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Magnetic-field-induced Fabry-Pérot resonances in helical edge states
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We study electronic transport across a helical edge state exposed to a uniform magnetic ( �B) field over a finite
length. We show that this system exhibits Fabry-Pérot-type resonances in electronic transport. The intrinsic spin
anisotropy of the helical edge states allows us to tune these resonances by changing the direction of the �B field
while keeping its magnitude constant. This is in sharp contrast to the case of nonhelical one-dimensional electron
gases with a parabolic dispersion, where similar resonances do appear in individual spin channels (↑ and ↓)
separately which, however, cannot be tuned by merely changing the direction of the �B field. These resonances
provide a unique way to probe the helical nature of the theory. We study the robustness of these resonances
against a possible static impurity in the channel.
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I. INTRODUCTION

Edge states of a new class of insulators called topological
insulators form an interesting class of one-dimensional (1D)
systems called helical edge states (HES).1 The central feature
of these edge states is the fact that the direction of propagation
of the quasiparticles is directly correlated with their spin
projection; i.e., counterpropagating particles have opposite
spin projections. Various aspects of this state have been
studied.2 Experimental evidence has been found for the
existence of these edge states in a multiterminal Hall bar
setup.3

The fact that the spin of the electrons can be controlled
and manipulated by manipulating its momentum due to
spin-momentum locking has generated great interest in the
possible application of HES to the field of spintronics.4 Besides
electrical control, it is interesting to study the possibility of
controlling the spin of electrons on such edge states using
magnetic fields. This could be of great interest from the point of
view of application to spintronic devices. Since spin-rotation
symmetry is strongly broken in such edge states, a strong
anisotropic response to an applied magnetic field is expected,
and the edge gaps have been computed.3 Hence one of the
more intriguing features of the HES as opposed to the usual
one-dimensional electron gas with parabolic dispersion lies
in its response to magnetic fields. Naively, introduction of
a magnetic field breaks the time-reversal symmetry which
is central to the topological stability of the quantum Hall
insulators which hosts these HES on its boundary. There have
been studies5 of some aspects of minimal coupling of the
four-band model1 to a magnetic field. However, it is still of
interest to study the response of the HES to small magnetic
fields which do not significantly disturb the bulk stability of
the topological insulators but do influence the edge states in a
nontrivial way.

From the viewpoint of device applications, the study of
tunneling across barriers or backscattering from tunnel barriers
implanted on the edge states is of central interest as they
can act as experimentally tunable quantum resistors, which
are essential elements of any quantum circuitry. A simple
way to produce controlled backscattering in mesoscopic

devices is to apply local gate voltages. But for HES such
techniques are not effective because all electrical barriers
are rendered transparent due to Klein tunneling of massless
Dirac electrons. Further, protection of HES against inelastic
backscattering due to electron-phonon coupling has also been
reported.6 Hence, an alternate way is needed to produce
backscattering, and therefore magnetic barriers which do give
rise to backscattering are of vital importance. Transmission
through magnetic barriers has been studied in the case of
chiral modes in carbon nanotubes7 and surface states of
three-dimensional (3D) topological insulators;8 however, a
similar study for HES is lacking, and such a study is the
central focus of this paper. Also, recently, there have been
theoretical studies involving spin-polarized scanning tunneling
microscopy (STM) as a direct probe for testing the theoretical
prediction of the helical nature of the surface states, both
in the context of two-dimensional (2D) and 3D topological
insulators.9 Experimentally, only very recently,10 the spin
polarization at the edge was studied purely by electrical means;
hence such proposals are of crucial importance. Here, we
propose yet another way to probe the helical nature of HES.

In this paper, we study the effect of a magnetic field patch
on edge-state transport. As shown in Ref. 3, we find that any
�B field with a nonzero component in the plane perpendicular
to the spin-quantization axis of left- and right-moving states
opens up a gap in the spectrum. Further, the spin of the
left- and right-moving states gets twisted. In other words,
even in the presence of the �B field, the direction of motion
remains tied with its spin; however, unlike in free HES, the
counterpropagating states no longer have spins antiparallel to
each other. We show that these states in the �B-field patch
induce Fabry-Pérot-type resonances in transport across the
patch which are tunable purely by changing the direction of
the �B field. The resonances hence provide a direct way to
quantify the degree of spin anisotropy in these systems.

II. THE MODEL AND ANALYSIS

Consider a smooth infinitely extended helical edge state
exposed to a uniform �B field over a finite length L described
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FIG. 1. (Color online) Schematic of the model. Shaded region
|x| < L/2 is the region of constant magnetic field �B . Spin orientations
of the left (right) moving modes are tilted by BX in the clockwise
(counterclockwise) direction by the same angle.

by the following Hamiltonian:1

H0 = −ih̄vF

∫
dxψ†(x)σ

Z
∂xψ(x), (1)

where ψ = [ψR↑ψL↓]T and the R/L index corresponds to
right and left movers. x parameterizes the coordinate along
the 1D edge state. X,Y,Z are chosen to describe the spin such
that Z points along the spin-quantization axis of right-moving
eigenstates in the absence of �B field, and X is chosen to be
along the component of applied �B in the plane perpendicular
to Z.11 Since it is redundant, we will henceforth drop the L/R

indices in ψL/Rσ . We now introduce a uniform magnetic field
in the region |x| < L/2 (sketched in Fig. 1). The Zeeman
coupling of the magnetic field to the intrinsic spin of the
electrons can be modeled by

HB = gμB

∫
dx�L(x)�S(x) · �B, (2)

where �L(x) = [�(x + L/2) − �(x − L/2)], �S(x) =
1/2[ψ†(x) �σ ψ(x)] is the spin operator, g is the g factor of the
electron, and μB is the Bohr magneton. The corresponding
Heisenberg equations of motion for the fields ψ(x,t) is given
by

ih̄∂tψ =
[
−ih̄vF σ

Z
∂x + g

2
μB�L(x)�σ · �B

]
ψ. (3)

By rescaling the energy E → E/W and by defining the dimen-
sionless variables x → x̄ = xW/h̄vF , B → B̄ = μBB/W ,
and k → k̄ = h̄vF k/W , where W is the bulk gap, we can
rewrite this equation in terms of dimensionless variables as
Ēψ = [−iσ

Z
∂x̄ + g

2 �L(x̄)�σ · �̄B]ψ . We will henceforth drop
the bars.

A. Magnetic field twists helicity

The Hamiltonian given in Eq. (1) describing free edge-
state electrons is time-reversal symmetric. But the Zeeman-
coupling term HB in Eq. (2) breaks time-reversal symmetry
and opens up a gap in the spectrum. In regions of zero
magnetic field we know that the up spin (pointing along the
+Z direction) moves right and the down spin (pointing along
the −Z direction) moves left. But in the region with nonzero
magnetic field, this is no longer true; still, the direction of
motion is correlated to the spin orientation for propagating
states above and below the gap. To look for the eigenstates
of the Hamiltonian H0 + HB , in the region |x| < L/2, we
start with a plane-wave solution ψke

i(kx−ωt), where ψk is
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FIG. 2. (Color online) Blue (dark gray) and green (light gray)
solid curves stand for schematic dispersions when the �B field is at
angles φ = π/4 and φ = 0 with the positive Z axis, respectively.
b = |�b| = 0.1 in both cases. Red dashed curve corresponds to the
zero-field case.

the Fourier transform of the spinor field ψ(x). Substituting
the above form into Eq. (3), we find the dispersion relation
to be E = ±√

k̃2+b2
X, where bX = gBX/2, b

Z
= gB

Z
/2, and

k̃ = k + b
Z
. Thus, the spectrum is gapped for nonzero BX

with a gap given by bX, and the spectrum breaks into two
bands.

The magnetic field �B can be, in general, at an angle φ

with the Z axis i.e., �b = b(sin φX̂ + cos φẐ). The dispersion
relation for the three different cases corresponding to �b = 0
and directions φ = 0 and φ = π/4 with nonzero b is shown
in Fig. 2. Note that in the presence of a finite �B field, the
k = 0 states are split exactly by 2bX, as expected for spin half
particles with zero momentum.

At a given energy E there are two eigenstates (right and
left moving) ψE,R/L with momenta k = kR and k = −kL,
respectively, given by

ψE,R = 1

N
[E + k̃0bX]T ; ψE,L = σ

X
ψE,R,

(4)
kR/L = [∓b

Z
+ sgn(E)

√
E2 − b2

X

]
,

where N is the normalization and k̃0 = (kR + kL)/2. Here,
each state ψE has its spin pointing in a distinct direction, and
the left- and right-moving modes are no longer antiparallel.
At a given energy E (not in the gap, i.e., |E| < |b

X
|), we

find the spin orientation �SP = 〈ψP | �S | ψP 〉 for the right/left
movers (P = R/L), where �S = �σ/2 is the spin operator, to
be given by SR/L = (b

X
,0,±k̃0)/2E. When |E| 
 |b

X
|, the

spin for the R/L movers points along the Z/−Z direction, as
expected. Also, note that the states at the bottom of the upper
band and the top of lower band are located at k = −b

Z
, which

implies that k̃0 = 0; here, the respective spins point parallel
and antiparallel to the X axis. For this value of the momentum,
the momentum-dependent pseudomagnetic field acting on the
electron due to the helical nature of the free Hamiltonian is
fully canceled by the Z component of the applied magnetic
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field; hence it leaves behind a net �B field pointing along the
X direction.12 More generally, in a given band, left-moving
and right-moving modes with the same energy are twisted by
the magnetic field component B

X
by the same angle but in

opposite directions, as sketched in Fig. 1.

B. Transmission through the magnetic patch

Consider the case where an electron is incident on the �B-
field patch from the left with an energy Ei and momentum ki =
Ei . Then the corresponding left- and right-moving momentum
eigenstates that the incident particle excites in the patch region
can be read off from Eq. (4) with E = Ei . The scattering states
in different regions are given by

ψ =
⎧⎨
⎩

|↑〉 eikix + rki
|↓〉 e−ikix for x < −L/2,

AR ψEi R eikRx + AL ψEi L e−ikLx for |x| < L/2,
tki

eikix |↑〉 for x > L/2,

(5)

where |↑〉 and |↓〉 are eigenstates of σ
Z
, r and t are the

reflection and the transmission amplitudes, and AL and AR

are the amplitudes corresponding to the left- and right-moving
eigenstates in the �B-field patch. Using appropriate boundary
conditions, we get the following expression for transmission
amplitude:

tki
= k̃e−i(ki+b

Z
)L

k̃ cos[k̃L] − iki sin[k̃L]
. (6)

Note that the resonance corresponds to (kR + kL)L = 2nπ ,
which is the total phase picked up by the electron in one
round trip journey across the �B field patch, i.e., very similar
to the double barrier resonance. However, as we shall see,
the dynamics of the spin in the �B field is very different.
The most interesting point to note here is the fact that the
resonance condition does not depend on | �B| but only on
B

X
. Hence the resonances can be tuned simply by rotating

the �B field away or toward the Z axis without changing its
magnitude. This observation is the central message of this
paper. A plot of the transmission probability at fixed ki , which
is the differential conductance in units of e2/h evaluated at
fixed bias, corresponding to an electron incident with energy
Ei from the left reservoir while the right reservoir is held at
zero potential, is shown as a function of φ in Fig. 3, inset (a).
As we can see from Fig. 3, inset (a), the conductance shows
sharp resonances as we vary φ for L = 100. The resonances
get sharper as b

X
approaches Ei from b

X
= 0, and beyond Ei ,

transport is subgapped. On the other hand, for a short �B-field
patch [L = 10 in Fig. 3, inset (a)], the transport is nonresonant,
but the differential conductance can be as large as 0.1e2/h in
the subgapped regime (φ > 0.3π ). Further we study the case of
a more realistic �B-field patch wherein magnetic field changes
from zero to maximum smoothly over a length scale ξ , as
illustrated in Fig. 3, inset (b). We calculate the transmission
amplitude for such a magnetic field profile numerically using
the transfer-matrix method. The helical edge is sliced into a
large number of segments NL, where the magnetic field is
taken to be uniform in each segment. Then, the wave function
is written in each segment similar to that given in Eq. (5).
Matching ψ at the boundaries of the segments gives the
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FIG. 3. (Color online) Differential conductance G vs angle φ for
different ξ/L. Inset (a): G vs φ for two different lengths of the patch
with ξ = 0. Inset (b): Illustration of how b = |�b| changes across the
patch for a fixed φ. Parameters b0 = max{|�b|} = 0.25 and Ei = 0.2
are the same in all the plots.

transmission amplitude. We see from the main part of Fig. 3
that the visibility of the resonances is affected by increasing
ξ . However, even the least visible first resonance (around
φ = 0.18π ), which is most affected by increasing ξ , is still
visible for ξ/L in the range (0,0.25).

C. Spin orientation in the magnetic patch

In the patch, the Zeeman term HB competes with the
kinetic-energy term H0 and twists the spin directions of
left/right movers ψEiL/R (as pictured in Fig. 1). Hence, due
to the mismatch in spin orientation, an electron incident
on the patch typically undergoes multiple reflections in the
patch. Thus, the spin density at any point in the patch has
contributions from both ψEiL and ψEi,R . Evaluating the spin
density 〈ψ |�σ/2|ψ〉 in the patch using the wave functions
given in Eq. (5), we find that �Sk(x) at any point x makes a
constant angle with the axis �nk = (b

X
,0,k)(1/

√
k2+b2

X
). Hence,

�nk defines the direction of the effective magnetic field around
which the spin density precesses. This precession is quite
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FIG. 4. (Color online) X and Y components of spin density at
different points in the magnetic patch for resonant transport b

X
=

0.1, b
Z

= 0, L = 180, Ei = 0.0366. The inset shows S
X

and S
Y

at different values of x; S
Y

= 0 at x = −L/2,−L/4,0,L/4,L/2,
while S

X
= 0 at x = −L/2,0,L/2.
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FIG. 5. (Color online) Illustration of change in visibility of reso-
nances due to disorder of strength η = 0.03 in the patch. Parameters
chosen are same as those in Fig. 3, except ξ/L = 0.05, l/L = 0.1.
The legend shows (η,xl/L) for different curves.

novel: the component of the spin vector along the precession
axis �nk varies as the spin precesses, whereas the component
along the Z axis is conserved, compared to the usual case
where the component along the precession axis is conserved.
For a resonant case (an example is shown in Fig. 4), �Ski

= Ẑ/2
at both L/2 and −L/2. In other words, the angle of precession
of the electron across the patch is an exact integer multiple
of 2π , similar to the operational principle of the Datta-Das
transistor.13 Thus, the resonance condition is directly coupled
to evolution of the spin density along the �B-field patch. This
implies that our setup can be regarded as a possible candidate
for devising a spin transistor.

III. CONDITIONS FOR EXPERIMENTAL OBSERVATION

(i) Our calculation inherently assumes that the helical edge
has a finite �B-field patch and reservoirs are away from this
patch.

(ii) The ratio ξ/L has to be small. ξ/L < 0.25 would be a
reasonable limit for a typical case, as mentioned earlier.

(iii) The magnetic field that opens up a gap in the spectrum
should not force the edge states to tunnel into the bulk. This
means that the gap opened on the edge by �B field should be
less than bulk gap (2|b

X
| < 1) and the energy of the incident

electron should also be within the bulk gap (|Ei | < 1/2).
A limit on the magnetic field then can be estimated to be
7 T.14

(iv) Coherence. A realistic sample can have inelastic
backscattering3 on the edge, which causes spin decoherence.
Since resonance is an interference phenomenon, it is essential
that spin-decoherence length ld 
 L.15

(v) Disorder. The topological protection against backscat-
tering due to scalar impurities breaks down in the presence of

the time-reversal-breaking magnetic field. Hence one cannot
naively throw away the disorder term. In a good sample we
expect the disorder to be weak and sparsely spaced and to
have a length scale l � L. Such an impurity can be modeled
by a rectangular potential barrier/well with width l and height
η. This impurity may be centered anywhere (|xl| < L/2) in
the magnetic field patch. We have studied the effect of such
an impurity with a fixed l with different disorder strengths
η, positioned across the patch (|xl| < L/2). We find that as
long as |η| � |Ei |, the resonances are not affected. We have
given an illustrative plot in Fig. 5 of how the resonances
are affected for a value of η/Ei = 0.15 positioned in the
patch.16

IV. DISCUSSION AND CONCLUSION

The most crucial element involved in devising the proposed
setup is to realize the localized �B-field patch whose direction
should be fully tunable. In Ref. 3, the effect of the magnetic
anisotropy on the suppression of the quantum spin Hall effect
was studied, and the gaps induced by the perpendicular and
in-plane fields were obtained. Here, we require a localized
�B-field patch, which should be possible to engineer using the
proximity effect17 by depositing a layer of magnetic material
on top of the edge. Moreover, by choosing a magnetic material
which shows current-induced rotation of magnetization,18 it
should be possible to rotate the direction of the �B field in the
patch. Further, since spin coherence is essential to observe
resonances, spin decoherence arising from any mechanism
other than inelastic backscattering reported in Ref. 3 can
be probed in the proposed setup. So, in conclusion, we
have discussed a concrete proposal to probe the degree of
spin anisotropy in the HES via the Fabry-Pérot resonances.
Note that similar surface states appear in 3D topological
insulators, and the extent to which such states are helical
(spin-momentum locked) is not yet fully understood. Also,
these have been probed not via direct transport experiments but
via optics experiments, such as spin-resolved angle-resolved
photoemission spectroscopy, which see a deviation19 from
the purely theoretical picture of the 2D helical surface states.
Hence in the context of 2D topological insulators where 1D
HES appear on the boundary, studying these resonances could
lead to crucial information and characterization of deviations
from the theoretically predicted helical nature, if any. Also,
as an application, our setup provides a possible design for a
resonant spin transistor.
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