μm, which enables us to tune its density ns by applying a gate
voltage Vg . The ns-Vg calibration is obtained via an edge state
reflection technique.17 We measure the 2DES resistivity ρ2DES

in a 4-probe setup by passing a small excitation current Iex =
100 pA at f = 7 Hz and detecting the output Vex using a
lock-in amplifier. To measure S we impose a temperature
difference �T across the device by means of a heating current
Ih = 4–5 μA at fh = 11 Hz and detect the thermovoltage Vth

at 2fh. �T across the device is measured using large (∼10
μm) bar gates following Refs. 18 and 19 (see Sec. II A for

further details). In the results reported here �T never exceeds
20 mK (see Fig. 3). In our experiments ρ2DES , Vth, and �T

are all measured simultaneously. We perform measurements
on three devices and observe similar results in all.

A. Thermometry using bar gates

We measure the local electron temperature by measuring
the thermovoltage between large 2DESs (≈10 μm × 30 μm)
defined by metallic gates. The layout of the bar gates can
be seen in Figs. 1(a) and 1(b). At high ns when interaction
or localization effects are negligible and the 2DES is well
described as a noninteracting, Drude-like metal, Eq. (1)
reduces to

Sd = −πk2
BT m

3eh̄2

1 + α

n
. (2)

Here kB is Boltzmann’s constant, T is the average temper-
ature ≡(Te + TL)/2 with Te and TL the electron and lattice
temperatures, respectively, m is the effective electron mass
in GaAs, −e is the electronic charge, h̄ is Planck’s constant
divided by 2π , n is the 2DEG density, and α ≡ n

τ
dτ
dn

, where τ

is the momentum relaxation time. To measure �T1, say [see
Fig. 1(b)], where the local electron temperature is Te1, we
differentially bias BG1 and BG2 and detect the the signal V�T1

between contacts 2 and 7 at twice the heating frequency. The
difference in thermopowers between BG1 and BG2, �Sd ≡
V�T1/�T = V�T1/(Te1 − TL). Substituting the expression for
Sd from Eq. (2) we obtain

T 2
e1 = V�T1

3eh̄2

πk2
Bm(1 + α)

(
1

n1
− 1

n2

)−1

+ T 2
L, (3)

where n1 and n2 are the 2DEG densities beneath BG1 and
BG2, respectively, and are obtained via an edge-state reflection
technique.17 TL is obtained from a Ru2O thermometer attached
close to the sample. A similar procedure yields the value of
Te2 from which �T , the temperature difference across D, the
mesoscopic device under study, is obtained as Te2 − Te1.

In order to calibrate our setup we have first carried out
detailed thermopower measurements when D is tuned to
relatively high ns where ρ2DES < h/e2 and interaction or
localization effects are negligible. Here the 2DES is well
described as a noninteracting, Drude-like metal and its ther-
mopower given by Eq. (2). Figure 2(a) shows the dependence
of S on ns in the regime ns > 3 × 1014 m−2, measured at
base temperature T = 0.28 K. The dashed line represents Sd

for α = 1. In Fig. 2(b), we present the T dependence of S

at two values of ns [=4 and 5 × 1014 m−2, denoted by the
vertical dashed lines in Fig. 2(a)]. At both ns we find S to be
well described by Eq. (2). Apart from a consistency check for
the measurement process, Figs. 2(a) and 2(b) also confirm
that S is dominated by the diffusive component over this
range of T (�1.5 K), and that the phonon drag contribution
to S is negligible. This is not surprising as the hot-electron
technique greatly reduces the phonon drag contribution as was
demonstrated by Chickering et al. in Ref. 19.

A second validation of our measurement technique is shown
in Fig. 3(a). We see that �T shows two distinct dependencies
on T : A slower decay when T � 0.6 K and a faster decay when
T > 0.6 K. The behavior of �T can be accounted for simply
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FIG. 2. (Color online) Density and temperature dependence,
respectively, of S in the high-ns regime. The dashed lines show Sd

[Eq. (2)].

by a combination of power dissipated to the ohmic contacts,
PO , and through piezoelectric electron-phonon coupling, Pep.
The net power dissipated P ≡ PO + Pep = I 2

hR. Here Ih is
the (constant) heating current and R the resistance of the
heating channel [shown as red arrow in Fig. 1(b)]. In the
range of temperatures explored, R is completely dominated
by impurity scattering and hence shows no temperature
dependence. Consequently, P is independent of T . Assuming
PO = K1(T 2

e − T 2
L ) and Pep = K2(T 5

e − T 5
L ),20 where K1 and

K2 are system-dependent constants, we obtain

�T ≡ Te − TL ∝ [
K1(Te + TL)

+K2
(
T 4

e + T 3
e TL + T 2

e T 2
L + TeT

3
L + T 4

L

)]−1
. (4)

The qualitative behavior described by Eq. (4) is shown as
a broken line in Fig. 3(a) and is seen to adequately describe
the observed dependence. We mention here that even in the
absence of a voltage on the gate finger D in Fig. 1(b), �T1

= 0; i.e., the electrons relax to TL over the distance between
the heating channel and cold end of the device. Consequently,
�T ≡ Te2 − TL does not change as the 2DES is tuned between
the high- and low-density regimes. A third check is shown in
Fig. 3(b) where we plot �T ≡ Te − TL against the heating
current Ih. We see that as expected, �T grows as ≈I 2

h before
saturating, presumably due to nonlinearities arising from the
large values of Ih.

III. RESULTS

As ns in the mesoscopic region is reduced by making
the top-gate voltage more negative, ρ2DES increases rapidly

FIG. 3. (Color online) (a) The figure shows the variation of
�T with the lattice temperature TL. Also shown is the qualitative
dependence of �T expected due to heat dissipation by piezoelectric
electron-phonon scattering and to the ohmic contacts. (b) The
figure shows that as Ih is increased �T increases approximately
quadratically before nonlinearities appear at large Ih.

below ns ∼ 2–3 × 1014 m−2 (inset Fig. 5 and Refs. 13 and
14). The T and ns dependencies of ρ2DES in such low-ns ,
mesoscopic 2DESs are very different from those of their
macroscopic counterparts.13,14 In Fig. 4(a) we see, similar to
what was observed in Ref. 13, that at low ns values, where the
2DES is expected to be localized, ρ2DES(T ) does not diverge
as T → 0 but saturates at values �h/e2 below ≈ 0.8 K,
indicating noninsulating behavior. The precise mechanism
for resistivity saturation is debated, ranging from quantum
tunneling between multiple electron puddles21,22 to defect
migration in a spontaneously broken symmetry phase.13,14

Figure 4(b) shows S as a function of T at the same ns

as Fig. 4(a). Its behavior is, however, generic to all ns in
the “localized” regime: At ns � 2 × 1014 m−2, we find that
S always decreases with decreasing T despite the fact that
ρ2DES � h/e2. The nature of its decrease depends on the
range: At T � 0.8 K, S varies linearly with T , as in the
case of a metal. This linear dependence is observed down
to the lowest measured ns where the electrical resistivity
can be as high as 200–300 × h/e2. When T > 0.8 K, S is
seen to grow at a much faster rate, S ∼ T 4, as a result of
which S reaches extremely large values ∼100 mV/K at 1.4 K.
The T 4 dependence of S in GaAs/AlGaAs heterojunctions
at low T is usually understood in terms of phonon drag,4,23

but its absence at the same T at high ns in our devices
(see Fig. 2) suggests that the present instance warrants closer
inspection. We note, however, that screening by free carriers
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FIG. 4. (Color online) (a) In the highly resistive regime ρ2DES

becomes almost T independent below ∼ 0.8 K. (b) S increases
linearly below T � 0.8 K beyond which it increases as T 4, in
agreement with earlier reports of thermopower in GaAs/AlGaAs
heterostructures (Ref. 4).

in GaAs/AlGaAs heterostructures can significantly alter the
polaron (electron-LO phonon) binding energy and scattering
rate,24 and it is possible that the absence of free electrons in
the low-ns regime allows phonon drag to set in at lower T .

Figure 5(a) shows the ns dependence of S at T = 0.28 K.
There are two salient features which need to be noted: First,
while S increases with decreasing ns , the decrease is much
stronger than the ∼1/ns behavior expected from Eq. (2); S

increases to about two orders of magnitude above the Mott
value at the lowest ns . Second, the increase in S is oscil-
latory rather than smooth, even changing sign occasionally,

although the detailed nature of oscillations is highly device
dependent. Coulomb blockade due to electron puddles in an
inhomogeneous charge distribution could lead to oscillatory
thermopower,25 but such a scenario is unlikely because
(1) in spite of occasional change in sign, the oscillations are
primarily one sided (negative) and very asymmetric around
zero, and (2) none of this structure is seen in ρ2DES [shown in
inset to Fig. 5(a)] which grows monotonically and is, by and
large, featureless. In fact, the energy derivative of ρ2DES(ns)
fails to account for the oscillations (see Sec. III A) both
qualitatively and in magnitude, which indicates a breakdown
of the semiclassical Mott picture [Eq. (1)]. While the precise
origin of the oscillations remains unexplained, a many-body
interaction effect, for example a reentrant order-disorder
transition in a broken-symmetry phase, cannot be ruled out.26

Figure 5(b) embodies the key result of this work. We
inspect the linear regime of S(T ) and show linear fits to the
data that pass through the origin. This suggests the absence
of any gap, hard or Efros-Shklovskii type, at the Fermi
energy. In the inset we see that the same data plotted against
T 1/3 cannot be described as a line going through the origin,
showing clearly that the observed behavior is not consistent
with Mott-type variable-ranged hopping in an Anderson
insulator. We emphasize the difference between our result and
earlier thermopower results near the apparent metal-insulator
transition in macroscopic 2D systems: Apart from this being
the first clear observation of metal-like thermopower in the
low-ns regime, we find this behavior to exist over an extended
range of ns and ρ2DES (up to ∼ 300 × h/e2 which is the upper
limit of our measurements), unlike previous studies which
explore only the critical regime (ρ2DES ∼ 0.1–1 × h/e2).

A. Breakdown of the Mott relation

In this section we show that the electrical and thermal
transport in the low-ns , mesoscopic 2DES are not simply
related by the Mott formula [Eq. (1)]. To make a quantitative
comparison with the Mott result applied to our system,

FIG. 5. (Color online) (a) S vs ns for 0.28 K < T < 0.7 K. The broken green line shows Sd [Eq. (2)] at 0.28 K. Inset: ρ2DES vs ns at the
same T values; there is little T dependence in this range. (b) Low-T linear variation of S. Inset: Descriptions based on variable-ranged hopping,
where S is expected to decay to zero as T 1/3, do not adequately describe the observed data.
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FIG. 6. (Color online) The figure shows S and SMOT T [Eq. (1)]
at T = 0.28 K. The S trace is also shown in Fig. 5(a). Note that the
left and right vertical axes differ by a factor of 10.

we evaluate the energy-derivative of ln σ using the Hartree
expression for the energy of the 2DES

E ≡ EK + EC = h̄2πns

m
+ h̄2√πns

maB

, (5)

where aB is the effective Bohr radius in GaAs ≈ 11 nm. Using
Eq. (5) the expression for SMOT T reduces to

SMOT T = πk2
BT m

3eh̄2 (1 + rs/2)−1 d ln ρ

dn
. (6)

In Fig. 6 we compare the measured thermopower S at T =
0.28 K to that expected from the Mott formula SMOT T [the
former is also presented in Fig. 5(a)]. We note that S and
SMOT T disagree qualitatively and quantitatively. First, S is
nearly two orders of magnitude larger than SMOT T and second,
though SMOT T captures some of the broad features in S, there
is additional structure in the latter. The same is true for both
of the other devices measured.

In Fig. 7 we see that the oscillations in S are observed even
when ρ2DES ≈ h/e2. The strong oscillations and even sign
changes in S are unaccompanied by any corresponding struc-
ture in ρ2DES . This strongly suggests that these oscillations are
not a result of Coulomb blockade in electron puddles.

IV. DISCUSSION

Two outstanding questions remain: First, can the nature of
the metallic state be understood within an effective semiclassi-
cal Boltzmann framework? And second, why is S two hundred
times larger than that expected from the noninteracting model
at low ns? In the Drude-like metal described by Eq. (2), the
resistivity and thermopower are both inversely proportional
to the density of delocalized quasiparticles which carry heat
and electricity, i.e., S ∼ 1/nex ∼ ρ2DES , where nex is density
of delocalized quasiparticle excitations. The deviation of the
observed S from the Mott expectation clearly implies that
nex is not given simply by ns . However, to see whether a
Drude-like description is valid we have plotted S as a function
of the corresponding ρ2DES for three different devices at base
temperature in Fig. 8. Remarkably, in spite of the superposed
oscillatory structure, we find S to be linearly proportional to
ρ2DES over nearly three decades in S in all three devices,
providing strong evidence of a Drude metal-like character,
but with a different nature of itinerant quasiparticles. The

FIG. 7. (Color online) The figure shows S and ρ2DES over the
same ns range when ρ2DES ∼ h/e2. The oscillations in S are strikingly
present even at these low resistivities.

number of such quasiparticles can be significantly smaller
than ns which can readily explain the large magnitude of
both S and ρ2DES . Note that Fig. 8 provides further evidence
against transport via tunneling between electron puddles that
act as quantum dots since, in such cases, S is expected to
be proportional to the energy derivative of ρ2DES rather than
ρ2DES itself.25

In the presence of strong Coulomb interactions, enhanced
screening and the formation of many-body states have been
suggested to lead to extended, or at least relatively less
localized, electron wave functions in the ground state thereby
modifying the single-electron conduction mechanism [see for
example Ref. 27]. Moreover, a common effect of interactions
at low temperatures is to induce broken-symmetry states such
as Wigner crystals, stripe/bubble phases, etc.28 Recently, the
metal-like electrical transport observed in Refs. 13 and 14
was attributed to the melting of spontaneous symmetry-broken
states,14 where the melting transition proceeds through the
proliferation of topological defects that form delocal-
ized quasiparticles at sufficiently low temperatures where
zero-point fluctuations dominate.29 The signature of the
Berezinskii-Kosterlitz-Thouless (BKT) melting transition was
indeed observed in all our devices [insets of Figs. 8(a)–
8(c)], where the resistivity ρ2DES varies as ρ2DES ∝
exp(−A/

√
ns − nc), A being a constant and nc the melting

density.14 The corresponding delocalized excitations can be
responsible for thermal transport as well, and being much
smaller than the number of electrons in the system, may
lead to very large thermopower. We note that though Wigner
crystallisation is expected at much lower ns in disorder-free
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FIG. 8. (a)–(c) In all three devices measured there is a clear linear envelope between S(ns) and ρ2DES(ns) as is expected in simple Drude-like
metallic system. However, the ns dependence of neither obeys a simple Drude description. The insets show that ρ2DES in each instance is well
described by a Berezinskii-Kosterlitz-Thouless model (gray lines) suggesting that topological defects of an underlying ordered 2DES could be
the mediators of transport in the dilute, mesoscopic 2DES.

systems,30 the presence of disorder may “pin” the order and
allow finite grain-size Wigner crystallites at much higher ns .31

Thus, in conclusion, the effects of the many-body Coulomb
potential appear to manifest in a novel metallic phase in dilute
mesoscopic 2DESs, with giant thermopower that decreases
linearly as T → 0. While we cannot rule out the possibility
that the system turns insulating at even lower T , the fact
that it persists down to lowest experimental ns explored here
indicates that the metallic phase might be the true ground state
of strongly interacting 2DESs.
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