
PHYSICAL REVIEW B 86, 125311 (2012)

Fermi liquid approach to the quantum RC circuit: Renormalization group analysis of the Anderson
and Coulomb blockade models
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We formulate a general approach for studying the low-frequency response of an interacting quantum dot
connected to leads in the presence of oscillating gate voltages. The energy dissipated is characterized by the
charge relaxation resistance, which under the loose assumption of Fermi liquid behavior at low energy, is
shown to depend only on static charge susceptibilities. The predictions of the scattering theory are recovered
in the noninteracting limit while the effect of interactions is simply to replace densities of states by charge
susceptibilities in formulas. In order to substantiate the Fermi liquid picture in the case of a quantum RC

geometry, we apply a renormalization group analysis and derive the low-energy Hamiltonian for two specific
models: the Anderson and the Coulomb blockade models. The Anderson model is shown, using a field theoretical
approach based on Barnes slave bosons, to map onto the Kondo model. We recover the well-known expression of
the Kondo temperature for the asymmetric Anderson model and compute the charge susceptibility. The Barnes
slave bosons are extended to the Coulomb blockade model where the renormalization-group analysis can be
carried out perturbatively up to zero energy. All calculations agree with the Fermi liquid nature of the low-energy
fixed point and satisfy the Friedel sum rule.
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I. INTRODUCTION

The ability to probe and manipulate electrons in real time
constitutes one of the main challenges of transport in quantum
dots. This program is spurred by technological progress in
guiding and processing high-frequency electronic signals. At
low frequency, charge or spin can be transferred adiabatically
with quantum pumps1–6 and single-electron tunneling events
can be measured by coupling the system to a nearby quantum
point contact,7,8 the detection bandwidth is, however, restricted
to the kilohertz regime. These low-frequency experiments may
control and monitor single-charge transfer events but they are
not able to capture the coherent dynamics of charge carriers.

Early experiments at high frequency used a microwave
source (typically above the gigahertz) to irradiate the quantum
dot in the presence of a source-drain dc bias voltage.9,10

The energy of a photon h̄ω may exceed the thermal energy
kBT and photon-assisted tunneling takes place. Electrons
are then able to tunnel across the quantum dot by emitting
or absorbing photons from the microwave signal. Probing
quantum dots at high frequency provides information on the
quantum motion of electrons.11 The microwave part of the
noise power spectrum corresponds to the typical energies
(level spacing, charging energy, etc.) of quantum dots of
micrometer size. In the quantum regime h̄ω > kBT , the noise
emitted by a nanoconductor device can be absorbed and
measured by an on-chip quantum detector. Different schemes
have been developed where the quantum detector, located
in the vicinity of the source, can be a quantum dot,12–14 a
SIS tunnel junction,15–17 or a superconducting resonator.18 An
alternative way to measure directly the emitted noise from the
nanoconductor is to use cryogenic low-noise amplifiers.19–21

This nonexhaustive synopsis of high-frequency experiments
demonstrates the vitality of research in this field.

A fundamental and paradigmatic experiment22 in the topic
of high-frequency transport is the quantum capacitor, or
quantum RC circuit. It consists of a quantum dot attached to a

reservoir lead via a quantum point contact. In the experiment
of Refs. 22–24, a single spin-polarized channel of the lead
is connected to the quantum dot. In addition, the quantum
dot forms a mesoscopic capacitor with a top metallic gate as
illustrated in Fig. 1. These resistive and capacitive elements
constitute the quantum analog of the classical RC circuit
in series. By applying a time-dependent voltage on the top
gate, the quantum capacitor can be operated in the linear22 or
nonlinear23–25 regime, and charge can be transferred between
the dot and the lead alternatively. In the linear regime, an ac
drive changes infinitesimally and periodically the charge of the
dot. Matching the low-frequency admittance of the dot with
the corresponding formula for a classical RC circuit,

I (ω)

Vg(ω)
= −iωC0(1 + iωC0 Rq) + O(ω3), (1)

allows us to define a quantum capacitance C0 and a charge
relaxation resistance Rq . Vg denotes the gate voltage and I is
the current from the dot to the lead.

Recent experiments have developed an alternative way
of measuring the admittance of a single or double quantum
dot by embedding it in a microwave cavity,26,27 see also
experiments using radiofrequency reflectometry.28–30 A good
quality factor greatly enhances the coupling to the photons
at the resonant frequencies of the cavity and the admittance
can be read off the phase of a microwave probe. Only
measurements of the capacitance31 were realized so far but the
technique is, in principle, able to capture the charge relaxation
resistance.

The term charge relaxation resistance was coined in the
seminal work of Büttiker, Prêtre, and Thomas32–34 where a
general theory of time-dependent coherent transport was put
forward. Coulomb interactions were treated using a discrete
RPA-like model in which the screening of the potential
imposed by the gate is taken into account self-consistently.
One particular outcome of this theory is the prediction of a
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FIG. 1. (Color online) Schematic view of the quantum RC circuit.
Electrons coming from a metallic lead can tunnel inside a quantum
dot where there are interactions between electrons. An oscillating
voltage Vg(t) is applied by a metallic gate coupled capacitively to the
dot.

quantized and universal resistance Rq = h/2e2 in the case of
a polarized single-channel lead. This remarkable universality
was notably confirmed experimentally.22 For more than one
channel, Rq was expressed in terms of statistical distribution of
dwell times, corresponding in that case to Wigner-Smith delay
times,35,36 and computed for chaotic or weakly disordered
quantum dots using random matrix theory techniques.37–40

Interestingly, the RPA-like screening approximation emerges
as the leading order contribution in an 1/N expansion (N
being the number of channels in the lead connected to the
dot). This expansion was devised41 as a general method to
describe the interplay of coherent transport and interaction in
quantum dots driven out of equilibrium. Other aspects of the
linear ac response of the quantum RC circuit were theoretically
addressed including the charge relaxation resistance and the
inductive response42 within a Luttinger model for a long tube
connected between electrodes,43,44 the quantum to classical
transition in the presence of finite temperature or dephasing
probes45,46 and the effect of possibly strong interaction within
an Hartree-Fock approach47–49 or by developing a real-time
diagrammatic expansion in the tunnel coupling.50 It has also
been suggested that the quantum RC circuit could be used
to detect efficiently the state of a nearby double-dot system51

or to probe charge fractionalization in a quantum spin-Hall
insulator.52

The charge relaxation resistance has also been investigated
for small metallic islands where the tunnel junction to the
reservoir is described by a large number of weakly transmitting
channels.53,54 In this regime, a mapping to the problem
of a single particle on a ring subject to dissipation has
been exploited55 to demonstrate a new fixed point at large
transparency associated to the quantized resistance Rq = h/e2.

Before pursuing our discussion on the linear ac response, let
us mention that the experiment22 on the quantum RC circuit
was also driven into a nonlinear regime.23–25 A square-shaped
excitation with an amplitude comparable to the level spacing
turns the mesoscopic capacitor into a single electron source.
An electron (and a hole) is thus sent into the lead at each period
of the driving signal. This experiment has initiated an intense
theoretical activity on dynamics and quenches in coherent and
interacting nanoscaled systems.56–62

The prediction of the universal resistance Rq = h/2e2 for
a single channel was recently reconsidered63,64 by treating
Coulomb interaction in an exact manner. In this way, the
strong Coulomb blockade regime could be addressed an-

alytically, yet at the price of treating the coupling to the
lead perturbatively, for either small or large transparency. All
analytical calculations: bosonization of the fermionic degrees
of freedom, perturbation in the dot-lead coupling and mapping
to the Kondo model,65,66 point to the fact that the resistance
Rq = h/2e2 survives arbitrarily strong interactions for all
transmissions, thereby reinforcing its universality. In addition
to this result, it was shown63 that a large dot, with an effectively
vanishing level spacing, also supports a universal, albeit
different, charge relaxation resistance Rq = h/e2. Interactions
in the lead, for the edge state of a fractional quantum Hall
state for instance, are added63,64 for free in bosonization. They
simply renormalize the charge relaxation resistance Rq =
h/2νe2, where ν denotes the electron filling factor in the bulk.
For ν < 1/2, a quantum phase transition occurs64 as a function
of the transmission (dot-lead coupling) into an incoherent
regime where resistance quantization is lost (see also Ref. 67
where a similar transition was obtained). Complementary to
these analytical findings, Monte Carlo calculations64 have
confirmed the universality of the charge relaxation resistance
for ν > 1/2 (including the case of noninteracting leads ν = 1),
i.e., for all interactions and transmissions and the quantum
phase transition for ν < 1/2.

Surprises came from the single-channel case with spinfull
electrons (in contrast to the fully polarized edge states). When
a single level on the dot participates to electronic transport, the
quantum RC circuit is described by the Anderson model.68

At zero magnetic field and small excitation frequency, the
Korringa-Shiba relation69 on the dynamical charge suscepti-
bility implies a quantized universal resistance Rq = h/4e2,
again in agreement with the original RPA approach.47 Note
that this corresponds to a weak charge response and a weak
low-frequency dissipation ∝C2

0Rq when the charge on the dot
is quenched by strong Coulomb interaction (for example, in the
Kondo regime). Finite magnetic fields or higher frequencies
do not alter the freezing of charge fluctuations, but they allow
processes that redistribute the spin populations on the dot and
cause an increase of energy dissipation. The result is a giant
peak that the charge relaxation resistance develops with either
frequency or magnetic field.70 Note that although the peak in
magnetic field emerges at the Kondo energy scale and therefore
originates from strong correlations, it does not contradict the
Fermi liquid nature of the model at low frequency but arbitrary
magnetic field. A Fermi liquid description71 is thus able to
reproduce analytically the properties of the peak, showing
that the peak disappears at the particle-hole symmetric point.
A generalized Korringa-Shiba relation can be derived that
expresses the resistance Rq in terms of static susceptibilities.
As we shall discuss in this paper, the Fermi liquid approach
introduced in Refs. 71 and 72 is, in fact, quite general and
should apply to a variety of models.

To summarize, analytical and numerical calculations63,64

have proven that the universal resistance Rq = h/2e2 remains
valid even for strong Coulomb interaction on the dot. Never-
theless, the physical reason for this universality is somehow
hidden in the formalism, especially in the bosonization
approach. The intent of this paper is to bridge the gap between
the weakly interacting model of Refs. 32–34 and 49 and the
strongly interacting approach of Refs. 63 and 64, by proposing
a general Fermi liquid framework that captures all interaction
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FIG. 2. Line of reasoning developed in this paper. The linear
response of interacting systems is described by a noninteracting Fermi
liquid at low energy. It is then possible to compute the quantum
capacitance C0 and the charge relaxation resistance Rq . � is the
cutoff energy scale in the RG approach.

regimes within a single model, and recovers Rq = h/2e2 in
the single-channel case.

The paper is organized essentially along two directions.
The first part, corresponding to Sec. II, presents the main
ideas underlying the Fermi liquid approach. Due to the
lack of phase-space available for inelastic scattering (this
is the standard Landau argument for Fermi liquids73–75),
elastic processes dominate the physics of interacting quantum
dots at low energy.76 Hence low energies are described by
noninteracting electrons backscattered by the dot and, using
the Friedel sum rule,77 one arrives at the Korringa-Shiba
formula for the dynamical charge susceptibility. While the
capacitance is proportional to the local charge susceptibility,
C0 = e2χc, the charge relaxation resistance is expressed as a
combination of static charge susceptibilities given by Eq. (24),
with Rq = h/2e2 in the single-channel case. The discussion is
extended to the case of a large dot in Sec. II E, where the dot
itself is described as a Fermi liquid of noninteracting electrons
separated from the lead, and the charge relaxation resistance is
in units of Rq = h/e2. Both resistances, h/2e2 and h/e2, are
direct consequences of the Fermi liquid structure (14) and of
the Friedel sum rule, and are therefore almost independent of
the gate voltage.

The second part of the paper is detailed in Sec. III. The
validity of the Fermi liquid approach is explored using a
renormalization group (RG) analysis for two specific models
relevant to describe the quantum RC circuit: the Anderson and
the Coulomb blockade models. This is illustrated in Fig. 2.
The perturbative RG approach allows us, for both models,
to calculate explicitly the low-energy effective Hamiltonian
in agreement with Sec. II. In particular, the Friedel sum rule
is checked by comparing our predictions with existing results
from the literature: Bethe-ansatz calculations for the Anderson
model and a perturbative calculation for the Coulomb blockade
model. In addition for the Anderson model, we provide
a rigorous mapping to the Kondo model and derive an
analytic formula for the charge susceptibility in powers of
the hybridization out of the particle-hole symmetric point.

II. FERMI LIQUID APPROACH

A. Hamiltonians

The Fermi liquid approach, to be discussed below in the
core of this section, does not rely on a specific Hamiltonian but
rather defines a universality class for the low-energy behavior
of coupled dot and lead systems. Despite of this, we will
introduce two particular Hamiltonians: the Anderson model68

and a second model describing an interacting quantum dot
with internal levels that we shall call the Coulomb blockade
model (CBM).65,66 For these two models indeed, we shall see
in Sec. III that they fall into the category of Fermi liquids
at low energy. Nevertheless, one has to keep in mind that
the conclusions of this section are in no way restricted to
the models Eqs. (2) and (3) but would also be applicable for
more complicated interactions on the dot mixing, for example,
long-range and short-range components.

The quantum RC circuit is described70,71 by the Anderson
model when the level spacing in the dot is sufficiently large
and electron transport is not spin polarized. The Hamiltonian
takes the form

HAM =
∑
σ,k

εkσ c
†
kσ ckσ + εd n̂ + Un̂↑n̂↓

+ t
∑
k,σ

(c†kσ dσ + d†
σ ckσ ), (2)

with the electron operators ckσ and dσ of spin σ for the lead
and the dot, respectively. The lead electrons are characterized
by the single-particle energies εk with the constant density of
states ν0. The electron number on the dot is n̂ = n̂↑ + n̂↓ with
n̂σ = d†

σ dσ . U is the interaction energy, or the charging energy
in the case of a quantum dot, related to the gate capacitance
Cg through U = e2/Cg . εd = −eVg is the single-level energy
of the dot. It is tuned via the electrostatic coupling of the
quantum dot to the metallic gate. t is the amplitude for electron
tunneling between the dot and the lead. We will later need the
hybridization constant � = πν0t

2.
The second model, which we call the Coulomb blockade

model (CBM),65,66 is appropriate for a larger dot with at least a
few energy levels in the dot relevant for transport. Its simplest
version includes spinless electrons and a single channel in the
lead but it can be straightforwardly extended to N channels.
The Hamiltonian splits as63,78 HCBM = H0 + Hc + HT with

H0 =
∑
k,σ

εk c
†
kσ ckσ +

∑
l,σ

εl d
†
lσ dlσ + εd n̂, (3a)

Hc = Ecn̂
2, HT = t

∑
k,l,σ

(d†
lσ ckσ + c

†
kσ dlσ ), (3b)

where the three terms describe, respectively, noninteracting
electrons with single-particle energies εk (lead) and εl (dot),
the charging energy due to strong Coulomb repulsion in the
dot and the tunneling of electrons between the dot and the
lead. Ec = e2/2Cg and σ = 1, . . . ,N . Again, n̂ = ∑

σ n̂σ =∑
k,σ d

†
kσ dkσ is the total number of electrons in the dot and

εd = −eVg is set by the gate voltage. The level spacing in
the dot is finite but can be sent to zero for a large enough
quantum dot. In this paper, the density of states ν0 is chosen
for simplicity to be the same in the lead and in the dot but
none of our results are affected by releasing this constraint. It
will be convenient later to use the dimensionless conductance
g = N (ν0 t)2. For both models, the total number of electrons,
that is a constant of motion, is written N̂t .

Although the derivations of Sec. III are valid only away
from charge degeneracy, the Anderson and the one-channel
Coulomb blockade models are both Fermi liquids for all
gate voltages εd . Our effective Fermi liquid approach, which
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predicts the resistances h/2e2 and h/e2, is therefore applicable
for all values of εd including the Coulomb peaks at the charge
degeneracy points. In the multichannel Coulomb blockade
model, the Fermi liquid approach breaks down only right at
charge degeneracy (non-Fermi liquid fixed points).

B. Noninteracting electrons

Before addressing the general Fermi liquid approach,
which is the central part of this paper, it is instructive
to shortly review the noninteracting case32–34 following the
discussion of Ref. 49. First, the coupling to the gate voltage
εd (t)n̂ can be gauged out by a simple unitary transformation
U (t) = ei

∫ t
dt ′εd (t ′)N̂t shifting all single-particle energies by

−εd , notably, εk → εk − εd for the single-particle energies
in the lead.

Coherent electrons are described by delocalized wave
functions propagating throughout the quantum dot. Different
trajectories, corresponding to single or multiple reflections at
the quantum point contact opening the dot, interfere by adding
their amplitudes. In the absence of Coulomb interaction,
electrons behave very much like photons traversing a dis-
persive medium: an energy-dependent phase shift 
(εk − εd )
is accumulated after passing through the dot. Although the
discussion here is meant to be general, we can illustrate with
a specific example. The phase shift reads

ei
(ε) = r − ei2πε/�

1 − rei2πε/�
(4)

for a quantum dot embedded in a quantum Hall edge state, r

being the reflection coefficient of the quantum point contact, �
the level spacing in the dot and 2πε/� the phase accumulated
after a single turn around the dot. With this picture in mind,
the current from the dot to the lead can be computed from
the Landauer-Büttiker scattering formalism.32–34,49 At low
frequency,

I (t) = e2

h
[Vg(t) − Vg(t − τ )], (5)

τ is the Wigner-Smith delay time, or the typical dwell time of
an electron in the dot (εF is the Fermi energy),

τ = h̄
d
(ε − εd )

dε

∣∣∣∣
ε=εF

= −h̄
d
(εF − εd )

dεd

, (6)

and Eq. (5) holds as long as ωτ � 1.
Equation (5) and (6) show that a nonzero current is an

effect of the dispersive cavity. Physically, a time varying gate
voltage εd (t) implies that different times of electron arrivals
correspond to different energies ε − εd (t) and therefore differ-
ent phase shifts. All electrons are not slowed down in the same
way and charge can accumulate either in the dot or in the lead.
Fourier transform of Eq. (5) is compared to Eq. (1) and yields

Rq = h

2e2
, (7a)

C0 = e2

h
τ, (7b)

such that τ = 2RqC0. The coherent regime thus gives a
quantized and universal resistance Rq = h/2e2.

The same reasoning applies to the case of N channels in the
lead connected to the dot. The result for the charge relaxation
resistance reads39,47

Rq = h

2e2

∑N
σ=1 τ 2

σ(∑N
σ=1 τσ

)2 = h

2e2

∑N
σ=1 ν2

0σ(∑N
σ=1 ν0σ

)2 , (8)

where τσ is the Wigner-Smith delay time in the channel σ .
ν0σ = τσ /h39 denotes the density of states for channel σ in
the dot.

C. Physical picture

Simple arguments can be given to argue that the results
Eq. (7) extend to the general case of interacting electrons.
Despite its apparent simplicity, the expression Eq. (6) for the
time delay τ that controls the low-frequency transport, conveys
a fundamental message: only electrons in the immediate
vicinity of the Fermi surface participate to ac transport at
low frequency. These electrons, however, following the con-
ventional Fermi liquid argument,73–75 are somehow protected
against interactions due to the restriction of available phase-
space close to the Fermi surface. Hence, even in the presence
of strong Coulomb repulsion on the dot, low-energy electrons
in the lead behave essentially as if they were noninteracting
and the line of reasoning detailed above generalizes to the
interacting case. This generalization is possible only in the
generic situation of Fermi liquid behavior at low energy while
non-Fermi liquid fixed points usually require a delicate tuning
of coupling constants.79–81 We note in passing that a similar
restoration of phase-coherence caused by Coulomb interaction
was explored in a quantum dot T-junction geometry.76

Relatedly, Eq. (7b) for the capacitance or the static response
of the dot, coincides with an exact expression as we shall
now argue. In the interacting case, the phase shift δ(εd ) =

(εk − εd )/2 (there is factor 2 difference between the phase
shift definition used in the noninteracting case for instance in
Refs. 22 and 49, and the conventional phase shift of the Friedel
sum rule77) is related to the occupancy of the dot via the Friedel
sum rule δ/π = 〈n̂〉. Substituted in Eq. (7b), one finds

C0 = −2π
∂〈n̂〉
∂εd

e2

2π
= e2χc, (9)

where χc is the static charge susceptibility of the dot. This
result coincides with the mere definition of C0 if we recall
that I = ∂t e〈n̂〉 and consider the time-integrated version of
Eq. (1) in the static limit.

Let us now clarify an important point: the similarities
between the scattering properties of noninteracting and inter-
acting electrons do not imply that interactions have no effect
as they can strongly renormalize the energy dependence of
the phase shift. For noninteracting electrons, a comparison
between Eqs. (7b) and (9) suggests that τ/h = νd0 = χc,
clearly a sensible result. Indeed, for free electrons, the density
of states represents the number of one-particle states that fall
below the Fermi surface upon a unit increase of the Fermi
energy or, equivalently, a unit decrease of the reference energy
εd . The Pauli principle then implies that it is also the number
of added electrons, that is the charge susceptibility. However,
in the presence of interactions between electrons, νd0 
= χc,
in general. χc is sensitive only to charge excitations while
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all excitations contribute to the density of states νd0. This
difference is exemplified70,71 by the Anderson model in the
Kondo regime where the local density of states exhibits a
peak at the Fermi energy, mostly due to spin-flip excitations,
whereas the charge susceptibility is suppressed by Coulomb
blockade.82

D. Effective model and Korringa-Shiba formulas

We begin by some general remarks on dissipation for the
quantum RC circuit. Integrating Eq. (1) with respect to time,
we find the low-frequency expansion63,71

e2〈n̂(ω)〉
−εd (ω)

= C0 + iωC2
0Rq + O(ω2), (10)

for the charge on the dot in the presence of a time-dependent
gate voltage. The comparison with standard linear response
theory allows for deriving the correspondences

χc(ω = 0) = C0

e2
, Im χc(ω)|ω→0 = ωC2

0Rq

e2
, (11)

with the dynamical charge susceptibility

χc(t − t ′) = i

h̄
θ (t − t ′)〈[n̂(t),n̂(t ′)]〉. (12)

Following standard linear response theory, the power dissi-
pated in the presence of an ac drive of the gate voltage,
εd (t) = ε0

d + εω cos ωt with εω small enough to be in the linear
regime, is given quite generally, and specifically in the models
Eqs. (2) and (3), by

P = 1
2ε2

ω ω Imχc(ω). (13)

The only requirement for Eq. (13) to hold is that εd appears in
the Hamiltonian only through the term εd n̂.

Having exposed in Sec. II C the physical reasons for which
the universal resistance is insensitive to arbitrary interaction
in the dot, we proceed and develop a low-energy effective
model that shall prove Eq. (7a) explicitly. General arguments
are sufficient to reconstruct the structure of the low-energy
effective Hamiltonian. Nevertheless, one has to keep in
mind that the whole discussion that follows is based on the
assumption of a Fermi liquid infrared (IR) fixed point.

The first piece of the Hamiltonian is a free part H0 =∑
k εkc

†
kck . It describes the bulk lead electrons. The dot having

a finite spatial extension, it is not able to alter the bulk
properties (like the Fermi velocity or the effective mass) of
the lead electrons. Operators perturbing the free term H0 can
be classified, in the RG sense, according to their relevance.
Again the finite size of the dot implies that these operators
involve only the field operators ψ(r = 0) = ∑

k ck , r = 0
being the entrance of the dot or the position of the quantum
point contact, ψ†(0) and derivatives thereof. There is only a
single marginal operator, all other operators being irrelevant.
Keeping the former and discarding the latter, the low-energy
Hamiltonian assumes the form

H =
∑

k

εkc
†
kck + K(εd )

∑
k,k′

c
†
kck′ . (14)

The second term in this Hamiltonian describes a structureless
scattering potential [∝δ(r)] placed at the dot-lead boundary or

entrance of the dot. For the two initial models Eqs. (2) and (3),
the Friedel sum rule relates the phase shift of this scattering
potential to the mean occupation of the dot,77 namely,

〈n̂〉 = − 1

π
arctan[πν0K(εd )]. (15)

Drawing on the ideas of Refs. 71 and 72, the strategy that we
shall adopt to compute the charge relaxation resistance is the
following: the power dissipated by the gate voltage εd (t) =
ε0
d + εω cos ωt in the linear regime, given by Eq. (13), can

also be computed from the low-energy model Eq. (14). The
identification between the general expression Eq. (13) and the
low-energy calculation allows us to derive a Korringa-Shiba
formula for Imχc(ω), which further determines Rq .

Let us now start from the low-energy Hamiltonian and
expand it to first order with respect to εω [K0 = K(ε0

d )],

H =
∑

k

εkc
†
kck + K0

∑
k,k′

c
†
kck′

+K ′(ε0
d

)
εω cos ωt

∑
k,k′

c
†
kck′ . (16)

The scattering by the potential K0δ(r) is a single-particle
problem, which can be readily diagonalized. Rewriting the
Hamiltonian in terms of the corresponding scattering states,
characterized by the fermionic operators c̃k , absorbs the second
term into the first one in Eq. (16). Additionally, this change of
basis introduces a multiplicative constant83 in the third term
of Eq. (16) and

H =
∑

k

εkc̃
†
kc̃k + K ′(ε0

d

)
εω cos ωt

1 + (πν0K0)2

∑
k,k′

c̃
†
kc̃k′ . (17)

This last expression is conveniently written in terms of
the static susceptibility χc = −∂〈n̂〉/∂εd , which is obtained
through the derivative of Eq. (15):

χc = ν0 K ′(ε0
d

)
1 + (πν0K0)2

, (18)

such that Eq. (17) becomes

H =
∑

k

εkc̃
†
kc̃k + χc

ν0
εω cos ωt

∑
k,k′

c̃
†
kc̃k′ . (19)

It can be checked for consistency that this low-energy model
satisfies the Friedel sum rule in the static limit ω → 0.
The scattering potential in Eq. (19) adds the phase shift
δ1 = −πν0

χc

ν0
εω to lead electron wave functions. The Friedel

sum rule then translates this phase shift into a shift in the
occupation number on the dot:

δ〈n̂〉 = δ1/π = −χc εω, (20)

in agreement with the above definition of the static charge
susceptibility.

Now that we have derived a more compact low-energy
Hamiltonian, we rely again on linear response theory in order
to compute the power dissipated upon exciting the gate voltage
sinusoidally. It involves the operators Â = (χc/ν0)

∑
k,k′ c̃

†
kc̃k′

coupled to the ac drive in Eq. (19) or

P = 1
2ε2

ω ω Im χÂ(ω), (21)
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where χÂσ (t − t ′) = i
h̄
θ (t − t ′)〈[Âσ (t),Âσ (t ′)]〉. Perhaps un-

surprisingly, energy dissipation occurs at low energy through
the production of single electron-hole excitation. ImχA(ω)
is easily computed at zero temperature for noninteracting
electrons [first term in Eq. (19)], ImχÂ(ω) = h̄πχ2

c ω, similar
to the result of a Fermi golden rule calculation. Comparing
Eqs. (13) and (21), we obtain the Korringa-Shiba formula69

Imχc(ω) = h̄πω χ2
c . (22)

This result, substituted in Eq. (11), recovers the universal
charge relaxation resistance Rq = h/2e2.

So far, our analysis has concentrated on the single channel
case but its generalization to N channels is straightforward.
One then finds a generalized Korringa-Shiba formula

Imχc(ω) = h̄πω

N∑
σ=1

χ2
cσ . (23)

The static susceptibilities χcσ = −∂〈n̂σ 〉/∂εd measure the
sensitivity of the occupations of the dot, for each channel σ , to
a change in the gate voltage. The charge relaxation resistance
thus takes the form

Rq = h

2e2

∑N
σ=1 χ2

cσ(∑N
σ=1 χcσ

)2 (24)

and resembles very much the noninteracting one Eq. (8). They
coincide after the identification ν0σ = χcσ , already discussed
in Sec. II C and valid only for free electrons. Therefore Eq. (24)
gives the correct generalization of Eq. (8) to the interacting
case.

E. Effective model for a large dot

The case of a large quantum dot deserves a specific
discussion. By a large dot, we mean that the single-particle
spectrum can be treated as continuous in the dot such that
energy dissipation takes place both in the lead and in the dot.

In fact, finite dots have a finite level spacing � and one may
wonder at which energy scale the spectrum can be considered
as continuous. One solution, proposed in Ref. 63, is to send
an ac signal with a bandwidth larger than � in order to smear
the discreteness of the spectrum. In that case, the frequency
ω has to be larger than �. A second possibility is to use a
frequency ω larger than the energy

√
�ETH, where ETH > �

is the Thouless energy, or inverse time of diffusion through
the dot. Above this energy, it has been shown84 that the one-
particle density of states loses its discreteness due to electron-
electron interactions.

The Fermi liquid picture still applies to the large dot with
the subtlety that dot and lead constitute two separate Fermi
liquids. At low energy, the transfer of electrons between
the dot and the lead is energetically prohibited74 and electrons
are effectively fully backscattered at the boundary between the
dot and the lead. The effective model for the lead is the same
as above [see Eq. (14)] with the potential scattering strength
related to the mean occupation of the dot via Eq. (15).

At first glance, it may seem that the dot simply adds an
additional channel for dissipation so that Eq. (24) would apply
with N = 2. However, as we shall see below, there exists
a lead/dot symmetry which reestablishes universality in the

charge relaxation resistance. We first note that the fact that the
charging energy is ascribed to the dot is physically sensible but
mathematically arbitrary. Using the fact that the total number
of electrons in the system N̂t is conserved by the Hamiltonian,
one can replace n̂ = N̂t − n̂L, n̂L being the number of electrons
in the lead, and transfer the Coulomb interaction to the lead.
Therefore the low-energy model for the dot is the same as for
the lead, namely, Eq. (14), but the strength of the scattering
potential for dot electrons, noted Kdot(εd ), is now given by

N̂t − 〈n̂〉 = 〈n̂L〉 = − 1

π
arctan[πν0Kdot(εd )]. (25)

An alternative formulation of the same physics is that the
phase shift accumulated after backscattering at the boundary
is δ(εd ) for lead electrons and δt − δ(εd ) for dot electrons,
where δt = N̂t /π . Following the same steps as in Sec. II D,
one finds the effective low-energy Hamiltonian

H =
∑

k,α=L/D

εkc̃
†
kαc̃kα + χc

ν0
εω cos ωt

∑
k,k′

(c̃†kLc̃k′L − c̃
†
kDc̃k′D),

(26)

where L/D stands for lead/dot electrons. The Korringa-Shiba
formula is then

Imχc(ω) = 2h̄πω χ2
c (27)

and the charge relaxation resistance Rq = h/e2. The extension
to N channels is straightforward.

III. RENORMALIZATION

A. Outline

The aim of this section is to justify in more detail the
low-energy form (14) for the Anderson (2) and CBM (3)
models. We recall that the discussion of Sec. II D rests on two
fundamental assumptions: (i) an infrared (IR) Fermi liquid
fixed point and (ii) the Friedel sum rule (15) applies. The two
models will be discussed separately.

The Friedel sum rule and the Fermi liquid properties at low
energy are well established for the Anderson model.77,85 Our
motivation is thus a practical one: we calculate the scattering
potential K(εd ) perturbatively to second order in � in the
Kondo regime. To this end, a RG treatment is first carried out
on the Hamiltonian (2) and stopped at intermediate energies
TK � � � U , where � denotes the running energy scale (or
cutoff). The RG approach remains perturbative up to these
energies and can be performed explicitly. At this stage, charge
excitations have been completely integrated out and the Kondo
model is obtained, with exchange and scattering potential
terms. Proceeding towards lower energies, the RG procedure
becomes nonperturbative across the Kondo temperature TK

and we thus rely on the work of Cragg and Llyod.86–88 They
showed that, whereas the exchange term disappears at low
energy, leading simply to a π/2 scattering phase shift, the
scattering potential is unaffected by the Kondo crossover up to
small corrections that are negligible within our second-order
calculation. The main steps of the RG procedure up to the IR
fixed point are summarized in Fig. 3. We finally obtain the
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0Λ U TK

Anderson
model

Kondo model
including

pot. scattering

Integration of the
high energy charge modes

Fermi liquid
including only
pot. scattering

Kondo
crossover

FIG. 3. Renormalization group (RG) analysis of the Anderson
model.

scattering potential

ν0K(εd ) = − �

2π

2εd + U

εd (εd + U )

[
1 − � U

πεd (εd + U )

− � U 2

πεd (εd + U )(2εd + U )
ln

(
εd + U

−εd

)]
. (28)

This expression can be used to compute the static charge
susceptibility χc at zero temperature,

χc = �

π

{
1

(εd + U )2
+ 1

ε2
d

+ 2�

π

[
1

(εd + U )3
− 1

ε3
d

]

+ �

π

[ (
1

εd + U
− 1

εd

)3

+ 2

(
1

εd + U
− 1

εd

)

×
(

1

ε2
d

− 1

(εd + U )2

)
ln

εd + U

−εd

]}
, (29)

in agreement with a Bethe ansatz calculation at the particle-
hole symmetric point.89 Let us finally mention that the
preliminary perturbative renormalization (stopped at � � TK )
recovers Haldane’s formula85,90 for the Kondo temperature of
the Anderson model, namely,

TK = e1/4+C

2π

√
2�U

π
eπεd (εd+U )/2U�, (30)

where C = 0.5772 is the Euler constant. e1/4+C/(2π ) = 0.364
is in agreement with Ref. 90.

The situation is different for the Coulomb blockade model,
which is known to be a Fermi liquid at low energy, except
close to the charge degeneracy for N 
= 1.91 For this model,
perturbative renormalization can be performed explicitly down
to low energy. In this paper, this is done to second order in the
conductance g, i.e., to fourth order in the tunneling matrix
element t . We are thus able to check the scenario described
in Sec. II E of two separated Fermi liquids at low energy with
scattering phase shifts in agreement with the Friedel sum rule.
To leading order in a large N calculation, we find for the
backscattering of lead electrons at the boundary

K(εd ) = ν0t
2 ln

Ec + εd

Ec − εd

+ Nν3
0 t4(A[εd ] − A[−εd ]), (31)

with A[εd ] reported in Eq. (90). Translated into the dot
occupancy with the help of the Friedel sum rule, this result
coincides with a direct calculation by Grabert.78,92

Below, we detail the perturbative calculations of the
scattering potential K(εd ) leading to Eqs. (28) and (31). A
refined quantum field theory approach is not necessary for the
leading order (first order in �) and we simply use the unitary
Schrieffer-Wolff transformation to compute K(εd ). This is
done in Sec. III B. In Secs. III C and III D, the next order

is obtained within a more general field theoretical approach to
renormalization.

B. Schrieffer-Wolff unitary transformation

When the charging energy, U or Ec, largely exceeds
the hybridization to the lead due to tunneling, the different
charge states on the dot become well separated in energy.
For temperatures T � U,Ec, one charge state defines the
low-energy sector, the others being only virtually occupied.
The Schrieffer-Wolff unitary transformation93 accounts for
these virtual states by integrating them perturbatively into an
effective Hamiltonian acting in the low-energy sector. The
Schrieffer-Wolff transformation was initially devised for the
Anderson model, it shall be applied in this paper also to the
Coulomb blockade model Eq. (3).

1. Anderson model

We focus on the Kondo regime defined by 0 < −εd <

U , that is in-between the Coulomb peaks, with |εd |/� �
ln(U/�) in order to neglect the renormalization85 in the posi-
tion of these peaks. The low-energy sector then corresponds to
a single electron on the dot. The tunneling term in the Anderson
model (2), that we call HT , couples subsequent charge states
and is linear in t . The idea of the Schrieffer-Wolff unitary
transformation eiS is to cancel this linear tunnel coupling,
thereby producing couplings between charge states that have
higher orders in t . This strategy is realized with the choice

iHT = [
S,H 0

AM

]
, (32)

where H 0
AM is Eq. (2) with t = 0. The rotated Hamiltonian

assumes the form

H ′
AM = eiSHAMe−iS = H 0

AM + i

2
[S,HT ]. (33)

After this transformation and specifically for the Anderson
model in the Kondo regime, the coupling of the single-charge
sector to other charge states starts as t3 at most. Hence, for the
purpose of a calculation up to second order in t , the single-
charge sector decouples from other charge states. The resulting
effective Hamiltonian is the Kondo model, which includes a
potential scattering term:

H ′
AM = H0 + JS · s + K

∑
kk′σ

c
†
kσ ck′σ , (34)

where S denotes the spin operator for the single electron in
the dot and s = ∑

kk′σσ ′ c
†
kσ

τ σσ ′
2 ck′σ ′ the local spin of lead

electrons. τ σσ ′ is the vector composed of the Pauli matrices.
The coupling constants are given by

ν0J = ν0J0 = 2�

π

(
1

εd + U
− 1

εd

)
, (35a)

ν0K = ν0K0 = − �

2π

(
1

εd + U
+ 1

εd

)
. (35b)

Notice that K = 0 at the particle-hole symmetric point εd =
−U/2, leaving exclusively the Kondo interaction with J =
8t2/U . In deriving the Kondo model Eq. (34), one discards
the energy dependence of the coupling constants (35) because
the model (34) is applicable only for energies much smaller
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than the charging energy ε � U,|εd |. The Schrieffer-Wolff
transformation is thus an economical way of renormalizing
the Anderson model up to the energy scale � with TK �
� � U,|εd |.

Controlling the low-energy behavior, the IR fixed point
(� → 0) of the Kondo model with potential scattering (34),
has been identified by Cragg and Llyod using a combination of
analytical and numerical calculations.86–88 It is a Fermi liquid
in which lead electrons at the Fermi level acquire a phase shift
with three contributions: π/2, the phase shift corresponding
to K(εd ) and a correction proportional to �3 that we can
legitimately neglect in our first order calculation and even
in the second order calculation of Sec. III C. Absorbing the
π/2 phase shift into a redefinition of the lead electrons, we
indeed obtain the low-energy form Eq. (14), where K(εd ) is
given by Eq. (35b).

With the help of the Friedel sum rule (15), the dot
occupancy is computed from Eq. (35b) and then the static
charge susceptibility at the particle-hole symmetric point reads

χc = − ∂ 〈n̂〉
∂εd

∣∣∣∣
εd=−U/2

= 8�

πU 2
, (36)

in agreement with a Bethe ansatz calculation expanded to
leading order in �/U .89

2. Coulomb blockade model

In the Coulomb blockade model of Eq. (3), the tunnel
coupling between the subsequent charge states is also linear
in t and the principle of the Schrieffer-Wolff transformation
remains the same as in Sec. III B1 with the choice Eq. (32)
and the rotated Hamiltonian Eq. (33) where the subscript AM
is replaced by CBM.

Following Grabert,78,92 we define the operator n̂, which
gives the number of electrons in the dot, as being independent
from the fermionic degrees of freedom dlσ and we note |n〉
the charge state with n electrons. In this representation, the
tunneling term in Eq. (3) reads

HT = t
∑
n,k,l

(d†
l ck|n + 1〉〈n| + c

†
kdl|n − 1〉〈n|). (37)

For the sake of simplicity, but with no loss of generality, we
restrict ourselves here to the single-channel case N = 1. The
operator S that generates the unitary transformation, solution
of Eq. (32), takes the form s + s† where

s = it
∑
k,l,n

sklnc
†
kdl|n − 1〉〈n|, (38a)

skln = 1

εl − εk + EC(2n − 1) + εd

. (38b)

In contrast with the Anderson model, a t2 coupling between
each state |n〉 with |n ± 2〉 is produced by the Schrieffer-
Wolff transformation. Nonetheless, it is possible to remove
this coupling by applying a second unitary transformation
whose specific form will not be needed here. After that, the
Hamiltonian becomes block diagonal in the charge states up to
second order in t . For −Ec < εd < Ec, the charge state n = 0
defines the low-energy sector and the rotated Hamiltonian is

H ′
CBM = H0 + HB,

HB = t2

2

∑
kk′ll′

(skl0d
†
l′ck′c

†
kdl − skl1c

†
kdld

†
l′ck′ + H.c.). (39)

The normal ordering of operators is necessary to classify them
according to their RG relevance. For example,

d
†
l ckc

†
k′dl′ = δll′θ (−εl)ckc

†
k′ + δkk′θ (εk)d†

l dl′+ : d
†
l ckc

†
k′dl′ :

where θ (ε) is the Heaviside function and : . . . : denotes
normal ordering with respect to the Fermi sea. The last
term in this expression describes interaction between lead
and dot electrons; it is irrelevant at low energy and can be
discarded. The two quadratic terms give marginal terms in the
Hamiltonian corresponding to backscattering of electrons at
the lead-dot boundary. If we take for instance the first one, its
contribution to HB is

t2

2

∑
kk′

ck′c
†
k

∑
ll′

δll′θ (−εl)skl0

=
∑
kk′

ck′c
†
k

ν0t
2

2

∫ 0

−D0

dεl

εl − εk − Ec + εd

=
∑
kk′

c
†
kck′

ν0t
2

2
ln

(
εk + Ec − εd + D0

εk + Ec − εd

)
. (40)

Since we consider the low-energy properties of the model, it
is consistent to take εk = 0 in this expression, the difference
being again irrelevant in the RG sense. Collecting all marginal
terms in Eq. (39) and performing the integrals, we obtain the
effective low-energy model to leading order in t :

H ′
CBM = H0 + g

ν0
ln

(
Ec − εd

Ec + εd

) (∑
ll′

d
†
l dl′ −

∑
kk′

c
†
kck′

)
,

(41)

in which the intermediate cutoff D0 has disappeared66 and the
dimensionless conductance g = (ν0 t)2 has been introduced.
This expression confirms the scenario proposed in Sec. II E
for a large dot in which the two Fermi liquids, lead and
dot, completely separate at low energy, while they experience
potential scattering terms with opposite amplitudes.

The phase-shift acquired by lead electrons from Eq. (41) is

δ = πg ln

(
Ec − εd

Ec + εd

)
(42)

and, applying the Friedel sum rule, one finds the dot mean
occupancy

〈n̂〉 = δ

π
= g ln

(
Ec − εd

Ec + εd

)
, (43)

in agreement with previous direct perturbative
computations66,78,92 to order g. The above result Eq. (43) is
unchanged for N channels as long as g = N (ν0 t)2.

As we shall show below, the different conclusions obtained
in this section carry over to the next order in g. We were
not able to iterate the Schrieffer-Wolff transformation to next
orders. We shall instead use a field theoretical approach to
derive the renormalization of the two models to second order
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Energy
Original

basis
New
basis

2 d + U

d

0

d†↑d
†
↓ |0

d†σ |0

|0

b†2 |0 λ

f †
σ |0 λ

b†0 |0 λ

FIG. 4. (Color online) New definition of the states on the dot in
Barnes’ representation. The energies are given for an isolated dot.

in � and g, the Anderson model in Sec. III C and the CBM in
Sec. III D.

C. Field theory approach I: Renormalization
of the Anderson model

Quantum field theory is an efficient tool for carrying out RG
calculations and extracting the low-energy behavior. Standard
diagrammatic perturbation techniques are not applicable to
the Anderson model when expanded in the tunneling constant
t , because of the nonquadratic interaction term Un̂↑n̂↓. To
circumvent this problem, we follow a representation due to
Barnes94 and introduce two slave-boson operators b0 and b2,
corresponding to the states of the dot with zero and two
electrons, respectively. This also necessitates to define two
parafermions operators fσ destroying electrons on the dot.
The relation between the old and the new basis of states
on the dot is summarized in Fig. 4 where |0〉λ denotes the
vacuum state of slave bosons and parafermions. The use of
slave bosons in this paper differs substantially from most
works based on slave bosons. In fact, we are interested in the
weak-coupling regime (above the Kondo temperature) and not
in describing the Kondo crossover. The precise identification
between operators is given by

dσ = b
†
0 fσ + σf

†
−σ b2, (44)

ensuring the anticommutation relation d
†
↑d

†
↓ + d

†
↓d

†
↑ = 0.

Clearly, this operation enlarges the Hilbert space by adding
unphysical states. The set of physical states is thus recovered
by imposing the constraint

b
†
2b2 + b

†
0b0 +

∑
σ

f †
σ fσ = 1, (45)

which commutes with the Hamiltonian. In this basis, the
Hamiltonian takes the form HAM = H0 + Hc + HT , where

H0 =
∑
kσ

εkc
†
kσ ckσ + (εd + λ)

∑
σ

f †
σ fσ , (46a)

HC = λb
†
0b0 + (2εd + U + λ)b†2b2, (46b)

HT = t
∑
kσ

(c†kσ b
†
0fσ + f †

σ b0ckσ )

+ t
∑
kσ

σ (c†kσ f
†
−σ b2 + b

†
2f−σ ckσ ). (46c)

The chemical potential λ has been introduced in order to
eliminate nonphysical states by imposing the constraint (45).
This projection is realized by setting λ → +∞ at the end

of calculations.53,94,95 The key point of the representation of
Eq. (46) is that the Hamiltonian is quadratic in the absence
of tunneling and standard diagrammatic techniques become
applicable. To make more easily contact with the Kondo
model, it is convenient to shift the chemical potential λ →
λ − εd .

With the free propagators:

G−1
kσ (iωn) = iωn − εk, (47a)

F−1
σ (iωn) = iωn − λ, (47b)

F−1
0 (iνn) = iνn + εd − λ, (47c)

F−1
2 (iνn) = iνn − εd − U − λ, (47d)

where iωn = (2πn + 1)/β denote always fermionic Matsub-
ara frequencies and iνn = 2πn/β bosonic ones, the action
corresponding to Eq. (46) reads

S = −
∑
iωnkσ

c
†
kσ (iωn)G−1

kσ (iωn)ckσ (iωn)

−
∑
iωnσ

f †
σ (iωn)F−1

σ (iωn)fσ (iωn)

−
∑
iνn

[
b
†
0(iνn)F−1

0 (iνn)b0(iνn)

+ b
†
2(iνn)F−1

2 (iνn)b2(iνn)
]

+ t√
β

∑
iωniνn

kσ

[c†kσ (iωn)b†0(iνn)fσ (iνn + iωn)

+ σc
†
kσ (iωn)f †

−σ (iνn − iωn)b2(iνn) + c.c.]. (48)

The action being quadratic in the high-energy modes b0

and b2, their integration is straightforward and gives an
action describing a Kondo model with frequency-dependent
couplings

S ′ = S0 + 1

β

∑
kk′σσ ′ττ ′

iω1iω2iνn

(J Sσσ ′ · sττ ′ + Kδσσ ′δττ ′)

× c
†
kσ (iω1)ck′σ ′(iω2)f †

τ (iνn + iω2)fτ ′(iνn + iω1),

(49a)

J = −2t2 [F2(iνn + iω1 + iω2) + F0(iνn)] ,
(49b)

K = t2

2
[F2(iνn + iω1 + iω2) − F0(iνn)] ,

where S0 stands for the free action of lead electrons and
parafermions.

1. From Anderson to Kondo

We now elaborate on the connection between the ac-
tion (49), strictly equivalent to the Anderson model, and
the Kondo model. The IR limit of the frequency-dependent
couplings Eq. (49b) is fixed by the poles of the Green’s
functions, Eq. (47a) at the Fermi momentum and (47b), i.e.,
iνn = λ, iω1 = iω2 = 0. In this limit, the couplings J and K
reproduce exactly the values J and K of Eq. (35) obtained
after the Schrieffer-Wolff transformation, and they control
operators that are marginal in the RG sense. Expanding the
couplings in the frequencies iνn, iω1/2 around the IR limit
generates irrelevant operators in the action that we neglect for
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the moment. The action now takes the form

S = S0 +
∫

dτ

[
JS(τ ) · s(τ ) + K

∑
kk′σ

c
†
kσ (τ )ck′σ (τ )n̂f (τ )

]
,

(50)

with the definitions S = ∑
σσ ′ f †

σ
τ σσ ′

2 fσ ′ and n̂f = ∑
σ f †

σ fσ ′

(s is the local spin operator for lead electrons defined in
Sec. III B1). The limit λ → +∞ now enforces n̂f = 1 and,
using the spin representation by Abrikosov,95 we recognize
the action Eq. (50) as corresponding exactly to the Kondo
Hamiltonian given by Eq. (34). We thus recover the same
result as the Schrieffer-Wolff transformation in Sec. III B1.

The irrelevant frequency dependencies in the couplings
Eq. (49b) die out upon lowering the cutoff � well below
U,εd and do not change the low-energy Kondo form Eq. (50).
However, along the transient region where they still exist,
they can weakly renormalize the value of the constants J

and K . This generates a perturbative expansion of J and K

in powers of �/U where the leading order is given by the
Schrieffer-Wolff results of Eq. (35).

In order to derive this expansion, we compute the renor-
malized vertex VR(�) = Z(�)V(�), where V(�) is the bare
vertex and Z(�) the quasiparticle weight of the parafermion
propagator. Both quantities, to be defined more precisely
below, depend on the running energy scale �. From works
on the multiplicative RG approach to the Kondo model, it
is known that the RG flow in the Kondo model is fully
encoded in the functional dependence of VR on �.95–97 The
strategy is thus to compute VR(�) in the Anderson model, or
equivalently, from the action Eq. (49), at intermediate energy
TK � � � U,|εd | in which case the functional dependence of
VR on � is expected to match the Kondo one. A comparison
of this calculation with the known expression for VR(�) in
the Kondo model identifies the values of J K , and the cutoff
D that characterize the effective Kondo Hamiltonian (34) [or
Eq. (50)] for the Anderson model at intermediate energy.

2. The parafermion propagator

We introduce the parafermion propagator Fσ (τ − τ ′) =
−〈Tτ fσ (τ )f †

σ (τ ′)〉, where Tτ denotes time ordering. In fre-
quency space, the bare propagator (47b) is modified by the
self-energy

Fσ (iωn) = 1

iωn − λ − �σ (iωn)
. (51)

Following Solyom’s prescription,98 the vertex V(�) is calcu-
lated for equal incoming and outgoing frequencies together
with the analytical continuation

iω → 0 for lead electrons, (52a)

iω� → ε̃d − � for parafermions. (52b)

� is the running energy scale of the RG flow that plays the role
of an IR cutoff in vertex calculations. ε̃d is the renormalized
single-level energy of the dot obtained from the pole of the
parafermion propagator (51), or

ε̃d = λ + Re�(ε̃d ), (53)

Σ(iωn) =

iωn iωn

p, iΩn, σ

(iωn − iΩn, iΩn, iΩn)

FIG. 5. Self-energy of the parafermion propagator to first order �.

while the residue at the pole defines the quasiparticle weight
Z(�). Its dependence on � can be neglected, Z(�) � Z0,
as long as � � max(−εd,U + εd ). This last assumption is
nevertheless only valid within the precision of our perturbative
calculation (second order in �) where no IR divergence appears
in Z(�). Close to its pole, the parafermion propagator takes
the form

Fσ (iωn) = Z0

iωn − ε̃d

, (54)

with Z0 = [1 − ∂ω�(ε̃d )]−1.
The self-energy �σ (iωn) is computed to first order in � to

be consistent with our overall second order calculation. The
corresponding diagram is shown in Fig. 5 with the expression

�(iωn) = 2

β

∑
k,i�n

Gk(i�)K(iωn − i�n,i�n,i�n)

= t2
∑

k

[
f (εk) + b(εd + U + λ)

iωn + εk − εd − U − λ

− f (εk) + b(−λ + εd )

iωn − εk − λ + εd

]
. (55)

The limit λ → ∞ is taken and the result reads, after summation
over the energies of the lead electrons,

�(iωn) = �

π

(
ln

εd + U + λ − iωn

D0
+ ln

λ − εd − iωn

D0

)
.

(56)

An intermediate cutoff noted D0 has been introduced here to
remove ultraviolet (UV) divergences. However, as we shall
see, D0 plays no role and disappears from the final results.
Eq. (53) for ε̃d can be solved perturbatively. To first order in
�, one finds

ε̃d = λ + �

π

(
ln

εd + U

D0
+ ln

−εd

D0

)
. (57)

After standard analytical continuation, the quasiparticle weight
is also extracted from Eq. (56):

Z0 = 1 − ν0t
2

(
1

εd + U
− 1

εd

)
= 1 − ν0

2
J0. (58)

J0 is the Schrieffer-Wolff result, Eq. (35a), for J .

3. The vertex

The vertex V(�) is given by the series of irreducible
diagrams drawn in Fig. 6. The calculation is performed up
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FIG. 6. Diagrammatic series for the vertex V .

to second order in �, or fourth order in t . The leading order is
the bare vertex shown in Fig. 7 which, after the analytical
continuation of Eqs. (52), reproduces the Schrieffer-Wolff
expression

V(�) = V1 = Sτ ′τ · sσ ′σ J0 + δττ ′δσσ ′K0, (59)

with the coupling constants of Eqs. (35a) and (35b). In order
to derive Eq. (59), we have used that ε̃d = λ to leading order
and discarded �/max(−εd,U + εd ) corrections.

The renormalized vertex VR(�) splits as

VR = V1 + VZ + Va + Vb, (60)

where VZ and Va,b are second order terms in �. VZ collects
the corrections to V1 in the bare vertex of Fig. 7 brought by the
quasiparticle weight Z0 of Eq. (58) and the renormalization of
the single-level energy (57). It contains exchange and potential
scattering terms

VZ = S · sν0

[(
J 2

0

4
+ 4K2

0

) (
ln

−εd (εd + U )

D2
0

)
− J 2

0

2

]

+ δττ ′δσσ ′ν0
J0K0

2

[
ln

−εd (εd + U )

D2
0

− 1

]
. (61)

The vertex corrections Va,b are illustrated in Fig. 6. The first
one (a) takes the form

Va = − 1

β

∑
k,iωn

Fσ (iωn)Gk(iω� + iω − iωn)

× [
Sβτ · sασJiωn−iω,iω�+iω−iωn,iω

Free
propagators

k, iωn

Gk(iωn) :

iωn

Fσ(iωn) :

Bare
interaction

iνn + iω1, τ

k , iω2, σ

k, iω1, σ

iνn + iω2, τ

(iνn, iω1, iω2)

FIG. 7. (Left) Free propagators of the theory. (Right) Bare
interaction of the theory. The frequencies inside the parenthesis are
the arguments of the frequency-dependent couplings in Eq. (49b).

+ δβτ δασKiωn−iω,iω�+iω−iωn,iω

]
× [

Sτ ′β · sσ ′αJiωn−iω,iω,iω�+iω−iωn

+ δβτ ′δασ ′Kiωn−iω,iω,iω�+iω−iωn

]
. (62)

The overall minus comes from diagrammatic rules and the
Einstein convention is used for spin summation. The calcula-
tion of this vertex correction is carried out in Appendix A. We
find Va = Va

J S · s + Va
K with

Va
J = −4ν0t

4

[
1

(εd + U )2
ln

�

D0

+ 1

εd (εd + U )

(
ln

−εd

D0
− ln

�

D0

)]
, (63a)

Va
K = ν0t

4

[
1

ε2
d

(
1 − ln

−εd

D0
+ ln

�

D0

)
+ 1

εd (εd + U )

×
(

ln
−εd

D0
− ln

�

D0

)
+ 1

(εd + U )2
ln

�

D0

]
. (63b)

The calculation of the (b) diagram follows exactly the same
steps:

Vb = − 1

β

∑
k,iωn

Fσ (iωn)Gk(iωn + iω − iω�)

× [
Sτ ′β · sασJiω�−iω,iωn+iω−iω�,iω

+ δβτ ′δασKiω�−iω,iωn+iω−iω�,iω

]
× [

Sβτ · sσ ′αJiω�−iω,iω,iωn+iω−iω�

+ δβτ δασ ′Kiω�−iω,iω,iωn+iω−iω�

]
, (64)

and also contains exchange and potential scattering terms:

Vb
J = −4ν0t

4

[
1

ε2
d

ln
�

D0

+ 1

εd (εd + U )

(
ln

εd + U

D0
− ln

�

D0

)]
, (65a)

Vb
K = −ν0t

4

[
1

(εd + U )2

(
1 + ln

�

D0
− ln

εd + U

D0

)

+ 1

εd (εd + U )

(
ln

εd + U

D0
− ln

�

D0

)

+ 1

ε2
d

ln
�

D0

]
. (65b)

Adding the results from Eqs. (59), (61), (63), and (65), the
renormalized vertex VR(�) = VJ (�) S · s + VK (�) expands
as

VJ = J0 − ν0

2
J 2

0 − ν0J
2
0 ln

[
�√−εd (εd + U )

]
, (66a)

VK = K0 + ν0

2
J0 K0 + ν0

8
J 2

0 ln

(
εd + U

−εd

)
. (66b)

As anticipated, D0 has disappeared from these final expres-
sions and the charging energy

√−εd (εd + U ) acts as an
effective high-energy cutoff. Remarkably, the IR cutoff � also
disappears from the expression of the potential scattering term
VK where the limit � → 0 can safely be taken. However,
the ln � dependence in VJ signals the onset of the Kondo
singularity which develops at low energy and restricts the
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validity of Eqs. (66) to the energy window TK � � �√−εd (εd + U ).
In agreement with the leading order calculation of

Sec. III B1, VK vanishes at the particle-hole symmetric point
εd = −U/2. This property is, in fact, expected by symmetry
to hold to all orders in �.

4. Kondo temperature and charge susceptibility

In order to test our predictions, see Eq. (66), we compare
them to existing results from the literature. We show that
Eq. (66) give access for the Anderson model to the Kondo
temperature and the static charge susceptibility. Our expression
for the Kondo temperature reproduces a standard result due to
Haldane and the charge susceptibility agrees with a Bethe-
ansatz calculation at the particle-hole symmetric point. These
successful comparisons validate our approach.

Let us first consider the Kondo model (34) characterized
by the exchange coupling J and the high-energy cutoff
(bandwidth) D, with no potential scattering. In the Wilsonian
language, the RG flow corresponds to integrating the model
continuously over high-energy states, thereby reducing the
cutoff from D to � and changing the exchange coupling
constant from J to VKondo

J (�). Hence two Kondo models
are equivalent if the RG flow connects them even if their
bare values of J and D are different. VKondo

J (�) can be
calculated by different means, but in the field theory language
with Abrikosov parafermions,95,99 it is defined from the same
renormalized vertex as the one used in this paper and illustrated
in Fig. 6. The one-loop calculation gives88,98

VKondo
J (�) = J − ν0J

2 ln
�

D
+ · · · . (67)

We already gave RG arguments in Sec. III C1 showing that
the Anderson model maps exactly onto the Kondo model for
energies well below the charging energy

√−εd (εd + U ). The
identification between Eqs. (67) and (66a) thus determines the
coupling constants J and D for the Kondo model, inherited
from the Anderson model, in terms of the original parameters
t , εd , and U . With the arbitrary choice

D =
√

−εd (εd + U ), (68)

Eq. (67) is reproduced from Eq. (66a) if J = J0 − (ν0/2)J 2
0 or

ν0J = − 2� U

πεd (εd + U )
− 2�2 U 2

π2ε2
d (εd + U )2

. (69)

The Kondo temperature TK is the energy scale for which
VKondo

J (TK ) is of order one. Among the different definitions
of TK , we use the high-temperature T � TK expansion100 of
the spin susceptibility (in proper units)

χ (T ) = 1

4 T

{
1 − 1

ln(T/TK )
− 1

2

ln[ln(T/TK )]

(ln T/TK )2

}
. (70)

A two-loop perturbative RG calculation on the Kondo
model (34) gives the Kondo temperature68

TK = BD
√

ν0 J e−1/ν0J , (71)

depending on J and D, where B is a prefactor of order one.
The precise value, B = e

3
4 +C/2π where C = 0.5772 . . . is

Euler’s constant, is obtained by comparing Eq. (70) with a

weak coupling (in J ) calculation of the susceptibility.68,101

Substituting J and D in the Kondo temperature (71) by their
expressions Eqs. (68) and (69) in terms of the parameters of the
Anderson model, the formula (30) derived by Haldane using a
completely different approach90 is recovered.

So far in this discussion, we have discarded the potential
scattering term in Eq. (34) because it does not alter the RG
flow and the results of Eqs. (68), (69), and (30) are still
valid. The potential scattering term can in fact be absorbed86–88

into a redefinition of the lead electron wave functions (with
a minor negligible correction as discussed in Sec. III B1)
such that the standard Kondo RG flow is recovered, albeit
with electrons scattered with the phase shift δσ − π/2 =
−arctan(πν0K(εd )) � −πν0K(εd ) with respect to the original
electrons. Here, K(εd ) = Vb

K , see Eq. (65b). Using the Friedel
sum rule

∑
σ δσ = π 〈n̂〉, the dot occupancy reads 〈n̂〉 =

1 − 2ν0K(εd ) leading, for the charge susceptibility, to the
formula Eq. (29) previously advertised. In the particle-hole
symmetric case, Eq. (29) reduces to

χc = 8�

πU 2

[
1 + 6

π

(
2�

U

)]
, (72)

in agreement with a Bethe ansatz calculation.89

With Eq. (29), we show that the charge fluctuations in
the Anderson model can be calculated perturbatively despite
the Kondo singularity that affects only the spin fluctuations.
This is another indication of the spin/charge separation in
the Anderson model.102 This separation no longer occurs in
the presence of a magnetic field and the problem of charge
fluctuations becomes nonperturbative. Nevertheless, the Fermi
liquid approach discussed in Sec. II still applies to the finite
magnetic field case.71

D. Field theory approach II: Renormalization
of the Coulomb blockade model

Unlike the Anderson model, the CBM does not exhibit
logarithmic singularities and the derivation of the low-energy
effective model can be performed using perturbation theory.
Nevertheless, similarly to the Anderson model, an expansion of
the CBM Hamiltonian Eq. (3) around the zero tunneling limit
t = 0 is unworkable because the unperturbed Hamiltonian is
not quadratic and Wick’s theorem does not apply. We thus
extend the approach of Barnes by introducing one boson
operator bn for each charge state with exactly n electrons on
the dot. The projection onto the physical sector∑

n

b†nbn = 1 (73)

is realized with the chemical potential λ, as in Sec. III C,
taken to infinity at the end of calculations. In this new basis,
the number of electrons on the dot is n̂ = ∑

n n b
†
nbn and

the charging energy part of the Hamiltonian Eq. (3) reads
Hc = Ec

∑
n n2 b

†
nbn. The charge states are coupled by the

tunneling term

HT = t
∑
klσ

(d†
lσ ckσA† + c

†
kσ dlσA), (74)
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where the operatorA = ∑
n b

†
n−1bn removes one electron from

the dot.
With −Ec < εd < Ec, n = 0 defines the low-energy sector

and, in a second order expansion in the dimensionless
conductance g = N (ν0t)2, only the charge states n = ±1,±2
are virtually occupied. We thus discard all charge states
with |n| > 2 from the action. The action assumes the form
S = S0 + S1 with

S0 = Tr

(
−

∑
kσ

c
†
kσG−1

k ckσ −
∑
lσ

d
†
lσD−1

l dlσ

)
, (75a)

S1 = Tr

[
−

2∑
n=−2

b†nF
−1
n bn + t

∑
klσ

(c†kσ dlσA + d
†
lσ ckσA†)

]
,

(75b)

where the trace stands for the typical integral over imaginary
time

Tr (O) =
∫ β

0
dτO(τ ). (76)

The free propagators are given by

G−1
k = −∂τ − εk, (77a)

D−1
l = −∂τ − εl, (77b)

F−1
n = −∂τ − λ − En, (77c)

where En = Ecn
2 + εdn denote the bare energies of the charge

states.
The structure of the action (75) allows the straightforward

integration of the high-energy fields b±1 and b±2 as detailed in
Appendix B. The action then reads S ′ = S0 + S2, where

S2 = Tr

⎡
⎢⎣−b

†
0F

−1
0 b0 + t2

∑
kk′ ll′
σσ ′

(c†kσ dlσ b
†
0F1d

†
l′σ ′ck′σ ′b0 + d

†
lσ ckσ b

†
0F−1c

†
k′σ ′dl′σ ′b0) + t4

∑
kk′k′′k′′′ ll′ l′′ l′′′
σσ ′σ ′′σ ′′′

c
†
kσ dlσ b

†
0F1c

†
k′′σ ′′dl′′σ ′′

×F2d
†
l′′′σ ′′′ck′′′σ ′′′F1d

†
l′σ ′ck′σ ′b0 + t4

∑
kk′k′′k′′′ ll′ l′′ l′′′
σσ ′σ ′′σ ′′′

d
†
lσ ckσ b

†
0F−1d

†
l′′σ ′′ck′′σ ′′F−2c

†
k′′′σ ′′′dl′′′σ ′′′F−1c

†
k′σ ′dl′σ ′b0

⎤
⎥⎦ . (78)

This action is the starting point of our perturbative expansion
around t = 0. The unperturbed action for t = 0 is indeed
quadratic and standard diagrammatics is applicable. Switching
to the frequency representation of the trace, the bare interaction
of the theory can be drawn diagrammatically as in Fig. 8.
In this section, we use the Wilsonian RG approach and
introduce the running energy scale � in the decomposition
φ = φs + φf , where φ = b0,ck,dl . φs represents the slow
degrees of freedom with Matsubara frequencies ωn < � and
φf the fast ones, ωn > �, that are integrated after expanding
the action Eq. (78) around t = 0. In the diagrams shown
in Figs. 9–12, the external lines are slow modes and the
internal lines fast modes. In the standard RG treatment, the
integration over fast modes is realized continuously to follow
the evolution of the coupling constants under RG. This is
not necessary in our case since no IR divergence occurs in
diagrams. The fast modes are therefore integrated all at once
and, since we are interested in the low-energy limit � → 0,
the energy windows for the fast modes in fact extends over all
frequencies.

1. Low-energy theory

After averaging over the fast modes and re-exponentiating
the action, one obtains the low-energy form

S = S0 +
∫ β

0
dτ

{
−b

†
0(τ )F−1

0 b0(τ ) + V
∑
kk′σ

[c†kσ (τ )ck′σ (τ )

− d
†
kσ (τ )dk′σ (τ )]b†0(τ )b0(τ )

}
, (79)

where F0 stands for the full propagator of the slave boson
b0. The opposite sign of the lead and dot scattering terms
originates from the ordering of the operators in Eq. (78). The

FIG. 8. Diagrammatic representation of free propagators in
the CBM integrated action (a). The diagrams are represented in
the frequency domain. The bare interaction of order t2 (b) and the
one of order t4 (c) are also shown. i
 = i�1 − iω1 − iν1 + i�2 −
iω2 + iω3 − i�3 + iω4 + iν2. The arrows pointing to the center of
these vertices indicate the frequency dependence of the high-energy
propagators included in the interaction (78).
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l, iω2

iνn iνn

k, iω1

F1(iνn + iω1 − iω2)

+

l, iω2

iνn iνn

k, iω1

F−1(iνn + iω2 − iω1)

FIG. 9. First-order diagrams for the slave-boson self-energy.

pole of the slave-boson propagator (recall that E0 = 0)

F0(iνn) = 1

iνn − λ − �0(iνn)
(80)

defines the renormalized slave-boson energy Ẽ0 = λ +
�0(Ẽ0). Close to this pole, the self-energy �0(iνn) is regular
and the slave-boson propagator takes the form

Fσ (iνn) = Z0

iνn − Ẽ0
, (81)

with Z0 = [1 − ∂ω�0(Ẽ0)]−1. Thus the IR fixed point corre-
sponds to iν = Ẽ0.

The coupling constant V in the action Eq. (79) derives
from the interaction vertex between slave-bosons and lead
fermions (−V for the dot fermions), illustrated in Fig. 10 to
lowest order in g, taken at iν = Ẽ0 for the slave-bosons and
iω = 0 for the fermions. A rescaling of the slave-boson field
b0 → √

Z0 b0 in Eq. (79) removesZ0 from the propagator (81)
and renormalizes the vertexV → VR . The renormalized vertex
VR is therefore the relevant object describing the scattering of
electrons as in Sec. III C for the Anderson model. After this
rescaling, the limit λ → +∞ simply enforces b

†
0(τ )b0(τ ) =

1 and the low-energy Hamiltonian corresponding to the
action (79) becomes

H = H0 + VR
∑
kk′σ

(c†kσ ck′σ − d
†
kσ dk′σ ) (82)

and confirms the Fermi liquid picture developed in Sec. II E,
see for instance Eq. (14) with K(εd ) = ±VR for the lead/dot
electrons.

Sections III D2 and III D3 are devoted to the evaluation of
VR . The slave-boson propagator is first calculated, in order
to access Z0 and Ẽ0, then the vertex V . We finally apply the
Friedel sum rule to the Hamiltonian (82) to determine the mean
occupancy of the dot and compare with a direct calculation.

Va

l, iωn

i˜ iν ν̃

k, iω k, iω
F1(iν̃ + iω − iωn)

+

Vb

l, iωn

i˜ iν ν̃

k, iω k, iω
F−1(iν̃ + iωn − iω)

FIG. 10. First-order diagrams for the vertex V .

V1

m, iω3

l, iω2

k, iω1

iν̃ + iω − iω1 + iω2 − iω3

F1(iν̃ + iω − iω3) F1(iν̃ + iω − iω3)

iω iω

i˜ iν ν̃

V2

m, iω3

l, iω2

k, iω1

iν̃ − iω + iω1 − iω2 + iω3

F1(iν̃ + iω1 − iω2) F1(iν̃ + iω1 − iω2)

iω iω

i˜ iν ν̃

V5

m, iω3

l, iω2

k, iω1

iν̃ + iω − iω1 + iω2 − iω3

F1(iν̃ + iω − iω3) F−1(iν̃ − iω1 + iω2)

iω iω

i˜ iν ν̃

V6

m, iω3

l, iω2

k, iω1

iν̃ − iω + iω1 − iω2 + iω3

F1(iν̃ + iω1 − iω2) F−1(iν̃ − iω + iω3)

iω iω

i˜ iν ν̃

FIG. 11. Second-order (in g) diagrams involving the six-leg ver-
tex shown in Fig. 8 and scaling as Nt4. The diagrams corresponding
to the contributions V3 and V4 are not shown, they are similar to V1

and V2 but come with an opposite sign and the change En → E−n,
see also Appendix C. The diagrams scaling only as t4 have been
discarded under the assumption of large channel number N .

2. The slave-boson propagator

For an overall calculation of second order in g, only the first-
order approximation of the slave-boson self-energy is needed.
Including the diagrams shown in Fig. 9, it reads

�0(iνn) = − t2

β2

∑
klσ iω1,2

Gk(iω1)Dl(iω2)[F1(iνn + iω1 − iω2)

+F−1(iνn + iω2 − iω1)]

= −N (ν0t)
2
∫

dε1dε2

[
θ (ε1)θ (ε2)

ε1 + ε2 + E1 + λ − iνn

+ θ (ε1)θ (ε2)

ε1 + ε2 + E−1 + λ − iνn

]
, (83)

FIG. 12. Same as Fig. 11 but with diagrams involving the ten-leg
vertex shown in Fig. 8. The diagrams leading to V10,11,12 are not
represented, they are similar to V7,8,91 but come with an opposite
sign and the change En → E−n, see also Appendix C. Notice V9 =
V91 + V92 = 2V91.
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where all electrons energies have been summed over and the
limit λ → ∞ taken. The self-energy in Eq. (83) exhibits a
linear UV divergence. The theory is regularized with the cutoff
function e−ε/D0 . Fortunately, all UV divergences cancel out in
the final expression of the renormalized vertex, as discussed
in Appendix C and the limit D0 → +∞ is eventually taken.
From Eq. (83), one extracts the values of Z0 = 1 + ∂ω�0(λ)
and the renormalized energy Ẽ0 = λ + �0(λ) to order g.

3. The vertex

The leading contributions to the vertex V are represented
in Fig. 10. They are similar to the self-energy diagrams of
Fig. 9 but without contraction of the lead electron lines. The
first diagram gives

− t2

β

∑
l,iωn

Dl(iωn)F1(iν + iω − iωn)

= −ν0t
2
∫

dε
1 − f (ε)

ε + E1 − �(λ)
,

− t2

β

∑
l,iωn

Dl(iωn)F1(iν̃ + iω − iωn) (84)

= −ν0t
2
∫

dε
1 − f (ε)

ε + E1 − �(λ)
,

where the analytical continuations iω → 0 and iν → λ +
�0(λ) have been carried out together with the λ → ∞ limit.
Adding both diagrams in Fig. 10 and expanding to second
order in g (fourth in t), we obtain

V ′ = ν0t
2 ln

E1

E−1
+ Nν3

0 t
4
∫

ε1,ε2,ε3>0
dε1dε2dε3

×
( ∑

s=±1

1

ε1 + ε2 + Es

) [ ∑
s=±1

s

(ε3 + Es)2

]
. (85)

The number of integration variables is reduced by changing
variables, ε1 + ε2 → ε1 and integrating over ε2, leading to

V ′ = ν0t
2 ln

E1

E−1
+ Nν3

0 t4
∫

ε1,ε3>0
dε1dε3

×
( ∑

s=±1

ε1

ε1 + Es

) [ ∑
s=±1

s

(ε3 + Es)2

]
. (86)

We note in passing that the leading order result, i.e., the first
term in Eq. (86), coincides with our previous Schrieffer-Wolff
calculation, see Eq. (41). An additional contribution to the
renormalized vertex VR is brought by the slave-boson weight
Z0, when the first-order correction to Z0 multiplies the first
term in Eq. (86), namely,

V ′′ = −Nν3
0 t4 ln

(
E1

E−1

) ∫
ε>0

dε

[ ∑
s=±1

ε

(ε + Es)2

]
. (87)

We finally turn to the genuine second-order diagrams for the
vertex V and therefore VR . At this point, a distinction can be
operated between diagrams scaling as Nt4 and those scaling as
t4. The calculation is greatly simplified by keeping the former

and discarding the latter in a large N calculation. In addition,
the diagrams are classified depending on whether they involve
the six-leg vertex of Eq. (78) (of order g) shown in Fig. 8,
those diagrams being listed in Fig. 11, or the ten-leg vertex (of
order g2), again in Fig. 8, those latter diagrams being listed in
Fig. 12.

We shall calculate explicitly only the vertex contribution
V1 and quote the results of other contributions in Appendix C.

The expression associated to the diagram V1 is given by

V1 = N
t4

β3

∑
klm,iω1,2,3

Gk(−iω1)Dl(iω2)Dm(−iω3)

×F 2
1 (iν̃ + iω + iω3)F0(iν̃ + iω + iω1 + iω2 + iω3),

(88)

and, after summing over the Matsubara frequencies ω1,2,3 in
the limit λ → ∞, one obtains

V1 = Nt4
∑
klm

f (−εk)f (εl)f (−εm)

(εm + E1)2(εl − εk − εm)

= −Nν3
0 t4

∫
ε1,ε2>0

dε1dε2
ε1

(ε2 + E1)2(ε1 + ε2)
. (89)

The calculation of the other twelve diagrams illustrated in
Figs. 11 and 12 are not particularly enlightening and follow the
same line as the calculation of V1. The different contributions
are therefore summarized in Appendix C. The summation over
these twelve terms together withV ′ andV ′′ is also performed in
Appendix C where special attention is paid to the cancellation
of the different UV divergences. In the limit N → +∞, the
final result for the renormalized vertex to second order in g

reads

VR = ν0t
2 ln

E1

E−1
+ Nν3

0 t4 (A[εd ] − A[−εd ]) , (90a)

A[εd ] = −εd

2Ec

(
4π2

3
+ ln2 Ec + εd

Ec − εd

)

+ 8
(
2E2

c − 2Ecεd − ε2
d

)
(3Ec + εd )(Ec − εd )

ln
Ec + εd

Ec

+ (2Ec + εd )

Ec

[
ln2 Ec + εd

4Ec + 2εd

+ 2Li2

(
3Ec + εd

4Ec + 2εd

)

− 4Ec(2Ec + εd )

(Ec + εd )(3Ec + εd )
ln

4Ec + 2εd

Ec

]
. (90b)

This result, substituted in the low-energy Hamiltonian (82),
gives access to the dot occupancy

〈n̂〉 = g ln
Ec − εd

Ec + εd

− g2 (A[εd ] − A[−εd ]) , (91)

by using the Friedel sum rule

〈n̂〉 = −(N/π ) arctan(πν0VR) � −Nν0VR.

The result of Eq. (91) coincides with a direct calculation of
the dot occupancy78,92 using a different perturbative approach,
which validates, at least perturbatively, the Fermi liquid
description emphasized in Sec. II.
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IV. SUMMARY AND CONCLUSIONS

We investigated the dynamical response of a quantum
dot attached to a lead. We studied the low-frequency charge
fluctuations on the dot that are related to the admittance of
this quantum circuit in the linear regime. We argued that
the system at low energy behaves as a local Fermi liquid
where inelastic scattering events can be disregarded and lead
electrons are simply coherently backscattered by the dot. The
present work extends in a way the general analysis built
by Büttiker and coworkers to study the dynamic admittance
of mesoscopic conductors, by including arbitrarily strong
Coulomb interactions within the dot. We avoid the introduction
of an approximate self-consistent potential on the dot.

By computing the power dissipated by the external ac
drive, we were able to derive a set of general formulas for
the quantum capacitance and the charge relaxation resistance
that characterize the response of the dot at low frequency.
Remarkably, the results are essentially not so different from
the weakly interacting picture. The fundamental reason is
that electrons close to the Fermi energy do not feel strong
interactions as a result of Pauli blocking, following the
standard Fermi liquid argument.75 Our approach is naturally
not applicable for models exhibiting non-Fermi liquid physics
such as the two-channel model close to charge degeneracy. In
these models, the mere definition of a capacitance and a charge
relaxation resistance is elusive as a result of unconventional
scaling laws.

Another important assumption in our work is that the
Friedel sum rule is satisfied. This seems to be the case for the
two models we investigated, but it is certainly not general, even
for a Fermi liquid fixed point. However, the fact that dissipation
comes from the time-dependence in the phase shift felt by lead
electrons does not rely on the Friedel sum rule and should
apply to more general models such as double-dot geometries.
Also we only considered the case of zero temperature or
temperatures much smaller than the charging energy. At higher
temperatures, inelastic modes are excited and the analysis
presented here is not applicable.

In order to put the Fermi liquid picture on firm grounds, we
calculated, based on a renormalization group analysis, the low-
energy theory for two representative models describing the
quantum RC circuit: the Anderson and the Coulomb blockade
models. In addition to providing an alternative demonstration
of the mapping from the Anderson to the Kondo model, we
find that the phenomenological low-energy theory proposed in
this paper is recovered perturbatively for the two models. The
Friedel sum rule was also checked explicitly.

We conclude with a technical remark regarding Ref. 53
where the case of a tunnel junction (infinite N ) was consid-
ered. The definition of the charge relaxation resistance Rq

involves formally the limit of vanishing frequency ω → 0.
At finite temperature, this limit does not commute with an
expansion in the tunneling g or � as emphasized in Ref. 53
(see also Ref. 103). At zero temperature, however, the two
limits commute104 and the perturbative expansion of Sec. III
becomes justified. Moreover, at finite by small temperatures,
a large frequency h̄ω � kBT is sufficient to suppress the
singular term ∝1/ω and the results of Sec. III are still
valid.
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APPENDIX A: CALCULATION OF THE VERTEX V a

Once we consider that

(Sβτ · sασ )(Sτ ′β · sσ ′α) = − 1
2 Sτ ′τ · sσ ′σ + 3

16δττ ′δσσ ′, (A1)

it is possible to determine which term will contribute to the
exchange and to the potential scattering part of the vertex
Va = S · sVa

J + Va
K , where

Va
J = 4

t4

β

∑
k,iωn

F (iωn)Gk(iω� + iω − iωn)
[
F 2

2 (iω� + iω)

+F2(iω� + iω)F0(iωn − iω)
]
, (A2a)

Va
K = − t4

β

∑
k,iωn

F (iωn)Gk(iω� + iω − iωn)
[
F 2

0 (iωn − iω)

+F 2
2 (iω� + iω) + F0(iωn − iω)F2(iω� + iω)

]
.

(A2b)

We detail the calculation of the Matsubara sums only for
the following example:

1

β

∑
k,iωn

F (iωn)Gk(iω� + iω − iωn)F 2
0 (iωn − iω)

= ν0

∫ D0

−D0

dε

[
f (λ)

(iω� + iω − λ − ε)(εd − iω)2

− f (iω� + iω − ε)

(iω� + εd − λ − ε)2(iω� + iω − ε − λ)

+ d

dz

f (z)

(z − λ)(iω� + iω − z − ε)

∣∣∣∣
z=iω+λ−εd

]
. (A3)

Notice f (iω� + iω − ε) = f (−ε). The analytical continu-
ations of Eq. (52) can now be performed and the first deviation
from λ of ε̃d in Eq. (57) can be neglected to this order. The
denominators do not depend on λ anymore and, as required
by the projection technique, the λ → ∞ limit can be taken.
All the contributions of the poles that were proportional to λ

disappear and the only remaining integral is

ν0

∫ D0

0

dε

(ε + �)(εd − ε)2
= ν0

ε2
d

(
ln

−εd

D0
− ln

�

D0
− 1

)
.

It is also possible to take the infinite bandwidth limit D0 →
∞ in this expression, but it is convenient to keep a finite cutoff
for the moment. The same kind of calculations gives analog
results for the remaining sums:

1

β

∑
k,iωn

F (iωn)Gk(iω� + iω − iωn)F0(iωn − iω)F2(iω� + iω)

= ν0

εd (εd + U )

(
ln

�

D0
− ln

−εd

D0

)
, (A4)
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1

β

∑
k,iωn

F (iωn)Gk(iω� + iωiωn)F 2
2 (iω� + iω)

= − ν0

(εd + U )2
ln

�

D0
. (A5)

These last expressions allow us to obtain Eq. (63).

APPENDIX B: INTEGRATION OF THE HIGH-ENERGY
MODES IN THE COULOMB BLOCKADE MODEL

The action Eq. (78) being quadratic in the high-energy
modes b±2, their integration is straightforward and brings
separate terms to the effective action:

b2 : t2
∑

kk′ll′σσ ′
Tr[c†kσ dlσ b

†
1F2d

†
l′σ ′ck′σ ′b1], (B1a)

b−2 : t2
∑

kk′ll′σσ ′
Tr[d†

lσ ckσ b
†
−1F−2c

†
k′σ ′dl′σ ′b−1]. (B1b)

This action can be written as S = S0 + S1 + S−1, with

S1 = Tr

[
−b

†
1


−1
1 b1 + t

∑
klσ

(c†kσ dlσ b
†
0b1 + d

†
lσ ckσ b

†
1b0)

]
,

(B2a)

S−1 = Tr

[
− b

†
−1


−1
−1b−1

+ t
∑
klσ

(c†kσ dlσ b
†
−1b0 + d

†
lσ ckσ b

†
0b−1)

]
, (B2b)

and the new effective propagators


−1
1 = F−1

1 − t2
∑

kk′ll′σσ ′
c
†
kσ dlσF2d

†
l′σ ′ck′σ ′, (B3)


−1
−1 = F−1

−1 − t2
∑

kk′ll′σσ ′
d
†
lσ ckσF−2c

†
k′σ ′dl′σ ′ . (B4)

The integration over the b±1 modes is still Gaussian and the
effective action without high-energy bosonic modes is finally
obtained:

S = S0 + Tr

[
−b

†
0F

−1
0 b0 + t2

∑
kk′ll′σσ ′

c
†
kσ dlσ b

†
0
1d

†
l′σ ′ck′σ ′b0

+ t2
∑

kk′ll′σσ ′
d
†
lσ ckσ b

†
0
−1c

†
k′σ ′dl′σ ′b0

]
. (B5)

The 
 operators can be expanded perturbatively in t :


1 = F1 + t2
∑

kk′ll′σσ ′
F1c

†
kσ dlσ F2d

†
l′σ ′ck′σ ′F1, (B6a)


−1 = F−1 + t2
∑

kk′ll′σσ ′
F−1d

†
lσ ckσF−2c

†
k′σ ′dl′σ ′F−1. (B6b)

This gives the action (78).

APPENDIX C: SUMMATION OF ALL THE
CONTRIBUTIONS OF V R IN THE COULOMB

BLOCKADE MODEL

All the contributions corresponding to the diagrams of
Figs. 11 and 12 are listed below (with C = Nν3

0 t4):

V1 = −C
∫

dε1dε2
ε1

(ε2 + E1)2(ε1 + ε2)
,

V2 = C
∫

dε1dε2
ε1

(ε1 + E1)2(ε1 + ε2)
,

V3 = C
∫

dε1dε2
ε1

(ε2 + E−1)2(ε1 + ε2)
,

V4 = −C
∫

dε1dε2
ε1

(ε1 + E−1)2(ε1 + ε2)
,

V5 = −2C
∫

dε1dε2
ε1

(ε1 + ε2)(ε2 + E1)(ε1 + E−1)
,

V6 = 2C
∫

dε1dε2
ε1

(ε1 + ε2)(ε1 + E1)(ε2 + E−1)
,

V7 = −C
∫

dε1dε2
ε1

(ε2 + E1)2(ε1 + ε2 + E2)
,

V8 = −C
∫

dε1dε2
ε1

(ε1 + E1)2(ε1 + ε2 + E2)
,

V9 = −2C
∫

dε1dε2
ε1

(ε2 + E1)(ε1 + ε2 + E2)(ε1 + E1)
,

V10 = C
∫

dε1dε2
ε1

(ε2 + E−1)2(ε1 + ε2 + E−2)
,

V11 = C
∫

dε1dε2
ε1

(ε1 + E−1)2(ε1 + ε2 + E−2)
,

V12 = 2C
∫

dε1dε2
ε1

(ε1 + E−1)(ε1 + ε2 + E−2)(ε2 + E−1)
,

(C1)

where integrals run over the ε1,2 > 0 domain, to which the
contributions of Eqs. (86) and (87) must be added. Whereas
each term in Eqs. (C1), (86), and (87) suffers from a UV
divergence, the summation over all contributions is finite and
does not depend on the cutoff procedure. We shall adopt a
sharp cutoff at energy D0 in the following. Moreover, the
calculation exhibits a particle-hole symmetry: for example, V3

can be viewed as the symmetric of V1, they have opposite sign
and En exchanged with E−n. The result will then be necessarily
of the form A[εd ] − A[−εd ], which implies that any constant
independent of εd will be ignored during calculations. The
dilogarithm function appears

Li2(z) =
∫ 0

z

dt
ln(1 − t)

t
, (C2)

and the following equalities will be exploited:

Li2(x) + Li2(1 − x) = π2

6
− ln x ln(1 − x), (C3a)

Li2(x) + Li2

(
1

x

)
= π2

3
− 1

2
ln2 x − iπ ln x,(x � 1).

(C3b)
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As an intermediate step, we find (we omit the Nν3
0 t

4

factor)

V1 + V2 = −D0

E1
− 2 ln E1 ln D0 + ln2 D0

− 2 ln D0 + ln2 E1 + 2 ln E1,

V7 + V8 = −D0

E1
+ E2

E1
ln D0

+ 1

E1(E2 − E1)

(
E1E2 ln E1 − E2

2 ln E2
)
,

V5 + V6 + V ′′ = − εd

Ec

π2 − εd

Ec

ln2 E1

E−1
+ 2 ln

E1

E−1
,

V9 = 2 ln E1 ln D0 − ln2 D0 + E1

Ec

ln2 E1

− E1

Ec

π2

2
+ E2

Ec

π2

6
+ E2

Ec

Li2

(
E2 − E1

E2

)

+ E2

2Ec

ln2 E2 − E2

Ec

ln E1 ln E2,

with the contribution of Eq. (86):

V ′ = ν0t
2 ln

E1

E−1
+ Nν3

0 t
4(V ′

a + V ′
b), (C4)

V ′
a =

∫
dε1dε2

1

(ε2 + E1)

[
ε1

(ε1 + E1)
+ ε1

(ε1 + E−1)

]

= 2D0

E1
− ln D0 − E−1

E1
ln D0 + ln E1 + E−1

E1
ln E−1,

(C5)

whereV ′
b is obtained fromV ′

a by particle-hole symmetry. It can
be checked explicitly that the terms depending on the cutoff
D0 in the above expressions cancel out when the summation
over all contributions is carried out. One is left with

V1 + V2 = ln2 E1 + 2 ln E1,

V7 + V8 = 1

E1(E2 − E1)
(E1E2 ln E1 − E2

2 ln E2),

V ′
a = ln E1 + E−1

E1
ln E−1,

V5 + V6 + V ′′ = − εd

Ec

π2 − εd

Ec

ln2 E1

E−1
+ 2 ln

E1

E−1
,

V9 = E1

Ec

ln2 E1 − E1

Ec

π2

2
+ E2

Ec

π2

6
+ E2

2Ec

ln2 E2

+ E2

Ec

Li2

(
E2 − E1

E2

)
− E2

Ec

ln E1 ln E2.

Adding the particle-hole symmetric terms, one finally arrives
at Eq. (90).
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B. Plaçais, G. Fève, M. Albert, C. Flindt, and M. Büttiker, Phys.
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G. Fève, B. Huard, C. Mora, A. Cottet, and T. Kontos, Phys. Rev.
Lett. 107, 256804 (2011).

27T. Frey, P. J. Leek, M. Beck, A. Blais, T. Ihn, K. Ensslin, and
A. Wallraff, Phys. Rev. Lett. 108, 046807 (2012).

125311-18

http://dx.doi.org/10.1209/0295-5075/17/3/011
http://dx.doi.org/10.1007/BF01307664
http://dx.doi.org/10.1007/BF01307664
http://dx.doi.org/10.1103/PhysRevB.58.R10135
http://dx.doi.org/10.1103/PhysRevLett.81.1286
http://dx.doi.org/10.1103/PhysRevLett.95.256802
http://dx.doi.org/10.1103/PhysRevLett.95.256802
http://dx.doi.org/10.1103/PhysRevB.74.085305
http://dx.doi.org/10.1103/PhysRevB.74.085305
http://dx.doi.org/10.1063/1.1784875
http://dx.doi.org/10.1063/1.1815041
http://dx.doi.org/10.1063/1.1815041
http://dx.doi.org/10.1103/PhysRevLett.73.3443
http://dx.doi.org/10.1103/PhysRevLett.73.3443
http://dx.doi.org/10.1126/science.1096377
http://dx.doi.org/10.1126/science.1096377
http://dx.doi.org/10.1126/science.280.5367.1238
http://dx.doi.org/10.1103/PhysRevLett.84.1986
http://dx.doi.org/10.1103/PhysRevLett.84.1986
http://dx.doi.org/10.1103/PhysRevLett.96.176601
http://dx.doi.org/10.1103/PhysRevLett.96.176601
http://dx.doi.org/10.1103/PhysRevLett.99.206804
http://dx.doi.org/10.1126/science.1084175
http://dx.doi.org/10.1126/science.1084175
http://dx.doi.org/10.1103/PhysRevLett.96.136804
http://dx.doi.org/10.1103/PhysRevLett.96.136804
http://dx.doi.org/10.1103/PhysRevLett.105.166801
http://dx.doi.org/10.1103/PhysRevLett.105.166801
http://dx.doi.org/10.1038/nphys1339
http://dx.doi.org/10.1103/PhysRevLett.99.236803
http://dx.doi.org/10.1103/PhysRevLett.100.026601
http://dx.doi.org/10.1103/PhysRevLett.100.026601
http://dx.doi.org/10.1103/PhysRevLett.104.206802
http://dx.doi.org/10.1126/science.1126940
http://dx.doi.org/10.1126/science.1141243
http://dx.doi.org/10.1126/science.1141243
http://dx.doi.org/10.1103/PhysRevB.82.201309
http://dx.doi.org/10.1103/PhysRevB.85.165438
http://dx.doi.org/10.1103/PhysRevB.85.165438
http://dx.doi.org/10.1103/PhysRevLett.107.256804
http://dx.doi.org/10.1103/PhysRevLett.107.256804
http://dx.doi.org/10.1103/PhysRevLett.108.046807


FERMI LIQUID APPROACH TO THE QUANTUM RC . . . PHYSICAL REVIEW B 86, 125311 (2012)

28F. Persson, C. M. Wilson, M. Sandberg, G. Johansson, and
P. Delsing, Nano Lett. 10, 953 (2010).

29C. Ciccarelli and A. J. Ferguson, New J. Phys. 13, 093015 (2011).
30S. J. Chorley, J. Wabnig, Z. V. Penfold-Fitch, K. D. Petersson,

J. Frake, C. G. Smith, and M. R. Buitelaar, Phys. Rev. Lett. 108,
036802 (2012).

31A. Cottet, C. Mora, and T. Kontos, Phys. Rev. B 83, 121311 (2011).
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51S. E. Nigg and M. Büttiker, Phys. Rev. Lett. 102, 236801 (2009).
52I. Garate and K. Le Hur, Phys. Rev. B 85, 195465 (2012).
53Y. I. Rodionov, I. S. Burmistrov, and A. S. Ioselevich, Phys. Rev.

B 80, 035332 (2009).
54C. Petitjean, D. Waltner, J. Kuipers, I. Adagideli, and K. Richter,

Phys. Rev. B 80, 115310 (2009).
55Y. Etzioni, B. Horovitz, and P. Le Doussal, Phys. Rev. Lett. 106,

166803 (2011).
56M. Moskalets, P. Samuelsson, and M. Büttiker, Phys. Rev. Lett.
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89 B. Horvatić and V. Zlatić, J. Phys. France 46, 1459 (1985).
90F. D. M. Haldane, J. Phys. C 11, 5015 (1978).
91E. Lebanon, A. Schiller, and F. B. Anders, Phys. Rev. B 68, 041311

(2003).
92H. Grabert, Physica B 194, 1011 (1994).
93J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).
94S. E. Barnes, J. Phys. F 6, 1375 (1976).
95A. A. Abrikosov and A. A. Migdal, J. Low Temp. Phys. 3, 519

(1970).
96M. Fowler and A. Zawadowski, Solid State Commun. 9, 471

(1971).
97M. Fowler, Phys. Rev. B 6, 3422 (1972).
98J. Solyom, J. Phys. F 4, 2269 (1974).
99 A. A. Abrikosov, Physics 2, 5 (1965) .

100N. Andrei, K. Furuya, and J. H. Lowenstein, Rev. Mod. Phys. 55,
331 (1983).

101N. Andrei and J. H. Lowenstein, Phys. Rev. Lett. 46, 356 (1981).
102A. M. Tsvelick and P. B. Wiegmann, Adv. Phys. 32, 453 (1983).
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