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Index theorem for topological heterostructure systems
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We apply the Niemi-Semenoff index theorem to an s-wave superconductor junction system attached with a
magnetic insulator on the surface of a three-dimensional topological insulator. We find that the total number of
the Majorana zero energy bound states is governed not only by the gapless helical mode but also by the massive
modes localized at the junction interface. The result implies that the topological protection for Majorana zero
modes in class D heterostructure junctions may be broken down under a particular but realistic condition.
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I. INTRODUCTION

Zero energy bound states in vortex cores of superconductors
have been of much current interest in condensed matter
physics. Some classes of the vortex Majorana states, obeying
non-Abelian statistics, may serve as qubits for quantum
computation.1–4 There are various theoretical proposals for
realizing non-Abelian Majorana fermions in the core of
vortices in topological superconductors (e.g., a chiral p-wave
superconductor, etc.5–14) Besides such vortex zero modes,
topological superconductor junction systems, in which the
order parameter changes sharply in real space, possess
generically non-Abelian Majorana fermions.9 A useful method
for charactering the existence of the zero energy bound
states localized at point defects such as vortices or point
intersections consisting of the junction interfaces is the index
theorem for an open infinite space, derived by Callias15

and by Weinberg,16 and generalized by Niemi-Semenoff.17

This theorem reveals the relationship between the zero
energy bound states and the topology of background fields
at large distance from the point defects. In this paper, we
investigate the index theorem for the heterostructure system
involving the topological insulator (TI), mainly focusing on the
superconductor-TI-ferromagnet insulator junctions. We find
that the number of Majorana zero modes is controlled not
only by the phase winding of the superconducting gap, but
also by nontopological massive bound states localized at the
junctions.

The organization of this paper is as follows. In Sec. II,
we first present our main results for the index of the
superconductor-TI-ferromagnet insulator junctions, and dis-
cuss its physical implications. We give, in particular, a physical
explanation on how nontopological massive bound states affect
the index for Majorana zero energy modes. Our results are
based on the celebrated Niemi-Semenoff index theorem. To
make this paper self-contained, we briefly review the Niemi-
Semenoff index theorem in Sec. III. In Sec. IV, we apply
the Niemi-Semenoff index theorem to the superconductor-
TI-ferromagnet insulator junctions, and obtain the index
theorem for topological heterostructure systems. In Sec. V, we
also apply our results to topological insulator-ferromagnetic
insulator heterostructure systems. We conclude in Sec. VI with
some discussions.

II. SETUP AND MAIN RESULTS

We consider the heterostructure system composed of an s-
wave superconductor π junction and ferromagnetic insulators
placed on a TI, as depicted in Fig. 1(a), and investigate
the zero energy bound state localized at a pointlike defect
formed by the intersection of the π -junction interface and
the ferromagnetic domain wall. The effective Bogoliubov-de
Gennes Hamiltonian is written as

H = −ivτ3σj∂j + �1τ1 + �2τ2 + h · σ − μτ3, (1)

where j = 1,2, τ = (τ1,τ2,τ3), and σ = (σ1,σ2,σ3) are the
Pauli matrices for the Nambu and spin space, respectively,
v is the velocity of the Dirac fermion, �1 and �2 are the
real and imaginary parts of the gap function, h · σ is the
Zeeman term, and μ is the chemical potential. Note that for
the π junction considered here, �2 = 0. It is also assumed
that the thickness of the superconducting film is sufficiently
smaller than the penetration depth, and hence z dependence
of h is negligible. This system (1) belongs to class D in the
Altland-Zirnbauer symmetry classes,18,19 and the vortex zero
modes obeying non-Abelian statistics9 are classified as the
Z2 invariant.20 The index theorem which is a main tool in
this paper is applicable only to systems with chiral symmetry
(i.e., �H�† = −H is satisfied for a unitary operator �). This
symmetry is, however, not preserved for (1), because of h3σ3

and −μτ3 terms. Nevertheless, as will be clarified below, the
Z2 invariant of (1) can be generically obtained from the index
calculated for the case with h3 = μ = 0. Thus, we first neglect
these two terms to calculate the index. We furthermore omit
the h1σ1 term to simplify the analysis, since this term does not
affect the index of our system, as long as h1 is sufficiently
small, and does not close the bulk energy gap. Then, the
Hamiltonian reduces to that with chiral symmetry (class BDI),
τ3σ3Hτ3σ3 = −H,

H = −ivτ3σj∂j + �1τ1 + h2σ2, (2)

and its ground state is classified by Z. This enhanced topolog-
ical number can be computed by the index theorem described
in detail in the next section. Note here that particle-hole
symmetry, τ2σ2H∗τ2σ2 = −H, valid for (1) as well as (2),
ensures that the number of vortex zero modes are conserved
modulo 2 even if the neglected chiral-symmetry-breaking
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(a) (b)

FIG. 1. (a) The heterostructure geometry for an s-wave supercon-
ductor (SC) π junction and a ferromagnetic insulator (FMI) on the
surface of a topological insulator. A solid circle at the interface is
a point defect formed by the intersection of the π junction and the
ferromagnetic domain wall. (b) The heterostructure geometry for a
topological insulator-ferromagnetic insulator tri-junction.

terms are switched on again. Thus, the Z2 invariant of (1) can
be derived from the parity of the index of (2).

Our central finding is that the heterostructure system
composed of an s-wave superconductor π junction and
ferromagnetic insulators on a topological insulator [as shown
in Fig. 1(a)] described by (2) has the index:

ind H = 1
2 [sign(h+) − sign(h−)]

+ sign(h+)Nx→∞ − sign(h−)Nx→−∞, (3)

where sgn(h±) is the sign of the asymptotic Zeeman field
h2(x → ±∞,y), and Nx→±∞ are integer numbers which count
how many times the band inversion occurs for massive bound
states at the π junction, as the Zeeman magnetic field increases
from zero to h2(x → ±∞,y) (see Fig. 2 and discussion
given at the end of this section.) Note that in Eq. (3), we
take the origin of the xy coordinate (x,y) = (0,0) at the
location of the point defect in Fig. 1(a). It is also naturally
assumed that the sign of h2(x → ±∞,y) is independent of y.
Especially in the cases of the uniform asymptotic Zeeman field,

(a) (b) (c) (d)

FIG. 2. (Color online) A schematic picture of the band inversion
of massive bound states. (a) Black lines denote the energy band of
helical Majorana fermion, while red and blue lines denote that of
massive bound states. Lower panels indicate the right-half part of the
heterostructure geometry shown in Fig. 1(a).

h(x → ±∞,y) ≡ h±, the index (3) is simplified to

ind H = 1

2
[sign(h+) − sign(h−)]

+
⎡
⎣sign(h+)

∑
En<|h+|

−sign(h−)
∑

En<|h−|

⎤
⎦ , (4)

where h+ (h−) is a Zeeman field at the π -junction interface for
x > 0 (x < 0), which induces mass gap of the one-dimensional
gapless helical Majorana mode localized at the junction
interface, and En(> 0) denote the absolute value of the mass
gaps of the one-dimensional massive modes localized at the
junction interface. The sum in (4) is taken only for one part
of the Kramer’s pair. As mentioned before, the sum in (4)
represents the number of times the band inversion occurs for
the massive bound states, as h± increase from zero to finite
values. Because of particle-hole symmetry, this counting can
be expressed only by En > 0, as shown in Eq. (4).

The index (4) [or (3)] expresses the number of zero energy
Majorana bound states in a pointlike defect at the junction of
a chiral-symmetric superconductor (class BDI in the Altland-
Zirnbauer symmetry classes18,19).

The index (4) is interpreted as the phase winding of the
superconducting gap � around the point defect. In the case
of the π junction with a Zeeman field as shown in Fig. 1(a),
the change of the phase of the gap function can be defined
in the following way by using the Teo-Kane’s adiabatic
argument.21,22

Without a Zeeman field, the π junction possesses a
helical Majorana fermion localized at the junction interface
[Fig. 2(a)].9 The Zeeman field from the ferromagnetic insulator
lifts the Kramer’s degeneracy, and induces a mass gap of the
helical Majorana fermion [Fig. 2(b)]. Adiabatic deformation of
the Hamiltonian without closing the energy gap enables us to
introduce a nonzero imaginary part of the superconducting gap
�2 at the junction interface. In this process, the sign of �2 is
determined by a Zeeman field such that sign(�2) = −sign(h2).
Hence, the phase shift is −π sign(h2), which is described by
the first term in (4). This contribution depends only on the
sign of Zeeman field and does not depend on the detail of the
junction interface.

The second term in (4) is, on the other hand, a new
contribution which was not discussed in previous literatures
in the context of heterostructure systems and depends on the
detail of the junction interface. The superconducting gap �1

changes its sign at the π junction. If the spatial variation of the
magnitude of �1 in the vicinity of the junction is sufficiently
slow, there exist massive bound states localized at the junction,
which come in Kramer’s pairs with a mass gap |E1| [Fig. 2(a)].
The Zeeman field parallel to the y axis shifts the mass gaps
of the Kramer’s pairs by |E1 ± h2|, respectively [Fig. 2(b)].
(Here, we assume the Zeeman field is uniform. If not, the
mass gap of the bound states depends on the detail of Zeeman
field. But the qualitative nature is unaffected.) When |h2|
reaches |E1|, the energy gap at the junction interface is closed
[Fig. 2(c)], and a band inversion occurs for h2 < −|E1|. After
band inversion, the junction interface structure acquires the
−2π sign(h2) phase shift in addition to the −π sign(h2) phase
shift, resulting in the total −3π sign(h2) phase shift [Fig. 2(d)].
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This additional 2π phase production arises for each massive
bound state with mass gap |E2|,|E3|, . . . , which describes
the second term in (4). Therefore, massive bound states at the
interface give rise to additional phase winding around the point
defect formed by the intersection of the π -junction interface
and the ferromagnetic domain wall shown in Fig. 1(a).

This new contribution from the second term of (4) has an
important implication for the class D heterostructure system.
As mentioned before, the class D system is characterized by
the Z2 invariant for the Majorana zero modes, which is exactly
the parity of the index (4) obtained by switching off chiral-
symmetry-breaking terms. Thus, the Z2 invariant of the class D
heterostructure system may be changed by the nontopological
massive bound states. This leads to a breakdown of topological
protection of Majorana vortex modes when the second term of
(4) is an odd integer.

III. NIEMI-SEMENOFF INDEX THEOREM

In this section, for the convenience of readers, we briefly
review the Niemi-Semenoff index theorem which is used for
the derivation of our results in the following sections. The
Niemi-Semenoff index theorem relates the number of zero
energy modes in Dirac fermion systems to the geometrical
structure of spatially varying mass terms. In particular, the
index is determined by the asymptotic behaviors of mass terms
at open boundaries. We consider the Dirac Hamiltonian with
chiral symmetry in d-dimensional space with open boundaries,
the Hamiltonian of which is given by

H = −i�i∂i + Q(x) =
(

0 D
D† 0

)
, (5)

with D = −iγi∂i + K(x), for the basis that the � matrices are
represented as

�i =
(

0 γi

γ
†
i 0

)
, �5 =

(
1 0
0 −1

)
. (6)

Here, the indices i = 1,2, . . . ,d are those for the spatial
coordinates, the γi matrices are constant matrices that sat-
isfy γiγ

†
j + γjγ

†
i = γ

†
i γj + γ

†
j γi = 2δij , and K(x) includes

all background fields such as electromagnetic fields and
the superconducting gap. The index of the Hamiltonian is
defined by indH := dim ker D† − dim ker D, which is the
difference between the number of zero energy states of H
with the opposite chirality. We assume all background fields
are asymptotically independent of the normal coordinate,
n̂i(x)∂iQ(x) → 0 (|x| → ∞), where n̂(x) is a unit vector
normal to an open boundary at |x| → ∞. It is known that indH
is expressed as the sum of the volume integral of the chiral
anomaly and the surface integral of the chiral current,16,17

ind H=
∫

dd x tr〈x|�5|x〉+ 1

2

∮
dŜ tr 〈x|i�̂(x)�5H−1|x〉,

(7)

where dŜ is the volume element of the boundary, and �̂(x) :=
n̂i(x)�i . The definition of the terms of the right-hand side
in (7) needs appropriate regularization. In this paper, we
symbolically use the expression of the right-hand side in (7).
The first term in (7) is the integrated chiral anomaly which

is present only in even spatial dimensions. When d = 2, it is
explicitly written in terms of the background field Q(x) as16

∫
d2x tr〈x|�5|x〉 = − 1

4π

∫
d2xtr i�5�i∂iQ(x). (8)

This formula will be used later [see Eq. (18) below]. The
second term in (7) is the boundary integral of the chiral current
density normal to the boundary, and this term can be rewritten
as the spectral asymmetry constructed from the real part of
the eigenvalues of a certain boundary operator M as shown
below,

tr 〈x|i�̂(x)�5H−1|x〉

= tr

〈
x|i

(
0 γ̂ (x)

γ̂ †(x) 0

)(
1 0
0 −1

)(
0 D
D† 0

)−1

|x
〉

= tr 〈x|(iγ̂ †(x)D)−1 + [(iγ̂ †(x)D)−1]†|x〉. (9)

Here γ̂ (x) = n̂i(x)γi are the normal components of γ matrices,
and we used the cyclicity of trace. The boundary operator M
is defined by iγ̂ †(x)D = ∂̂ + M,

M = γ̂ †(x)γ T
i ∂i + iγ̂ †(x)K(x), (10)

where γ T
i (x) = γi − γ̂ (x)n̂i(x) are the tangential components

of γ matrices, and ∂̂ = n̂i(x)∂i is the directional derivative
normal to the boundary. We assume H does not possess zero
modes at infinity, which corresponds to the absence of zero
modes inM. SinceM is independent of the coordinate normal
to the boundary, we can introduce the Fourier transformation
for the normal coordinate:

1

2

∮
dŜtr〈x|i�̂�5H−1|x〉

= 1

2

∮
dŜtr

〈
x| 1

M + ∂̂
+ 1

M† − ∂̂
|x

〉

= 1

4π

∫ ∞

−∞
dk̂

∮
dŜtr

〈
x| 1

M + ik̂
+ 1

M† − ik̂
|x

〉
. (11)

Introducing the eigenmodes Mφ = λφ and M†ψ = λ∗ψ , we
rewrite Eq. (11) as

1

4π

∫ ∞

−∞
dk̂

∫
dλ ρ(λ)

(
1

λ + ik̂
+ 1

λ∗ − ik̂

)

= 1

2

∫
dλ ρ(λ)sign[Re(λ)] =:

1

2
η(Re(M)), (12)

where ρ(λ) is the spectral density of boundary operator M.
This term is the spectral asymmetry constructed from the real
part of the eigenvalues of M. Eventually, indH is written as17

indH =
∫

ddx tr〈x|�5|x〉 + 1

2
η(Re(M)). (13)

This is the Niemi-Semenoff index theorem for an open infinite
space.17 The integrand of the anomaly contribution is generally
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the total derivative. Hence ind H depends solely on the
asymptotic behavior of background fields.

IV. MAJORANA ZERO MODES AT A POINT DEFECT
IN SUPERCONDUCTOR-FERROMAGNET INSULATOR

HETEROSTRUCTURE SYSTEMS

In this section, we derive the index (4) for the topological
heterostructure system depicted in Fig. 1(a) by applying the
Niemi-Semenoff index theorem explained in the previous
section. For this purpose, we first obtain the boundary operator
(10) for the Hamiltonian (2). This is achieved by the following

procedure. By applying the unitary transformation,

�5 = τ3σ3 =
(
σ3 0
0 −σ3

)
�→ Uτ3σ3U

† =
(

1 0
0 −1

)
, (14)

with

U =

⎛
⎜⎝

1
1

1
1

⎞
⎟⎠, (15)

the Hamiltonian (2) is represented as

H �→
(

0 v(σ2∂x − σ1∂y) + h2σ2 + �1

−v(σ2∂x − σ1∂y) + h2σ2 + �1 0

)
. (16)

In this representation, (γ1,γ2) = (iσ2, − iσ1), and K(x,y) =
h2σ2 + �1. Then, the boundary operator M defined by (10) is

M = ivσ3∂T + �1σT + hT − iĥσ3, (17)

where â = n̂iai and aT = nT
i ai are components of a vector

a = (a1,a2) which are, respectively, normal and tangential to
an open boundary at |x| → ∞ or |y| → ∞. [We note that
the origin of the xy coordinate (x,y) = (0,0) is taken at the
position of the point defect in Fig. 1(a)]. From (8), the anomaly
part of the index is∫

d2xtr〈x|�5|x〉 = 1

π

∫
d2xεij ∂ihj = 1

π

∮
d l · h. (18)

To simplify the analysis, we consider the kink structure for the
gap function �1(y) = � tanh(y/ξ ) with � > 0 at the interface
of the π junction. As we shall see momentarily, the parameter
ξ in the gap function describing the width of the kink gives rise
to a crucial effect on the index. Here, it is natural to assume
that the asymptotic value of the magnetic field, h2(x,y) →
h±(y) as x → ±∞, have nonzero values with definite signs,
sign(h±), near the interface of the π junction. On the other
hand, the magnitudes of h±(y) at y → ±∞ do not affect the
index of our system. Thus, for simplicity, we assume h±(y) →
0 for y → ±∞.

Now we calculate the spectral asymmetry η(Re(M)) for
the heterostructure system depicted in Fig. 1(a). It follows
from (17) that the boundary operators M for x → ±∞ and
y → ±∞ are given by

Mx→∞(y) = ivσ3∂y + �1(y)σ2 + h+(y), (19)

Mx→−∞(y) = −ivσ3∂y − �1(y)σ2 − h−(y), (20)

My→∞(x) = −ivσ3∂x − �σ1, (21)

My→−∞(x) = ivσ3∂x − �σ1. (22)

The spectral asymmetry (12) is the sum of the partial
spectral asymmetries of four sides. Each boundary operator
is Hermitian, since the Zeeman field normal to the boundary
in (17) vanishes. The spectral asymmetries for My→±∞ are

zero, since the eigenvalues of My→±∞ come in pairs ±λ

due to “chiral” symmetry σ2My→±∞σ2 = −My→±∞. To
calculate the spectral asymmetries for Mx→±∞, we exploit an
approach developed by Lott:23,24 Let Hτ be a one-parameter
family of Hamiltonians defined in τ ∈ [0,1] which interpolate
between a reference Hamiltonian H0 and H1 = Mx→±∞.
In the calculation of the spectral asymmetry, we choose the
reference Hamiltonian H0 for which the spectral asymmetry
η(H0) is known. The variance of the spectral asymmetry
as a function of τ is composed of two parts: one is the
continuum part ηc

τ raised by the change of the high energy
continuum energy spectrum, and the other is a discrete part
arising from the spectral flow which changes by ±2 when a
discrete eigenvalue λn(τ ) crosses zero from negative (positive)
to positive (negative) energies: �[sign(λn(τ ))] = ±2. Thus,
we can write the spectral asymmetry in the form,

η(H) = η(H0) +
∫

dτ
dηc

τ

dτ
+ 2 (spectral flow). (23)

Let us consider the spectral asymmetry for x → ∞. In this
case, the boundary operator Mx→∞ is basically the Jackiw-
Rebbi Hamiltonian. Therefore, in the absence of a magnetic
field, h+(y) ≡ 0, Mx→∞ possesses the Jackiw-Rebbi zero
mode localized at the interface of the π junction, φ0(y) ∝
t (1,−1)e− ∫ y

�1(y ′)/vdy ′
. When a magnetic field is switched on,

a finite value of h+(y) shifts the bound state energy from
zero to a nonzero value with the same sign as h+. The
spectral asymmetry for this boundary operator was previously
computed by Lott.23 Using the reference Hamiltonian given by
H0 = ivσ3∂y + �1(y)σ2 − δsign(h+)σ1 with a small positive
constant δ, we obtain

1

2
η(Mx→∞)

= 1

2
sign(h+) − 1

π

∫
dyh+(y) + (spectral flow). (24)

The first term conforms to the fermion fractionalization in
the Jackiw-Rebbi system.25,26 The second term is the volume
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part of the variation of ητ , which cancels out the anomaly
contribution of the index (18). The third term is the spectral
flow contribution from H0 to Mx→∞ which depends on the
structure of �1(y) and h+(y). The spectral flow stems from the
bound states localized at the interface of the π junction. Since
the Lott’s derivation of (24) in Ref. 23 is highly technical,
we give a more elementary derivation of (24) in the appendix,
which we believe is useful for readers. If the finite value region
of h+(y) is much longer than ξ , h+(y) is approximated as a
constant chemical potential, h+(y) → h+. In this case, the
y-dependent part of Mx→∞ [i.e., ivσ3∂y + � tanh(y/ξ )] is
exactly solvable.27,28 The eigenvalues of this Hamiltonian are
E0 = 0,

En,± = ±�

√
n

ν

(
2 − n

ν

)
, (n = 1,2, . . . ,<ν), (25)

and Ep,± = ±
√

v2p2 + �2, (p ∈ R), where ν = ξ�/v =
ξ/ξc is a ratio of ξ to the coherence length of the super-
conducting state : ξc = v/�. E0 and En,± are the energy of
the bound states localized at the interface of the π junction.
The Jackiw-Rebbi zero energy bound state exists for arbitrary
ξ , while the massive bound states exist only when ξ > ξc.
h+ induces constant shifts to eigenvalues (25), and hence,
the spectral flow is given by the bound states that cross zero
between En± and En± + h+ as shown in Fig. 3:

(spectral flow) = sign(h+)
∑

En<|h+|
, (26)

where En = En,+. Note that due to the term −δsign(h+)σ1

in the reference Hamiltonian H0, the spectral flow from the
Jackiw-Rebbi zero energy bound state is excluded in the sum
(26). In a similar way, the spectral asymmetry of Mx→−∞,
1
2η(Mx→−∞) can be calculated as

−1

2
sign(h−) + 1

π

∫
dyh−(y) − sign(h−)

∑
En<|h−|

. (27)

Using Eqs. (13), (18), (24), (26), and (27) together, we arrive
at the formula (4).

So far we have calculated the index for (2). The Z2 index N

for the vortex zero modes in the class D heterostructure system
(1) is, as we have mentioned, given by N = indH (mod 2).
Remarkably, the second term in (4), which is basically the

-

0

Spectral flow = +1

E

1

Continuum states

Continuum states

1

0

1

FIG. 3. The τ -dependent energy spectrum of a one-parameter
family of Hamiltonians Hτ : Hτ = (1 − τ )H0 + τH. This figure
shows the case of ξ = 5ξc, h+ = 0.7� > 0, and δ = 0.05�.

contribution from nontopological bound states of the Jackiw-
Rebbi Hamiltonian, can affect the Z2 index. This indicates that
the existence of the non-Abelian vortex zero modes depends
on the kink structure of the gap function parametrized by
ξ . Actually, in the case that the second term of (4) is equal
to an odd integer, which can indeed occur when ξ > ξc

(i.e., ν > 1), the Z2 invariant for Majorana zero modes
is changed, resulting in the breakdown of the topological
protection for the Z2 Majorana modes. We now discuss the
condition for which ξ > ξc is realized. Actually, to determine
ξ precisely, we need to solve the Bogoliubov-de-Gennes
equation for proper boundary conditions, which is out of the
scope of this paper. Instead of presenting such precise analysis,
we here give a qualitative argument. For the superconductor-
ferromagnetic insulator junction as depicted in Fig. 1(a),
the gap function at the junction is reduced by magnetic
scattering at the interface between the superconductor and
the ferromagnet.29 On the other hand, the dimension of the
ferromagnet insulator along the y axis denoted as Ly plays the
role of the characteristic length scale for the spatial variation
of the exchange field along the y axis. Thus, when Ly is
sufficiently larger than the coherence length ξc, we can neglect
the spatial variation of the superconducting gap raised by
magnetic scattering near the interface, and hence it is expected
that ξ < ξc is satisfied, ensuring the topological protection
of Majorana modes. However, when Ly is comparable to ξc,
the spatially inhomogeneous reduction of the superconducting
gap due to magnetic scattering crucially affects the magnitude
of the parameter ξ . In particular, when Ly is slightly larger
than ξ , it may be possible that ξ > ξc is realized, which leads
to the above-mentioned mechanism of the breakdown of Z2

nontriviality.

V. ZERO MODES IN LINE DEFECTS OF TOPOLOGICAL
INSULATOR-FERROMAGNET INSULATOR

HETEROSTRUCTURE JUNCTIONS

The index theorem (4) is also applicable to a topological
insulator-ferromagnetic insulator tri-junction system, the setup
of which is depicted in Fig. 1(b). The two orbital effective Dirac
model for this system is written as22

H = vkzμ1σ3 − ivμ1σj∂j + m(y)μ3 + h2(x,y)σ2 − μ,

(28)

where j = 1,2, μ = (μ1,μ2,μ3), and σ = (σ1,σ2,σ3) are the
Pauli matrices for the orbital and the spin spaces, respectively,
v is the velocity of the Dirac fermion, m is the mass gap
whose sign determines whether the system is in a topological
(m < 0) or trivial (m > 0) phase, h · σ is a Zeeman term,
and μ is the chemical potential. We have assumed the
translational invariance along the z direction. This system
belongs to class A, and the chiral gapless modes localized
at line defects are classified as Z.21 As in the case of
the superconductor-ferromagnet insulator junction, we, first,
neglect chiral-symmetry breaking terms, putting μ = 0:

H = vkzμ1σ3 − ivμ1σi∂i + m(y)μ3 + h2(x,y)σ2

= : vkzμ1σ3 + H̃(x,y). (29)

125405-5



KEN SHIOZAKI, TAKAHIRO FUKUI, AND SATOSHI FUJIMOTO PHYSICAL REVIEW B 86, 125405 (2012)

Because of chiral symmetry {μ1σ3,H̃(x,y)} = 0, the chiral
zero bound states of H̃(x,y) with chirality ± correspond to
the chiral gapless modes with the energy dispersion ±vkz with
chirality ±. Since H̃(x,y) is of the same form as (2), indH̃
is given by (4), but in this case, En(> 0) is the mass gap
of the two-dimensional massive bound states localized at the
surface of the topological insulator. The first contribution in
(4) agrees with the winding of the Axion vortex.22 The second
contribution in (4) corresponds to the nontopological integer
part of the Axion field which depends on the microscopic
structure of the interface between the topological insulator
and the trivial insulator. The chiral gapless mode cannot
be massive since backward scatterings are suppressed. This
index for chiral gapless modes in class A survives against any
perturbations.

VI. CONCLUSION AND DISCUSSIONS

Here, we remark on a topological property for the index
of heterostructure systems. The index (4) is stable against
the continuous change of Hamiltonian H unless the boundary
operator M has zero modes (i.e., unless the Hamiltonian H
has no gapless modes at infinity). In this sense, the index (4)
is topologically protected by the energy gap at the boundary.
This feature is similar to the topological order in bulk systems
protected by a bulk energy gap.

In conclusion, we have shown that the number of Majorana
bound states in the π -junction-ferromagnet heterostructure
systems is affected by massive bound state localized at the
interface, which has an important implication for topological
protection of zero modes in class D systems.
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APPENDIX: DERIVATION OF (24)

In this Appendix, we derive Eq. (24) by using the Niemi-
Semenoff formula for the fermion number fractionalization,24

which is an alternative expression of the Niemi-Semenoff
index theorem.

1. Niemi-Semenoff formula of fermion number fractionalization

We introduce an extended Hamiltonian H̃(τ,x) defined by

H̃(τ,x) = −i

d∑
i=0

�i∂i + Q(τ,x)

=
(

0 ∂τ + H (τ,x)
−∂τ + H (τ,x) 0

)
, (A1)

where ∂0 = ∂τ , and H (τ,x) = −i
∑d

i=1 γi∂i + K(τ,x) sat-
isfies H (τ → ∞,x) = H1(x), and H (τ → −∞,x) = H0(x)
with H1(x) the target Hamiltonian for which we want to
calculate the spectral asymmetry, and H0(x) a reference
Hamiltonian. H (τ,x) interpolates between H1(x) and H0(x)
as a function of the auxiliary parameter τ . Also, a new gamma
matrix γ0 = i is introduced. From the Niemi-Semenoff index
theorem (13), the index of H̃ is given by

ind H̃ =
∫

dτdd x tr〈τ,x|�5|τ,x〉 + 1

2
η(Re(M)). (A2)

Note that there are three boundary operators which con-
tribute to the spectral asymmetry η[Re(M)]; that is, Mτ→∞,
Mτ→−∞, and M|x|→∞. The first two boundary operators are,
respectively, related to H1(x) and H0(x),

Mτ→∞ = γ̂ †γi∂i + iγ̂ †K(τ → ∞,x) = H1(x),
(A3)

Mτ→−∞ = γ̂ †γi∂i + iγ̂ †K(τ → −∞,x) = −H0(x),

where γ̂ (τ → ±∞) = ±γ0. Then, from Eq. (A2), we have24

1

2
η(H1) = 1

2
η(H0) + ind H̃

−
∫

dτdd x tr〈τ,x|�5|τ,x〉−1

2
η(Re(M|x|→∞)),

(A4)

where we have used η(−H ) = −η(H ). Generally, the change
of the spectral asymmetry is divided into its continuous part
and discontinuous part,

η(H1) − η(H0) =
∫

dτ
dηc

τ

dτ
+ 2 (spectral flow). (A5)

Comparing (A4) and (A5), we find

(spectral flow) = ind H̃. (A6)

Then the spectral asymmetry of H1 is given by

1

2
η(H1) = 1

2
η(H0) + (spectral flow)

−
∫

dτdd x tr〈τ,x|�5|τ,x〉−1

2
η(Re(M|x|→∞)).

(A7)

2. The spectral asymmetry of the Hamiltonian (19) and (20)

We apply (A7) to the boundary operator (19),

H1(y) = ivσ3∂y + �1(y)σ2 + h+(y), (A8)

and the reference Hamiltonian,

H0(y) = ivσ3∂y + �1(y)σ2 − δσ1, (A9)

where δ is a small constant which is introduced to suppress
zero energy modes of H0(y). We introduce a Hamiltonian that
interpolates H1(y) and H0(y),

H (τ,y) = ivσ3∂y + �1(y)σ2 + �2(τ,y)σ1 + h2(τ,y),

(A10)
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where �2(τ → ∞,y) = 0, �2(τ → −∞,y) = −δ, h2(τ →
∞,y) = h+(y), and h2(τ → −∞,y) = 0. We assume �(τ,y)
and h2(τ,y) form a single kink structure along the τ direction.
The boundary operator at y → ∞ is

My→∞
= γ̂ †γi∂i + iγ̂ †K(τ,y → ∞)

= −iσ3∂τ − iσ3K(τ,y → ∞)

= −iσ3∂τ − �1(∞)σ1 + �2(τ,∞)σ2 − ih2(τ,∞)σ3,

(A11)

where γ̂ (y → ∞) = γ1 = −σ3. The fourth term in (A11)
does not contribute to the spectral asymmetry, since
−ih2(τ,∞)σ3 is anti-Hermite. Thus, the spectral asymmetry
η[Re(My→∞)] arises from the Jackiw-Rebbi Hamiltonian,
−iσ3∂τ − �1(∞)σ1 + �2(τ,∞)σ2. The spectral asymmetry
of this Hamiltonian is well known,24 and equal to the phase
winding of −�1(∞) + i�2(τ,∞) raised by changing τ from
−∞ to ∞:

1

2
η[Re(My→∞)] = − 1

2π
Arctan

(
δ

�1(∞)

)
, (A12)

where Arctan has principal values, −π
2 < Arctan < π

2 . Sim-
ilarly, the spectral asymmetry of the boundary operator at
y → −∞ is computed as

1

2
η[Re(My→−∞)] = 1

2π
Arctan

(
δ

�1(−∞)

)
. (A13)

On the other hand, the spectral asymmetry of the reference
Hamiltonian H0 is

1

2
η(H0) = 1

2π

[
Arctan

(
�1(∞)

δ

)
− Arctan

(
�1(−∞)

δ

)]
.

(A14)

Summing up the boundary contributions (A12) and (A13) and
the contribution from the reference Hamiltonian (A14), we
obtain

1

2
η(H0) − 1

2
η(Re(My→∞)) − 1

2
η(Re(My→−∞))

= 1

4

[
sgn

(
�1(∞)

δ

)
− sgn

(
�1(−∞)

δ

)]
, (A15)

where we have used Arctan(x) + Arctan(x−1) = π
2 sgn(x). If

�1(∞) > 0, �1(−∞) < 0, and sgn(δ) = sgn(h+) [sgn(h+) is
the sign of the Zeeman field h+(y)], then Eq. (A15) is written
as

1
2η(H0) − 1

2η(Re(My→∞)) − 1
2η[Re(My→−∞)]

= 1
2 sgn(h+). (A16)

Next, the anomaly part in (A7) is calculated from (8),∫
dτdy tr〈τ,y|�5|τ,y〉 = − 1

4π

∫
dτdytr[i�5�i∂iQ(τ,y)]

= − 1

4π

∫
dτdy[−4∂τh2(τ,y)]

= 1

π

∫
dyh+(y). (A17)

From (A7), (A16), and (A17), we obtain (24).
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