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Gaffnian holonomy through the coherent state method
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We analyze the effect of exchanging quasiholes described by Gaffnian quantum Hall trial state wave functions.
This exchange is carried out via adiabatic transport using the recently developed coherent state ansatz. We argue
that our ansatz is justified if the Gaffnian parent Hamiltonian has a charge gap, even though it is gapless to neutral
excitations, and may therefore properly describe the adiabatic transport of Gaffnian quasiholes. For nonunitary
states such as the Gaffnian, the result of adiabatic transport cannot agree with the monodromies of the conformal
block wave functions, and may or may not lead to well-defined anyon statistics. Using the coherent state ansatz, we
find two unitary solutions for the statistics, one of which agrees with the statistics of the non-Abelian spin-singlet
state by Ardonne and Schoutens.
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I. INTRODUCTION

The study of fractional quantum Hall (FQH) liquids has
lead to the discovery of rich classes of topological phases. The
rapid progress in the theoretical exploration of this particular
niche of correlated electron systems was made possible by the
development of a set of principles for the construction of “fixed
point” or “prototype” wave functions for possible FQH phases,
as pioneered by Laughlin1 and then greatly expanded by other
seminal contributions.2–5 This progress was compounded by
the discovery of a link between these special wave functions
and conformal field theory (CFT).3 Via this link the topological
quantum field theory describing a state can be inferred, which
for some cases of interest is non-Abelian.3 The possibility
of anyonic quasiparticles with non-Abelian braiding statistics
may be the most spectacular implication of this field theoretic
mapping, and its experimental verification remains a profound
challenge to date, with topological quantum computing being
a proposed application.6,7 Even in theory, a direct verification
of the implied field theoretic mapping is nontrivial, and
involves the calculation of adiabatic transport of quasiparticles
using full many-body wave functions. This is still difficult
in general, but has been possible for Abelian states8 and
recently for p + ip wave superfluids and Moore-Read-type
quantum Hall states.9–11 The general interpretation of analytic
trial wave functions as describing topological phases is thus
well accepted whenever these wave functions are related to
the conformal blocks of a unitary rational CFT. In this case,
the field theoretic mapping described above implies that the
statistics of quasihole-type excitations, as defined through
adiabatic transport, is directly encoded in the monodromies
of the associated conformal blocks.3,12 This means that for
such conformal block wave functions, adiabatic transport is
the same as analytic continuation in the quasihole coordinates,
and Berry phase effects are trivial. This then allows one to
obtain the quasihole statistics directly from wave functions,
but without explicitly calculating the Berry connection, or
Wilczek-Zee connection, that defines adiabatic transport.13,14

Indeed, in many cases of interest, this remains a profound
technical challenge.

In addition to wave functions arising from unitary CFTs,
there is also considerable interest in analytic trial states that

are similarly related to nonunitary CFTs.4,15 The physical
interpretation of such states remains much more subtle. Here,
the field theoretic mapping employed in the unitary case does
not lead to a topological quantum field theory that can serve
as the low-energy effective theory of the state in question.
In particular, the conformal block monodromies cannot be
interpreted to describe adiabatic transport, as they do not result
in unitary transformations on states. In contrast, adiabatic
transport describes (a limit of) the time evolution governed by
a Hermitian Hamiltonian, and is therefore always described
by a unitary transformation. For such reasons, it has been
argued9,10,15–17 that states obtained from nonunitary CFTs
describe gapless critical points within the phase diagram of
quantum Hall states, especially in those cases where a local
parent Hamiltonian for the state exists. Examples of the latter
kind include the Haldane-Rezayi (HR) state,4 and the state now
known as Gaffnian.15 In this work, we focus on the Gaffnian,
which has surfaced in the literature as early 24 years ago,18

and was independently rediscovered and characterized through
a fixed many-body clustering property in Ref. 19, as well
as through its connection with CFT in Ref. 15, whereby its
functional form can be understood as that of a two-component
Halperin state.20 In Ref. 15, it was further argued to be critical.

The question arises what hidden orders can be identified in
such nonunitary states, whether they be remnants of topologi-
cal orders or orders of a different kind. Unfortunately, there is
currently no efficient and universally applicable method to test
for the topologically ordered21 nature of a state directly through
the study of ground-state properties. Much progress along
these lines has recently been made through the analysis of en-
tanglement spectra,22,23 which are directly related to edge spec-
tra. It has been argued that the edge spectrum of the Gaffnian is
inconsistent with that of any unitary CFT, and that this contra-
dicts the existence of a gap in the bulk spectrum,16 which is re-
quired for a topological phase. In principle, topological orders
can be detected through nonlocal order parameters,24 though it
remains difficult to explicitly construct such objects for general
non-Abelian topological orders in microscopic quantum Hall
wave functions. The situation is similar in quantum magnetism.
There, nonlocal operators detecting a topological phase can
be directly constructed for toy models25 defined on highly
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constrained Hilbert spaces where a gauge structure is explicit
(see Ref. 26 for a general discussion). However, such order
parameters generally remain elusive in models where similar
physics is emergent within the low-energy sector of a larger
Hilbert space (e.g., Ref. 27). The situation is much simpler in
one-dimensional systems exhibiting a Haldane or Luttinger
liquid phase. The hidden orders of these phases can be
probed through nonlocal objects measuring squeezed particle
configurations,28,29 and their origin is quite manifest, e.g., in
certain limits of Luttinger liquids where the wave function as-
sumes a special factorized form.30–33 For topological orders, on
the other hand, the most direct probe that can, in principle, be
implemented at a microscopic wave function level is the study
of the braiding statistics of localized elementary excitations.

In this paper, we are interested in some formal properties
of the Gaffnian state. We ask the question whether the
Gaffnian trial wave functions may define some unitary anyon
model through the holonomy calculated along exchange paths.
Somewhat more physically speaking, this corresponds to the
adiabatic transport of trial state quasiholes in the presence
of a finite size gap. Indeed, this question is mathematically
well defined. The quasihole trial states can be characterized
as the unique zero-energy eigenstates (zero modes) of a local
parent Hamiltonian.15,19 For given quasihole configuration, the
associated conformal block wave functions define a finite-
dimensional subspace, which can be interpreted as a fiber over
a point in the quasihole configuration space. The question is
thus whether the holonomy associated with exchange paths in
this configuration space induces well-defined statistics. It is
clear from the outset that if this is so, the holonomies must be
quite different from the conformal block monodromies, since
these holonomies give rise to unitary transformations on fibers.
Physically, this is clear from the fact that these holonomies
describe the adiabatic transport of quasiholes protected by a
finite size gap. Mathematically, it follows from the fact that
the Wilczek-Zee connection is a unitary connection.

The question defined above can be rigorously addressed
only by calculating the Wilczek-Zee connection from the given
analytic wave functions. Unfortunately, we do not know how to
do this for the Gaffnian state. Instead, we will use this question
as a testbed for a recently developed coherent state method34–36

to calculate adiabatic transport of quasiholes based on the “thin
torus” (TT)34–46 or “dominance”19,47–50 patterns of the wave
function, which are closely related to “patterns of zeros.”51–54

This method has been shown to be quite efficient for a number
of interesting states based on unitary CFTs, but has thus far not
been applied to the nonunitary case. Our motivation to clarify
the applicability of this method to a nonunitary state is twofold.
A negative result (no consistent anyon model) would further
strengthen the case that the TT limit contains information about
the gapped or gapless nature of the underlying state. This has
been explored by one of us recently for the HR state,46 though
not with regard to statistics. On the other hand, if a consistent
anyon model is obtained, we can argue that this is at least
a very plausible scenario for the holonomies defined by the
Gaffnian quasihole states, as we will further elaborate below.

The coherent state method is based on the assumption of
adiabatic continuity between states defined on a torus with
arbitrary aspect ratio and corresponding states in the thin torus

limit. It further rests on general assumptions about a coherent
state ansatz for localized quasiholes in terms of adiabatically
continued TT states. Detailed arguments in favor of this ansatz
have been given in Ref. 36. Some of these arguments, in
particular the justification for the factorized form of the ansatz
[see Eq. (3) below], also rest on a notion of locality, which
is more subtle in a gapless state. We argue, however, that the
necessary assumptions still apply, as long as there is a finite gap
in the charge sector of the system, independent of the existence
of gapless neutral excitations. The scaling of the charge gap of
the Gaffnian state has been discussed in some detail in Ref. 55,
but at the moment, the question whether it remains finite in
the thermodynamic limit has not been conclusively resolved
to the best of our knowledge.

We finally note that there is a close connection between
TT patterns and CFT fusion rules, which has been elaborated
in Refs. 56 and 57. In terms of the data used to construct
an anyon model, there is thus some similarity between the
present method, and the procedure of constructing F matrices
consistent with given fusion rules, using the axioms of modular
tensor categories.58 Indeed, the two methods have so far given
consistent, if not always identical, results in the unitary cases.36

Some differences between these two approaches are worth
noting. While the connection with tensor category theory can
be physically justified using the general framework of local
quantum field theory,59 the assumptions used in the coherent
state approach are not field theoretic in character. Indeed, the
F matrix, although it could be ultimately constructed, does
not directly appear in this approach, and none of the defining
consistency equations of this approach make reference to
it. Moreover, the coherent state method, being ultimately
based on adiabatic transport, could not in principle lead
to a nonunitary anyon model in its current formulation. A
secondary, but non-negligible motivation for this work is thus
to shine further light onto the connection between these two
different methods in the context of a nonunitary state.

The paper is organized as follows. In Sec. II, we will
summarize our calculation, which leads to two closely related
anyon models of Fibonacci type. All details are relegated to
two Appendixes. In Sec. III, we discuss our results, and make
contact with the non-Abelian spin singlet (NASS) of Ref. 60.
The findings from the adiabatic calculation are contrasted with
the quasiparticle state counting of the Gaffnian state on the
sphere in Sec. IV, where a finite size gap and exact parent
Hamiltonian can be used to give a complementary perspective
to the thin torus patterns alluded to before. We conclude in
Sec. V.

II. BRAIDING STATISTICS THROUGH THE COHERENT
STATE METHOD

Our method to extract the statistics of a state from thin torus
patterns, based on the assumptions discussed in Sec. I, has been
documented in detail in a recent paper.36 Here we will describe
its setup for the Gaffnian state, and focus on differences that
arise compared to the discussion of the (k = 3) Read-Rezayi
state5 as given in Ref. 36.

The thin torus patterns of the bosonic ν = 2/3 Gaffnian,
and their relation to the underlying minimal model CFT, have
been thoroughly discussed by Ardonne.56 These patterns can
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be identified in the usual way34–46 when wave functions on the
torus are considered in the formal limit of an “extreme aspect
ratio,” e.g., Lx � 1,Ly � 1. (Here and in the following, we
set the magnetic length �B equal to 1.) The patterns emerging
in this limit are occupancy numbers in a suitably chosen
Landau level basis on the torus (see, e.g., 36), describing
the trivial noninteracting product state resulting in this limit.
For the six degenerate Gaffnian ground states, these patterns
read 200200 . . . , 020020 . . . , and 002002 . . . , which we will
call “(200) type,” or 011011 . . . , 101101 . . . , and 110110 . . . ,
which we refer to as “(011) type.”

As usual,34–46 we will assume that states defined on a “bulk
torus”—Lx � 1,Ly � 1—can be evolved adiabatically into
the thin torus limit described above, where the evolution is
governed by the Gaffnian parent Hamiltonian15 with slowly
varying aspect ratio. Likewise, states with quasiholes on the
bulk torus are assumed to evolve into elementary domain walls
between ground-state patterns. There are three elementary
domain wall strings: 100 and 001, which occur between (200)-
type and (011)-type ground states, and 010, which occurs
between two different (011)-type ground states. These domain
walls may link various different combinations of ground state
patterns, thus forming charge 1/3 solitons. Representative
examples are given by the strings . . . 01101100200200 . . .

and . . . 011011010110110 . . . . All charge 1/3 domain wall
patterns occurring in the TT limit are locally given by
translated and/or inverted versions of these two types of strings.
This establishes a notion of “fusion rules” in the TT limit.56

The thin torus states are naturally labeled by the positions of
the domain walls together with a topological sector label—i.e.,
a label identifying the sequence of patterns between the domain
walls. We use the notation |a1, . . . ,an; c,α) for the TT states
appearing in the limit Lx � 1,Ly � 1, and |a1, . . . ,an; c,α)
for the states appearing in the Lx � 1,Ly � 1 limit. The latter
are simple product states in a “rotated” or dual Landau level
basis,34–36 and must be well distinguished from the states
|a1, . . . ,an; c,α). Here, the ai label the orbital positions of
the domain walls. For the topological sector labels, we follow
the convention of 36, where α labels classes of sectors that
are related by translation (a “supersector”), and for given
α, c = −1,0,1 distinguishes the three translationally related
members of each class. Below we will also use translational
properties to define a unique convention for how the c labels
are to be assigned. As usual,36 the domain wall positions
can change only by multiples of a certain “stride” within
each topological sector (here, multiples of 3), and are thus
of the general form aj = 3nj + fj (c,α). fj (c,α) is an offset
factor that depends on the sequence of domain walls (i.e.,
the topological sector and the domain wall in question). For
symmetric domain walls, its value is uniquely determined by
symmetry. However, for asymmetric domain walls, a certain
ambiguity exists a priori in how to define the domain wall
position precisely with respect to the adjacent orbitals. This is
accounted for by the shift—or asymmetry—parameter s. See
Ref. 36 and Table I for details.

By the assumption of adiabatic continuity, the “bare”
domain wall states, |a1, . . . ,an; c,α) and |a1, . . . ,an; c,α), give
rise to two different complete sets of zero energy states (zero
modes) of the Gaffnian parent Hamiltonian, for any aspect
ratio of the torus. These two mutually dual zero-mode bases are

TABLE I. c = 0 thin torus patterns for a two-quasi-hole Gaffnian
state and the offset functions of the associated domain walls. The
elementary domain wall strings are in bold and the orbital positions,
3nj , are underlined. Patterns for c = 1(−1) can be obtained by
shifting each occupancy number one orbital to the right (left) and
the shift functions obtained using fj (c,α) = fj (α) + c.

α Thin torus pattern f1(α) f2(α)

1 0020020011011011002002002 −s −2 + s

2 1101101100200200200110110 −1 + s 2 − s

3 1101100101011011010110110 1 0

obtained by adiabatically evolving the respective bare states
by means of a slow change in aspect ratio, and are denoted by
|a1, . . . ,an; c,α〉 and |a1, . . . ,an; c,α〉 respectively (with the
dependence on aspect ratio understood). These types of states
generally describe quasiholes that are localized in x or y,
respectively, at the domain wall positions, and are delocalized
in the perpendicular direction (respectively y or x). Their
completeness within the zero-mode space implies that states
with localized quasiholes (in both x and y) can be obtained
by forming proper linear combinations. For these coherent
states, with n quasiholes localized at complex positions
hj = hjx + ihjy , the following ansatz has been motivated in
previous works (see Ref. 36 and references therein):

|ψc,α({h})〉

= N
∑

a1<··· <an

n∏
j=1

φα,j (hj ,κaj ) |a1, · · · ,an; c,α〉 , (1)

|ψc,α({h})〉

= N ′ ∑
a1<··· <an

n∏
j=1

φ̄α,j (hj ,κaj )|a1, . . . ,an; c,α〉, (2)

with the Gaussian amplitude form factor

φα,j (hj ,aj )

= exp

[
i

3
(hjy + δ(α,j )/κ)κaj − γ (hjx − κaj )2

]
, (3)

and its dual counterpart φ̄α,j (hj ,aj ) = φα,j (−ihj ,aj )|κ→κ̄ .
Here, κ = 2π/Ly , κ̄ = 2π/Lx , and δ(α,j ) can be shown36

to be 0 or π , taking on the same value for symmetry-
related (translation or inversion) domain walls. N and N ′
are normalization factors. The factor 1/3 in the exponent is
the inverse of the domain-wall stride mentioned above, or the
quasihole charge.

It is the availability of this “dual” description (1), (2), and
its behavior under modular S transformations (essentially,
exchange of the roles of the x and y coordinates) that
makes the torus topology preferred within the coherent state
approach. It must be emphasized, however, that the above
coherent states are valid36 only for well-separated quasiholes:
Eq. (1) is valid when |hjx − hix | � 1 for all i,j , and Eq. (2)
when |hjy − hiy | � 1 for all i,j . When both conditions are
satisfied, Eqs. (1) and (2) describe the same zero modes for
given quasihole positions, and must be related by a linear
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transformation:

|ψc,α({h})〉 =
∑
c′,α′

uσ
c,c′,α,α′ ({h})|ψc′,α′ ({h})〉. (4)

Here, σ labels different “configurations” of the quasiholes, i.e.,
components of the quasihole configuration space that can be
connected without violating the conditions |hjx − hix | � 1,
|hjy − hiy | � 1. We define these configuration labels with
respect to quasihole configurations in the infinite plane.
Toroidal periodicity leads to an equivalence between various
triples (σ,(c,α),(c′,α′)) that will be taken into account later.
The transformation described by uσ

c,c′,α,α′ ({h}) must also
be unitary, since states in different topological sectors are
generally orthogonal.

A lot is known about the transition functions uσ
c,c′,α,α′ ({h})

from the properties of the zero-mode basis states—
|a1, . . . ,an; c,α〉 and |a1, . . . ,an; c,α〉—under magnetic trans-
lations alone.36 Their dependence on h, (c,c′), and (α,α′)
separates into the following factorized form:

uσ
c,c′,α,α′ ({h}) = u({h})Mc,c′ξσ

α,α′ , (5)

with u({h}) and Mc,c′ fully determined by translational
symmetry:

u({h}) = exp

⎛
⎝ iπ

3

∑
j

hjxhjy

⎞
⎠ , (6)

M = 1√
3

⎛
⎜⎝

e2πi(L−1)/3 e−2πiL/3 e2πi/3

e−2πiL/3 1 e2πiL/3

e2πi/3 e2πiL/3 e2πi(L−1)/3

⎞
⎟⎠ . (7)

The h-independent product Mc,c′ξσ
α,α′ may be identified

as the topological S matrix of the problem. We will now
summarize how the missing information about ξσ

α,α′ can
be obtained within this formalism, and subsequently this
information can be used to gain knowledge about braiding.
For details, we refer the reader to Ref. 36.

Further constraints on the matrix ξσ
α,α′ can be obtained by

moving (via adiabatic transport) the positions of some of the
n quasiholes across the boundaries of a rectangular coordinate
chart on the torus, which we fix once and for all (see Fig. 1).
It is important to note that this can be done while maintaining
|hjx − hix | � 1 and |hjy − hiy | � 1. Therefore the result of
this adiabatic transport can be worked out directly from the
coherent state expressions, and this leads to new consistency

FIG. 1. Two quasiholes, one stationary and one moving across the
boundary, on a torus, which is shown in a “repeated zone scheme.” The
stationary quasihole is at the bottom of the figure. Initially, the moving
quasihole (which starts at the dotted-line circle) is ordered second,
and the system is in some configuration σ . After that quasihole
moves across the boundary, it becomes the first, and the system is
in configuration gx(σ ).

FIG. 2. The configuration σI is the one in which the leftmost
(first) quasihole is bottommost, the next to the right (second) is the
next above, and so on.

conditions on the ξσ
α,α′ matrix. We begin in a configuration

σ—e.g., the one shown in Fig. 2—and carry out this process
in two steps. First, we consider the adiabatic transport of the
upper right particle along a path that moves it further to the
right. As soon as the particle crosses the right boundary of our
coordinate chart, the particle reappears on the left boundary.
Viewed in this coordinate chart, the quasihole configuration
has changed from σ to a new configuration gx(σ ). At the same
time, with the particle that was formally rightmost now being
leftmost, the topological sector label (the sequence of patterns
appearing in the Ly → 0 limit) of the state has changed. If
α was the label of the topological (super-)sector initially, the
new label F (α) is easily found from the associated thin torus
patterns.36 Thus, while the transition function expressing the
duality relation (4) is defined in terms of ξσ

α,α′ right before
crossing the boundary of the coordinate chart, it is defined
in terms of ξ

gx (σ )
F (α),α′ right thereafter. Is is easy to work out a

condition enforcing continuity across the boundary, relating
these two matrices,36

ξgx (σ ) = B−1diag[e−2πiL/3−iLδ(α,n)/3−i/3
∑

k δ(α,k)]ξσ

× diag[e−2πifσn (α)/3], (8)

where the argument of diag[. . . ] specifies the αth diagonal
entry of a diagonal matrix. The matrix B is defined as
Bα,α′ = δα,F (α′). A similar process can be considered where
the topmost quasihole of a configuration σ moves up, crossing
the upper boundary of the coordinate chart, becoming the
bottommost quasihole in the resulting new configuration
gy(σ ). The analogous continuity condition on the ξ matrices
reads

ξgy (σ ) = diag[e−2πifj (α)/3]ξσ

× diag[e−2πiL/3−iLδ(α,n)/3−i/3
∑

k δ(α,k)]B. (9)

The purpose of Eqs. (8) and (9) is twofold: they connect ξ

matrices for different quasihole configurations, which will be
essential in describing braiding processes, and they impose
constraints on any given ξ matrix. To see the latter, focus on
the quasihole configuration shown in Fig. 2, which we will
now refer to as σI . It is easy to see that σI is invariant under
the two moves described above performed in succession, i.e.,
gy[gx(σI )] = σI . Hence Eqs. (8) and (9) together constrain the
matrix elements of ξσI .

Yet another way in which the transition functions and hence
the ξ matrices are related for different quasihole configurations
is by mirror symmetry. In the presence of a constant magnetic
background field, mirror symmetries exist only in conjunction
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with time-reversal symmetry, which we will leave understood.
The operators τx and τy associated with mirror reflections
across the x and y axis are, therefore, antilinear operators. It
is then simple to find relations between the ξ matrices using
these operations,36

ξgτx (σ ) = (Bτ )−1diag[eiL/3
∑

k δ(α,k)](ξσ )∗

× diag[e2πi/3
∑

k(1+δ(α,k)/π)fk (α)], (10)

ξgτy (σ ) = diag[e2πi/3
∑

k (1+δ(α,k)/π)fk (α)](ξσ )∗

× diag[eiL/3
∑

k δ(α,k)]Bτ . (11)

In the above, gτx
(σ ) is the configuration that is the mirror

image of σ under τx , and similarly gτy
(σ ). The matrix Bτ

appearing above is defined by (Bτ )α,α′ = δα,Fτ (α′), where Fτ (α)
is the (super-)sector resulting from an inversion of the patterns
associated with the (super-)sector α. Operating τx and τy in
succession on a system in the configuration σI gives σI again,
i.e., gτy

[gτx
(σI )] = σI . In this way, Eqs. (10) and (11) allow us

to further constrain the elements of ξσI .
To braid two quasiholes, we adiabatically transport them

along the path in Fig. 3. To this end, we consider a configuration
σ where both quasiholes are adjacent both in terms of their x

and their y coordinates, i.e., they can be exchanged without
violating |hjx − hix | � 1 or |hjy − hiy | � 1 for any other pair
of quasiholes. The result of the adiabatic transport can then be
worked out directly from the coherent state ansatz (1) given
known transition functions, i.e., the matrices ξσ .34–36 It can be
expressed as follows:

⎛
⎜⎜⎜⎜⎝

|�1〉
|�2〉

...

|�n〉

⎞
⎟⎟⎟⎟⎠ → ei�AB�σ (�σ ′

)†

⎛
⎜⎜⎜⎜⎝

|�1〉
|�2〉

...

|�n〉

⎞
⎟⎟⎟⎟⎠ . (12)

Here, �AB is the Aharonov-Bohm phase, equal to the charge
of a quasihole, −1/3, times the area enclosed by the braiding
path. The quantities |�α〉 are the three-component column
vectors with entires |ψc,α〉. �σ is the matrix ξσ ⊗ M (where
we identify the states |ψc,α〉 with a formal tensor product basis
|α〉 ⊗ |c〉). σ is the initial configuration of the quasiholes, and
σ ′ the other configuration that occurs during braiding (see

FIG. 3. Exchange path for two quasiholes at positions hi and
hi+1. First, the quasihole at hi+1 is dragged to ha . There the coherent
state representation is changed from the original basis to the dual
basis using �σ . That quasihole is then dragged to hb, and the state
is changed back to the original basis using �σ ′

. The quasihole at hb,
now the ith, is moved to hc, then both quasiholes are moved to their
final positions: the quasihole at hi goes to hi+1 and the quasihole at hc

goes to hi . Using the coherent state ansatz, this gives rise to Eq. (12).

Fig. 3), i.e., the one obtained from σ by crossing the line
hjx = hix or the line hjy = hiy .

It turns out that the result of braiding is always block
diagonal in the c labels, i.e., the braid matrix �σ (�σ ′

)† is
of the form χi(n) ⊗ Icmax×cmax , where we call χi(n) = ξσ (ξσ ′

)†

the “reduced” braid matrix associated with a counterclockwise
exchange of the ith and (i + 1)-st of n quasiholes. This fact
is a direct consequence of translational invariance. Moreover,
χi(n) is found to be independent of the initial configuration σ ,
as one would expect.

The various constraint equations discussed so far still admit
many solutions for the braid matrix. This is chiefly due to the
fact that the asymmetry parameter s introduced above is still
undefined. A final set of constraint equations comes from the
imposition of certain locality constraints on the braid matrix
that can be motivated directly from the thin torus patterns.35,36

Said succinctly, we mean by locality that the result of braiding
should only depend on the sequence of three ground-state
patterns forming the two domain walls associated with the
braided quasiholes, and that only the pattern in the middle
may change as a result of braiding. The constraint equations
following from this, combined with the above symmetries, then
lead to a discrete set of (usually intimately related) solutions for
the statistics. We will discuss the full set of constraint equations
and their solutions in Appendix A for the two-quasihole case,
and in Appendix B, for the three-quasihole case. Here, we
will summarize the results of this calculation by giving the
(reduced) braid matrices obtained from it for both two and
three particles:

χ1(2) = ξ (1,2)(ξ (2,1))†

= e−iπ/3

⎛
⎜⎝

e−iπa

eiπaϕ−1 e−2iπaϕ−1/2

e−2iπaϕ−1/2 ϕ−1

⎞
⎟⎠ ,

(13)

χ1(3) = ξ (1,2,3)(ξ (2,1,3))†

= e−iπ/3

⎛
⎜⎜⎜⎝

e2iπa

e2iπa

eiπaϕ−1 e−2iπaϕ−1/2

e−2iπaϕ−1/2 ϕ−1

⎞
⎟⎟⎟⎠ ,

(14)

where a = ±1/5, and ϕ is the golden ratio, ϕ = (1 + √
5)/2.

Here, the rows and columns refer to the α-supersectors of
Tables I and II. The parameter s is found to have one of
two values: s = 2 − 3a/2. Just as in the case of the k = 3
Read-Rezayi state discussed in Ref. 36, there are thus two
solutions, one for each sign of a, which are related by an
Abelian phase and complex conjugation. In the above, we
have also fixed a gauge degree of freedom associated with
unitary transformations.

Together with the locality constraint described above, these
two matrices determine the result of braiding any adjacent
pair in a state of n quasiholes. A “tensor representation” of the
statistics just as discussed in Ref. 61 can then immediately be
constructed in complete analogy with Ref. 36.
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TABLE II. c = 0 thin torus patterns for a three-quasihole Gaffnian
state and the offset functions of the associated domain walls. The
elementary domain wall strings are in bold and the orbital positions,
3nj , are underlined. Patterns for c = 1(−1) can be obtained by
shifting each occupancy number one orbital to the right (left), and the
shift functions obtained using fj (c,α) = fj (α) + c.

α Thin torus pattern f1(α) f2(α) f3(α)

1 002001101101101011011011002002 −s 0 s

2 110110101101100200200200110110 1 −2 + s 1 − s

3 110110020020020011011010110110 −1 + s 2 − s −1
4 110110101101101011011010110110 1 0 −1

III. DISCUSSION OF COHERENT STATE RESULTS

The two solutions obtained in the preceding Sec. II are
related to one another simply by complex conjugation and
an overall Abelian phase. They describe Fibonacci anyons
and are thus closely related to those obtained for the k = 3
Read-Rezayi (RR) state using the same method.36 In essence,
the solutions obtained from the RR patterns and those obtained
here are the same up to an Abelian phase. This statement
excludes “global exchange paths” on the torus involving
processes such as the one depicted in Fig. 1, as we will
further explain below. This close correspondence between
the solutions found from RR and Gaffnian patterns is a
manifestation of level-rank duality between the associated
SU(2)3 and SU(3)2 fusion rules, respectively. This duality
was also discussed by Ardonne56 in terms of domain walls.
It is manifest in the Bratteli diagrams of Fig. 4, which in the

FIG. 4. Bratteli diagrams depicting the c = 0 patterns in the RR
state (top) and the Gaffnian (bottom). Valid topological sectors on
the torus are represented by paths which start at the left, take one
step right (either up or down) for each quasihole in the state, and end
on the same type of ground state pattern—(200) or (011) type—as
they began, minding periodic boundary conditions. There is a one-
to-one correspondence between the paths in the lower diagram and
the patterns in Tables I and II, and also between the valid paths in
the upper and lower diagrams. This latter correspondence is how the
SU(2)3 and SU(3)2 rank-level duality manifests in terms of patterns.
It should be noted that for each sector that corresponds to a path in
one of these diagrams, there is for RR an additional sector related to
the first by translation and two additional translated sectors for the
Gaffnian.

present context represent the rules for domain wall formation
between ground state patterns for the respective states. Note,
however, that there is a three to two correspondence between
the topological sectors in both cases, rather than one to one.
This is so since each sector, i.e., each path in the Bratteli
diagram, is threefold degenerate under translations in the
Gaffnian case, but only twofold in the k = 3 RR case (at
filling factor 3/2). The correspondence between Gaffnian
and RR sectors is perfect if we limit ourselves to the n − 1
generators of the braid group σi,i+1, i = 1, . . . ,n − 1, which
exchange the ith and (i + 1)-st quasihole. These generate the
full braid group in the plane, but not on the torus. On the
torus, these generators leave certain subspaces of topological
sectors invariant, which all start and end in the same pattern in
the topological sector label. These subspaces for the Gaffnian
are then in correspondence with similar subspaces for the RR
state, in the sense that there are isomorphisms between them
that commute with braiding, except for an overall Abelian
phase. This correspondence, however, gets spoiled by the
inclusion of the remaining generators on the torus, which mix
the subspaces. This happens differently for the Gaffnian and
the RR case, since there are six such subsectors in the former
case, but only four in the latter.

The subtle differences between our solutions for the
Gaffnian and the RR case on the torus are of a piece with the
difference in overall Abelian phase. It is well known that the
overall Abelian phase could, in principle, assume any value in
planar geometry, but on the torus, it is constrained by the topo-
logical degeneracies characterizing the state. In the coherent
state method, one source of phase differences is the factor i/3
in the coherent state ansatz, Eq. (3), which is generally related
to the “stride” of the domain wall in a given topological sector,
which equals 3 in the present case and 2 in the RR case. This
stride is of course identical to the center-of-mass degeneracy. In
particular, one may see that the equations obtained from global
processes such as the one shown in Fig. 1 are quite sensitive
to this stride and the associated phase [see Eq. (A1) below].
In view of the importance of these processes in our method,
and the fact that they spoil the correspondence between
Gaffnian and RR topological sectors as explained above, it
may not be clear a priori that the consistency equations we
obtain in both cases admit closely related solutions, in the
sense discussed. That this is so can be traced back to the
fact that the translational degree of freedom, c, decouples
early on [see below Eq. (5)], and the remaining α degree of
freedom is fully analogous in both cases. This is how rank-level
duality becomes manifest in the present formalism. For similar
reasons, our solutions for the Gaffnian and RR states, which
were both obtained at the maximum (bosonic) filling factor,
could be generalized quite easily to lower filling factors, which
differ only through the increasing translational degeneracy.

As emphasized initially, the Fibonacci-type solutions we
obtained are distinct from the anyon model associated with
the conformal block monodromies of the Gaffnian state. The
latter describes so-called Yang-Lee anyons, whose relation
to Fibonacci anyons and the associated Galois duality has
enjoyed much interest recently.62,63 Yang-Lee anyons are
associated with nonunitary F matrices consistent with the
SU(3)2 fusion rules. It has been known for some time, however,
that the same fusion rules admit unitary solutions of the
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Fibonacci type also; these are realized by the NASS state of
Ref. 60. Indeed, it is not difficult to perform checks confirming
that one of our solutions, that corresponding to s = 17/10,
agrees exactly with the monodromies of the NASS state
(including the overall phase). The dominance patterns of the
NASS state have been discussed more recently,64 and it seems
clear that the calculation presented here can be carried over
to this state without essential changes. In all, this confirms
once more for the case of SU(3)2 that the coherent state ansatz
produces a subset of all unitary anyon models consistent with
given fusion rules.

In the case of the unitary NASS state, our results support the
usual conjecture that the holonomies associated with adiabatic
transport agree with conformal block monodromies. In the
case of the Gaffnian, things are more subtle. We have argued
that in this case, provided that the coherent state ansatz is
justified, the holonomies give rise to well defined Fibonacci
anyon statistics, possibly (given the twofold ambiguity of our
solution) identical to those of the NASS state. In particular,
we believe that our ansatz is indeed well justified if the gap of
the Gaffnian parent Hamiltonian does not close in the charge
sector. Even so, the statistics found by our ansatz may just
be a formal property of Gaffnian trial wave functions, that
may not be robust to general perturbations. Also, corrections
in the quasihole separation may be of power-law type, rather
than decaying exponentially. Nonetheless, these observations
may shine new light on the formal connections between the
Gaffnian and the NASS state, which have been discussed
previously.56 We leave more rigorous investigations into this
matter for future studies.

IV. GAFFNIAN QUASIPARTICLE STATE COUNTING

As emphasized, the above considerations crucially depend
on the existence of a finite size gap, which singles out a zero
mode sector of the Gaffnian parent Hamiltonian for any finite
system size. We further assume that this zero-mode sector can
be organized into a basis of states that are naturally labeled
by certain patterns, or partitions. An important consistency
check of this assumption is obtained by counting the dimension
of the zero-mode subspace of the parent Hamiltonian for a
given quasihole number, and comparing it to the counting of
partitions. Such counting is interesting in its own right, as it
leads directly to the notion of exclusion statistics.65 For this
section, we will focus on spherical geometry,66,67 and describe
for the specific example of the Gaffnian parent Hamiltonian a
systematic procedure to organize the zero mode space into a
basis of states that have well defined root partitions. We note
that this counting can also be carried out by utilizing analytic
properties of trial wave functions.15

We investigate the Gaffnian quasiparticle properties by con-
sidering a trial Hamiltonian at filling ν = 2/5 for fermions and
ν = 2/3 for bosons including the appropriate spherical shift.
(Without loss of generality, we discuss the bosonic version in
the following.) The trial Hamiltonian can be constructed from
the clustering properties of the Gaffnian state:15,19 consider
an occupation-number basis n(λ) = {nm(λ),m = 0,1,2, . . . },
where m runs over all Landau level orbitals with angular
momentum Lz = mh̄. λ labels the partition of a given many-
body state on the sphere, where nm(λ) is the multiplicity of m in

λ. A dominance rule λ > μ is defined for different partitions λ

and μ when μ can be obtained from λ through squeezing,
i.e., a sequence of two-particle operations m1 → m′

1 and
m1 → m′

2 such that m1 < m′
1 � m′

2 < m2, which conserves
total momentum m1 + m2 = m′

1 + m′
2. The Gaffnian is char-

acterized by a root partition nG
λ = 200200 . . . 002,19,48 where

all other partitions with nonzero weight follow from it through
squeezing. A positive semidefinite trial Hamiltonian for which
the Gaffnian state characterized by nG

λ is an exact and, at that
filling, unique zero mode is given by15,19,68,69

H = V 0
3 + V 2

3 , (15)

where V l
M labels the M-body pseudopotential projector of

relative angular momentum l.69,70

For exact finite size diagonalization of Eq. (15), a neutral
gap separates the Gaffnian ground state from the other states.
It is a challenging task to decide from available system sizes
whether this neutral gap extrapolates to a finite value or
to zero in the thermodynamic limit.15,55 The current upper
limit of accessible system sizes is approximately located at
N = 20 particles71 for which all spherical symmetries as
well as even specific polynomial symmetries such as the
product rule, which links different coefficients of the monomial
expansion of the Gaffnian state, have to be exploited.48,72

Assuming that the gap eventually has to close due to the
nonunitarity of the Gaffnian, it appears such that it scales as
1/N . This in turn might allow for a suitably defined finite size
protection of quasiparticle braiding where the system would be
considered finite but still large enough to separate the different
quasiparticles.

The increase of magnetic flux starting from the Gaffnian
ground-state filling leads to a multiply degenerate zero-energy
level in the spectrum of Eq. (15) as we induce quasihole
excitation modes on the sphere, while there are only finite
energy levels as we decrease the magnetic flux and induce
quasiparticle excitations. An appropriate scaling of the charge
gap following from there is even harder to determine than for
the neutral gap. The main reason for this is that since energies
at different magnetic flux enter the computation of the charge
gap, absolute and relative finite size corrections between
different sphere sizes have to be taken into consideration.73,74

Preliminary numerical evidence accordingly indicates that the
thermodynamic charge gap value as obtained from finite size
numerics sensitively depends on the details of the extrapolation
procedure.55 As a result, while finite size representations of the
Gaffnian trial Hamiltonian exhibit a finite gap, no conclusive
statement can be drawn about the thermodynamic limit. In
particular, it cannot be distinguished either whether both the
neutral and the charge gap are zero or whether the Gaffnian
might be a gapless incompressible state,75 where only the
charge gap is finite.

Instead of investigating the thermodynamic limit, we ex-
ploit the finite size gap of the Gaffnian to analyze its quasihole
properties. In particular, as the squeezing property not only
applies to the Gaffnian ground state but also to the quasihole
states, we derive the quasihole root partitions and extract the
generalized Pauli principle of the quasiholes from the explicit
microscopic realization of the Gaffnian. Given a k-dimensional
null space of the Gaffnian Hamiltonian (15), which represents
the quasihole states, we expect to find as many different root
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partition as there are zero energy states. Consequently, it is not
so that all nonzero weights found in the null space eigenstates
are generated from one highest weight partition. In addition to
ordering the basis states with respect to the dominance rule if
applicable, we identify the independent dominance branches69

and isolate the root partitions nG
λ,i(N,N�) of the null space,

where i = 1, . . . ,k, N� denotes the magnetic flux and N

the number of particles. As an example, consider the N = 6
bosonic Gaffnian state at N� = 6 with its unique ground-state
partition nG

λ (6,6) = 2002002. Increasing the magnetic flux
to N� = 7 gives a two-dimensional null space where we
extract the root partitions nG

λ,1(6,7) = 20011002,nG
λ,2(6,7) =

11011011. This would agree with the quasiparticle count-
ing of the Abelian hierarchy state at analogous filling.69,76

The Gaffnian quasiholes, however, exceed the number of
hierarchy quasiholes as soon as we add two magnetic
fluxes, where we find 8 null modes according to the root
partitions

nG
λ,i=1,...,8(6,8) = 200101002,200020002,200011011,

110110002,110101011,110020011,

101101101,020020020. (16)

We have investigated the Gaffnian up to N = 12 and
3 magnetic fluxes added, and find that the quasihole root
partitions obey the state counting of the generalized Pauli
principle with the (2,3) admissibility rule where we allow all
partitions with not more than two particles in three consecutive
orbitals.47,48 This also confirms that the quasiparticle state
counting (for more than one magnetic flux added) exceeds
the number of quasiparticle states of the Abelian hierarchy
state at the same filling,69,76 hinting the non-Abelian nature of
the Gaffnian quasiparticles. In particular, we have confirmed
that the counting of partitions and the number of zero modes
perfectly agree, and that the associate Jack polynomials
exhaust the zero mode space. For the counting of zero modes,
formulas have been given based on a study of analytic trial
wave functions.15 Elsewhere, we will report on how to rederive
these formulas in terms of patterns, and how to generalize these
formulas to the torus geometry.77

V. CONCLUSION

In this paper, we have analyzed the effect of exchanging
quasiholes described by Gaffnian quantum Hall trial state
wave functions via adiabatic transport, based on a coherent
state ansatz in terms of adiabatically continued thin-torus
zero modes. We have argued that this ansatz may correctly
describe the holonomies of Gaffnian quasiholes as long as
the charge sector of the state remains gapped. In this case,
we find that the statistics obtained are either closely related,
or in fact identical, to those of the NASS state, though this
property will not be topologically protected. The non-Abelian
nature of the Gaffnian quasiparticles can similarly be inferred
from the analysis of the quasihole root partitions on the
sphere. The similarity to the NASS state is of a kind with
the statement that these states have the same fusion rules,
though their conformal block monodromies are different, and
are non-unitary in the Gaffnian case. We caution that we did
not include spin into our coherent state approach. It should

nonetheless be possible to apply our calculation fairly directly
to quasi-particles of identical spin polarization in the NASS
state. More generally, it has been recently observed that spinful
spinglet quantum Hall states may be described efficiently
through spinless root partitions,78 through a generalization
of the squeezing mechanism.48,49 In this way, an intimate
connection was fleshed out between the Haffnian and the
Haldane-Rezayi state. We conjecture that a similar connection
may apply to the Gaffnian and the NASS state. We leave this
interesting possibility to future investigations. In summary, our
results appear to confirm in yet another case that the coherent
state Ansatz produces a subset of all unitary anyon models
consistent with the fusion rules of the underlying state. In all
unitary cases studied so far, this subset includes the conformal
block monodromies, which for unitary states are generally
believed to be tantamount to adiabatic transport.3
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APPENDIX A: TWO-QUASIHOLE SOLUTION

To work out the braid group for n quasiholes with general
n, one needs to consider only braiding for pairs of quasiholes
associated with all possible pairs of domain walls, as given
by all possible combinations of three ground state patterns.
Locality then implies that all the other ground-state patterns
appearing in the topological sector label will not affect the
result of braiding. To this end, we will solve for the reduced
braid matrix in the simple cases of n = 2 (here) and n = 3 (in
Appendix B). Together, these results can be used to construct
braid matrices for n-quasihole states, since these cases exhaust
all possible sequences of three ground state patterns separated
by domain walls.

The set of constraint equations to solve for the reduced braid
matrix come from enforcing the unitarity of the ξ matrices, the
locality condition discussed in the main text, and the global
path relations (8) and (9). We will begin by enforcing the latter.
As discussed above, we can apply Eqs. (8) and (9) in succession
to constrain ξσI because σI = gy[gx(σI )]. Applying these two
equations, with the data from Table I, results in the constraint
equation

ξσI =

⎛
⎜⎝

�p−1

�p 0

−1

⎞
⎟⎠ ξσI

⎛
⎜⎝

�p

�p−1 0

−1

⎞
⎟⎠ ,

(A1)

where p = − exp[−2πi(1 + s)/3], � = exp[−2πi(L/2 +
1)D/3], and D = 0 or 1 if the δ parameter for the 100-type
domain walls is 0 or π , respectively. Equation (A1) is satisfied
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when

ξσI =

⎛
⎜⎝

ξ11 ξ12 ξ13

ξ12 p2ξ11 −�pξ13

ξ31 −�pξ31 ξ33

⎞
⎟⎠ . (A2)

Mirror symmetry, Eqs. (10) and (11), can also produce a
constraint equation because gτy

[gτx
(σI )] = σI . However, in

the case of two quasiholes, applying Eqs. (10) and (11) in
succession results in the trivial equation, ξσI = ξσI .

The process of solving for the reduced braid matrix is
similar to the solution given for n = 2 in Ref. 36. We gain
the following equations by demanding that ξσI is unitary:

eiπ/3 = 2�η−Dpξ11ξ12 + ηDpξ 2
13 , (A3a)

eiπ/3 = 2ηDpξ 2
31 − ξ 2

33 , (A3b)

0 = �η−Dp3ξ 2
11 + �η−Dpξ 2

12 − �ηDp2ξ 2
13 , (A3c)

0 = η−Dξ31(−p2ξ11 + �pξ12) + ηDpξ13ξ33, (A3d)

where η = exp(−2πi/3). Two additional equations come from
the requirement that braiding is local; as said above, this means
that the result of braiding should only depend on the sequence
of three ground-state patterns forming the two domain walls
associated with the braided quasiholes, and that only the
pattern in the middle may change as a result of braiding.
Imposing these locality considerations tells us that χ1(2) must
be of the form

χ1(2) =

⎛
⎜⎝

· 0 0

0 · ·
0 · ·

⎞
⎟⎠ , (A4)

where “·’s are unknown, potentially nonzero, matrix elements
for which we will solve. By applying the form in Eq. (A4)
to the matrix χ1(2) = ξσI (ξσI

′
)† derived from adiabatic

transport, the zero elements give two more independent
constraint equations:

0 = η−D(1 + p2)ξ11ξ12 − �ηDξ 2
13 , (A5a)

0 = η−Dξ31 (ξ11 − �pξ12) + ηDξ13ξ33. (A5b)

Solving this system of six equations, Eqs. (A) and (A), is
formally similar to the solution in the appendixes of Ref. 36, so
the details will not be repeated here. Just as in that reference,
there are two solutions: a special solution in which p = ±i,

ξ 2
11 = 1

2
ηDeiπ/3p−1, (A6a)

ξ12 = �ξ11, (A6b)

ξ13 = ξ31 = 0, (A6c)

ξ 2
33 = −eiπ/3, (A6d)

which produces the reduced braid matrix

χ1(2) = e2πi/3

⎛
⎜⎝

p 0 0

0 p 0

0 0 e−iπ/3

⎞
⎟⎠ (A7)

(but we will show in Appendix B that this solution is
inconsistent with the equations from three-quasihole braiding),
and the consistent solution,

ξ 2
11 = ηDeiπ/3

(1 + p)2
, (A8a)

ξ12 = �ξ11, (A8b)

ξ 2
13 = ηD(p + p−1)ξ 2

11 , (A8c)

ξ 2
31 = ηD(p + p−1)ξ 2

11 , (A8d)

ξ 2
33 = η−D(1 − p)2ξ 2

11 , (A8e)

which produces the reduced braid matrix

χ1(2) = e−iπ/3

⎛
⎜⎝

p−1 0 0

0 p(p + p−1 − 1) ±eiπD/3(1 − p)
√

p + p−1

0 ±e−iπD/3(1 − p)
√

p + p−1 p + p−1 − 1

⎞
⎟⎠ . (A9)

This two-quasihole reduced braid matrix is the same as that in Ref. 36 except for two features: the D-dependent phase on the
off-diagonal elements (though this will later be removed with a unitary transformation), and the overall Abelian phase, which
here is e−iπ/3 and in Ref. 36 was eiπ/2.

APPENDIX B: THREE-QUASIHOLE SOLUTION

The solution for the reduced braid matrix of three quasiholes begins similarly to that for two quasiholes. We first constrain
ξσI using global path relations, Eqs. (8) and (9), and mirror symmetry, Eqs. (10) and (11). Applying the former two in succession
and filling in the data from Table II gives the constraint

ξσI =

⎛
⎜⎜⎜⎝

�̃p−1

0 −ηD

�̃p

−1

⎞
⎟⎟⎟⎠ ξσI

⎛
⎜⎜⎜⎝

�̃p

�̃p−1 0

−ηD

−1

⎞
⎟⎟⎟⎠ , (B1)

where p is defined as in Appendix A, and �̃ = exp[−2πi(L/2 + 1)D/3]. This definition for �̃ is seemingly the same as that
for � in Appendix A, but in the case of two quasiholes L = 1 modulo 3, and here, L = 0 modulo 3.
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The two mirror symmetry equations, Eqs. (10) and (11), can be applied in succession to ξσI to give

ξσI =

⎛
⎜⎜⎜⎝

1

0 ηD

η−D 0

1

⎞
⎟⎟⎟⎠ ξσI

⎛
⎜⎜⎜⎝

1

0 η−D

ηD 0

1

⎞
⎟⎟⎟⎠ . (B2)

Equations (B1) and (B2) together constrain ξσI to be of the form

ξσI =

⎛
⎜⎜⎜⎝

ξ11 ξ12 η−Dξ12 ξ14

ξ12 ηDp2ξ11 −�̃pξ12 −�̃−1pξ14

η−Dξ12 �̃pξ12 η−Dp2ξ11 −�̃pξ14

ξ41 −�̃−1pξ41 −�̃pξ41 ξ44

⎞
⎟⎟⎟⎠ . (B3)

The structure of this matrix is almost identical to the corresponding matrix ξ++ in Ref. 36, save that the D-dependent phases ηD

and �̃ are different. There, �̃ was defined such that �̃2 = eiπD , whereas here �̃2 = e2iπD/3 = η−D . We might then find a braid
matrix with a nontrivial dependence on D. However, the symmetry relations in Eqs. (8), (9), (10), and (11) also have additional
D-dependent phases compared to their corresponding forms in Ref. 36, and we will see that by following the same steps as in that
reference to find the braid matrix solution, all the D-dependent phases will conspire to cancel save for those on the off-diagonal
elements which can be removed via a unitary transformation.

By requiring that ξσI be unitary, we find the following constraint equations:

1 = |ξ11|2 + 2|ξ12|2 + |ξ14|2, (B4a)

0 = �̃ξ12ξ
∗

11 + �̃−1p2ξ11ξ
∗

12 − p |ξ12|2 − p |ξ14|2 , (B4b)

0 = ξ41(ξ ∗
11 − 2�̃−1pξ ∗

12 ) + ξ ∗
14 ξ44, (B4c)

1 = 3 |ξ41|2 + |ξ44|2 . (B4d)

The locality of braiding tells us not only that some elements of χ1(3) must be zero, as was the case for two quasiholes, but
also that the 2 × 2 block with off-diagonal elements must be equal to the equivalent 2 × 2 block in χ1(2). This is because the
sequences of ground state patterns of the domain walls associated with the quasiholes to be braided are the same for those two
supersectors in the two- and three-quasihole cases. In other words, χ1(3) must be of the form

χ1(3) = e−iπ/3

⎛
⎜⎜⎜⎝

·
·

p(p + p−1 + 1) ±eiπD/3(1 − p)
√

p + p−1

±e−iπD/3(1 − p)
√

p + p−1 p + p−1 + 1

⎞
⎟⎟⎟⎠ , (B5)

if Eq. (A9) is the correct reduced braid matrix for two quasiholes, and of the form

χ1(3) = e2πi/3

⎛
⎜⎜⎜⎝

·
·

p 0

0 e−iπ/3

⎞
⎟⎟⎟⎠ , (B6)

with p = ±i, if Eq. (A7) is the correct matrix (which we will show is not the case). We find our constraint equations by equating
the product χ1(3) = ξσI (ξσI

′
)†, obtained from adiabatic transport, with the forms above. We can perform the two solutions in

parallel by using only the elements of Eqs. (B5) and (B6) that are zero in both. This produces the constraint equations

0 = p3ξ 2
11 − �̃2(p − 1)pξ 2

12 − p2ξ 2
14 , (B7a)

0 = �̃(p − 1)p2ξ11ξ12 + �̃2pξ 2
12 − p2ξ 2

14 , (B7b)

0 = −ξ41[pξ11 + �̃(p − 1)ξ12] + ξ14ξ44. (B7c)

The set of constraint equations, (B4) and (B7), is solved when

ξ 2
11 = eiθ1

(1 + p)2
, (B8a)

ξ12 = �̃−1ξ11, (B8b)

ξ 2
14 = (p + p−1 − 1)ξ 2

11 , (B8c)

ξ 2
41 = e2iθ2 (p + p−1 − 1)ξ 2

11 , (B8d)
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which produces the reduced braid matrix

χ1(3) = e−iπ/3+iθ1

⎛
⎜⎜⎜⎝

1
1

p(1 − p) ±eiθ2+iπD/3p
√

p + p−1 − 1

±eiθ2−iπD/3p
√

p + p−1 − 1 e2iθ2 (1 − p)

⎞
⎟⎟⎟⎠ . (B9)

Just as in Appendix A, Eq. (B9) is the same reduced
braid matrix as was found in Ref. 36 for three quasiholes,
except that here the off-diagonal elements have an addi-
tional D-dependent phase and the overall Abelian phase is
different.

We have yet to enforce consistency between the 2 × 2
blocks in the two- and three-quasihole braid matrices; to do
so, we equate Eq. (B9) to Eqs. (B5) and (B6) in turn. The latter
produces a contradiction, because the off-diagonal elements
of Eq. (B9) are not zero for p = ±i. Thus Eq. (A6) is not a
consistent solution for two quasiholes, and Eqs. (A7) and (B6)
are not consistent braid matrices. Enforcing consistency
between Eqs. (B5) and (B9) implies that

p + p−1 = ϕ, (B10)

where ϕ is the golden ratio, ϕ = (1 + √
5)/2. In other

words,

p = exp

(
± iπ

5

)
, (B11)

or, if we define a = ±1/5, p = exp (iπa). This is all the
same as in Ref. 36. However, here the s parameter is defined
differently in terms of p than in Ref. 36; we have defined p =
− exp [−2πi(1 + s)/3], so the s parameter is also constrained
to be

s = 2 − 3a

2
. (B12)

Consistency also implies

eiθ1 = p2, (B13)

e2iθ2 = 1. (B14)

The expressions for χ1(2) and χ1(3) in Eqs. (13) and (14),
respectively, have been simplified with respect to Eqs. (A9)
and (B9) and have undergone a unitary transformation in which
each state is multiplied by (−eiπD/3)No. 200, where No. 200
is the number of 200200 . . . strings in the thin torus pattern
associated with that state. This unitary transformation removes
the dependence on the unknown parameter D.
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