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Current fluctuations in noncollinear single-electron spin-valve transistors
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We present a theoretical framework to analyze fluctuations of electric current through a noncollinear single-
electron spin-valve transistor in the limit of weak tunnel coupling. The system under consideration consists of two
tunnel junctions that connect a small, nonmagnetic metallic island to two ferromagnetic leads with noncollinear
magnetization. We study the current noise spectrum as a function of bias voltage, frequency, and the relative
angle between the leads’ magnetization directions and find that both the zero- and the finite-frequency current
noise are strongly affected by charging energy and spin accumulation in the island.
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I. INTRODUCTION

The continuous trend of miniaturization in electronics,
after the realization of the first transistor,1 has led to device
dimensions that nowadays approach the nanometer scale, at
which Coulomb interaction effects and quantum mechanics
become important. A paradigmatic system for the emergence
of such phenomena is the single-electron transistor (SET), in
which the continuous movement of charge carriers is replaced
by a discrete charging and discharging of a small central
electrode.2,3 Electrodes and the central island of the SETs
may be composed of different materials, involving normal
metals, superconductors, and/or ferromagnets. The use of
ferromagnetic components gives rise to spintronic effects
such as tunnel-magneto resistance (TMR), which can be
used in information technology.4–7 Therefore, SETs based
on ferromagnetic materials have been extensively studied
experimentally8–30 and theoretically.31–61 The current noise
can reveal additional information about the transport processes
that is not contained in the mean current. In many works, the
Fano factor F = SII /(2eI ), where SII (properly defined be-
low) is the noise of the current I and e is the elementary charge,
is introduced into the analysis. Especially in the context of
mesoscopic devices (such as SETs), current fluctuations have
attracted much interest over the years; for a review, see Ref. 62.

It has been shown that interaction effects can destroy
the typical fermionic suppression of the classical Pois-
son noise. Super-Poissonian Fano factors have been ob-
served in devices containing electron reservoirs that are
coupled to quantum wells,63 quantum dots,64–73 single
molecules,74–76 carbon nanotubes,74,77 single-barrier semicon-
ductor heterostructures,78 and quantum rings.79

In the present work we study current fluctuations of a
single-electron transistor composed of a central metallic island
that is weakly tunnel coupled to two ferromagnetic leads,
whose magnetization directions enclose an arbitrary angle φ;
see Fig. 1. This so called noncollinear single-electron spin-
valve transistor shows typical single-electron and spintronic
phenomena, such as Coulomb oscillations, Coulomb block-
ade, TMR, and spin accumulation. Furthermore, the system
exhibits an interaction-induced exchange field that exists
between the central region and the leads.45,46,61 This fictitious
field is evoked by virtual tunneling processes between the
interacting central region and the polarized leads and results
in a precession of the accumulated island spin. The existence of

such an exchange field in mesoscopic conductors was firstly
theoretically described80 and experimentally confirmed81–83

in the context of quantum dots coupled to ferromagnetic
reservoirs.

In the literature, there are several publications dealing with
current fluctuations in special limits of the single-electron spin-
valve transistor. The complexity of the required theoretical
description drastically simplifies if one considers unpolarized
leads (p = 0) only. In this limit (two normal leads coupled
to a central normal region with a continuous level spectrum,
NNN), zero-frequency84–86 as well as finite-frequency87–91

current fluctuations have been addressed theoretically. Since
in experiments the shot noise is often superimposed by
other sources of noise (e.g., the noise of the used amplifiers
or the 1/f noise that occurs due to defects in or near
the junctions), there are just a few experimental works studying
the current fluctuations of the NNN system. Most of them
have to restrict their noise measurements to the regime
of large bias voltages.92–94 However, recently Kafanov and
Delsing measured the noise of the NNN system over a wide
voltage range.95 Most of the published works considering
current fluctuations of single-electron spin-valve transistors
(i.e., SETs involving ferromagnets) restrict the investigations
to collinear setups (p �= 0, φ ∈ {0,π}).96–100 The charge- and
spin-current noise has been considered for zero as well as
for finite frequency. There are works that additionally focus
on the investigation of the effect of spin-flip scattering on the
charge- or spin-current fluctuations.98–100 It has been predicted
that the Fano factor strongly depends on the lead polarization,
the spin-flip scattering strength, and the contact resistances.
The limit of arbitrary angle φ but absence of Coulomb
charging effects on the central electrode has been studied in
Ref. 101.

In the present work, we derive a theoretical framework
relying on a diagrammatic real-time approach that incorporates
the general description of noncollinear lead magnetization
directions and Coulomb charging effects on the central elec-
trode. The used theory allows for a systematic expansion in the
tunnel-coupling strength �. Due to the weak coupling between
island and leads, we perform a perturbation expansion of the
transport properties up to first order in �. The presented theory
allows for the investigation of the zero-frequency as well as
the frequency-dependent current noise for the noncollinear
single-electron spin-valve transistor.
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FIG. 1. A metallic island is tunnel coupled to two adjacent ferro-
magnetic leads with noncollinear magnetization directions enclosing
an arbitrary angle φ. This system is called single-electron spin-valve
transistor.

II. MODEL

The system under consideration is the single-electron spin-
valve transistor that is illustrated in Fig. 1. Its Hamiltonian
takes the form

H =
∑

r=L,R

Hr + HI + HC +
∑

r=L,R

HT,r . (1)

The left (r = L) and right (r = R) ferromagnetic leads are
described as reservoirs of noninteracting electrons by

Hr =
∑
ksν

εrks a
†
rksνarksν, (2)

with a
(†)
rksν being the annihilation (creation) operator of lead r ,

momentum k, and transverse-channel index ν = 1,2, . . . ,Nc.
The majority (minority) spin states are quantized along the
lead magnetization direction n̂r and denoted by the spin index
s = +(−). The two vectors n̂L and n̂R enclose the angle φ. For
simplicity we choose the density of states ρr

s , that describes
the spin-σ electrons in lead r , to be energy independent. As
a consequence, the lead’s degree of spin polarization pr =
(ρr

+ − ρr
−)/(ρr

+ + ρr
−) is constant in energy.

The two contributions HI and HC represent the metallic
island with an energy spectrum εl that is characterized by a
typical level spacing 
ε. In our work, we are interested in the
limit kBT ,eV � 
ε, where the spectrum can be viewed as
continuous. The first part,

HI =
∑
lσν

εl c
†
lσνclσν, (3)

describes the kinetic energy of the electrons with spin σ

occupying the island level l in the transverse channel ν. The
annihilation (creation) operator of island electrons in the state
lσν is denoted by c

(†)
lσν . In our model the levels of the spectrum

are assumed to be independent of spin σ and channel ν. Due
to the noncollinear lead magnetization directions there is no
canonical choice for the spin quantization axis of the island. As
demonstrated in Ref. 61 it is convenient to choose the island
spin-quantization axis n̂S parallel to the accumulated island
spin S. In Fig. 2 we introduce two angles that determine the
orientation of S relative to the lead magnetization directions.
The angle α is enclosed by the (n̂L − n̂R) axis and the
projection of S onto the (n̂L,n̂R) plane, and β is defined as
the angle between S and the (n̂L,n̂R) plane.

FIG. 2. (Color online) Scheme of the relative orientation of the
polarization directions of the two leads n̂L,n̂R and the accumulated
spin on the island S, parametrized by the angles α and β. For clarity
reasons, the island spin S is decomposed into two parts, S = Sin + Spp,
where Sin and Spp are the contributions in the (n̂L,n̂R) plane and
perpendicular to it, respectively.

The second term describing the island models the Coulomb
interaction of electrons that occupy the island:

HC = EC(N − Next)
2. (4)

Here, N is the number of island electrons and the param-
eter EC = e2/(2C) represents the charging-energy scale
of the system with e being the elementary charge. The
total capacitance C = CL + CR + CG is the sum of the
capacitances of the left and right interfaces and the gate.
We assume equal junction capacitances (CL = CR) since
they are much less sensitive to the geometry of the tunnel
contacts than the tunnel couplings. Furthermore, the bias
voltage V is applied symmetrically to the leads; that is, their
electrochemical potentials are μL = eV/2 and μR = −eV/2.
As a consequence, the external charge e Next = CGVG depends
only on the gate voltage VG (and not on the bias voltage
V ). For later convenience, we define the energy of the
decoupled island system in a microscopic island state χ as
Eχ = 〈χ |(HI + HC)|χ〉 and additionally we define 
N as the
difference of charging energies of N + 1 and N electrons, that
is, 
N = EC[2(N − Next) + 1].

Electron tunneling between the ferromagnetic lead r and
the central island is described by the tunneling Hamiltonian

HT,r =
∑
klsσν

V r
sσ a

†
rksνclσν + H.c., (5)

where we already assumed that the tunneling-matrix elements
V r

sσ are independent of momentum k and transverse channel
index ν. Due to the chosen quantization axis of the island
spin the elements V r

sσ not only consist of the spin-independent
tunnel amplitude tr but also contain matrix elements of an
SU(2) rotation that connects the different spin quantization
axes. In terms of the angles α and β the tunneling-matrix
elements of the left lead are given by

V L
±↑ = tL√

2

[
± eiφ/2 cos

(
β

2
− π

4

)
− ieiα sin

(
β

2
− π

4

)]
,

(6)

V L
±↓ = tL√

2

[
± eiφ/2 sin

(
β

2
− π

4

)
+ ieiα cos

(
β

2
− π

4

)]
.

(7)
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The elements describing the right lead can directly be obtained
by replacing L → R and φ → −φ. The tunneling rate for
electrons from lead r with spin s into the island spin state σ

is given by �r
sσ /h̄ = 2πρr

s |V r
sσ |2/h̄. Finally, we define �r

σ =∑
s �r

sσ , �r = ∑
σ �r

σ /2 and � = ∑
r �r .

III. METHOD

In Ref. 61 we presented a diagrammatic real-time technique
to calculate the average current through a noncollinear single-
electron spin-valve transistor. The approach incorporates
noncollinearity of the lead magnetization directions as well
as Coulomb charging effects on the central electrode that is
treated nonperturbatively. In order to address the frequency-
dependent current fluctuations of the device, we need to extend
this theory accordingly, which is described in this section.

The section is divided into three parts covering the
derivation of the density matrix that describes the single-
electron spin-valve transistor (Sec. III A), of the charge current
(Sec. III B), and of the frequency-dependent current noise
(Sec. III C).

A. Reduced density matrix

Since the leads are considered as equilibrium reservoirs
of noninteracting electrons, we integrate them out and derive
an effective description, which only contains the degrees of
freedom of the metallic island characterized by the reduced
density matrix ρ̂red. For time-translation invariant systems
its time evolution can be expressed in terms of the reduced
propagator �(t − t0):

ρ̂red(t) = �(t − t0)ρ̂red(t0). (8)

The initial density matrix ρ̂ ini
red of the system is given by

ρ̂ ini
red = limt0→−∞ ρ̂red(t0). In the long-time limit, the system

loses any information about its initial state. Hence we are
free to define the elements of the initial density matrix
as (ρ̂ ini

red)χ1
χ2

= δχ1,χ0δχ2,χ0 with χ0 being an arbitrary state of
the reduced system. The microscopic island states χ are
determined by |χ〉 = |{nlσν}〉, with nlσν = 0,1 representing
whether the corresponding island level lν is occupied by
a spin-σ electron. Furthermore, we define the stationary
reduced density-matrix elements as P χ1

χ2
= 〈χ1|ρ̂red|χ2〉. In the

used notation, the diagonal elements P χ
χ ≡ Pχ correspond

to the occupation probabilities of state χ . They fulfill the
normalization condition

∑
χ Pχ = 1. Eventually, we get the

following equation for the elements of ρ̂red:

P χ1
χ2

= lim
t0→−∞ �(t − t0)χ1 χ0

χ2 χ0
. (9)

By means of the transformation �(ω) = ∫ ∞
0 dt�(t) exp

[−i(ω − i0+)t]/h̄ we switch into frequency space, which is
convenient in the following. Then the Dyson equation �(ω) =
�(0)(ω) + �(0)(ω)W(ω)�(ω) yields the following form of the
reduced propagator:

�(ω) = (�(0)(ω)
−1 − W(ω))−1, (10)

with the free propagator �(0)(ω) and the kernel W(ω). The
matrix elements of the former are given by

�
(0)χ1χ

′
1

χ2χ
′
2
(ω) = iδχ1,χ

′
1
δχ2,χ

′
2

Eχ1 − Eχ2 − h̄ω + i0+ . (11)

They describe free propagation in time while the elements

W
χ1 χ ′

1

χ2 χ ′
2
(ω) characterize transitions between the matrix elements

P
χ ′

1

χ ′
2

and P
χ1
χ2

. The kernel W can be calculated within a dia-
grammatic real-time technique that allows for a systematic per-
turbative expansion in the tunnel-coupling strength �.80,102–105

In the present work, it is sufficient to expand it up to the first
order since we want to describe weak coupling between island
and leads. In this situation, sequential-tunneling processes are
dominant; however, the formalism is generally formulated and
not restricted to the sequential-tunneling limit. We note that in
the diagrammatic language, the transformation into frequency
space incorporates an additional bosonic line carrying the
energy h̄ω into the diagrams.

By applying the final value theorem limω→0(iω +
0+)�(ω) = limt→∞ �(t) = ρ̂red to Eq. (10) we finally obtain
the matrix form of the generalized master equation that
determines ρ̂red in the stationary limit

0 = [�(0)(ω = 0)−1 − W(ω = 0)]ρ̂red. (12)

Written in component form this equation reads

0 = d

dt
P χ1

χ2
= − i

h̄

(
Eχ1 − Eχ2

)
P χ1

χ2
+

∑
χ ′

1χ
′
2

W
χ1 χ ′

1

χ2 χ ′
2
P

χ ′
1

χ ′
2
. (13)

Although we have already traced out the lead degrees of
freedom, due to the continuous island spectrum the system of
equations that has to be solved is still highly dimensional. In
the rest of this subsection we follow the procedure of Ref. 61
to strongly reduce this large number of degrees of freedom
to the relevant ones for electronic transport. The first step
is to get rid of the off-diagonal density-matrix elements on the
right-hand side of Eq. (13). In our system, the only possibility
to change the microscopic state of the island is tunneling of
electrons from the leads to the central region or vice versa; that
is, we neglect intrinsic spin-flip processes in the island due
to a large spin-flip time scale τsf . Tunneling is described by
the Hamiltonians HT,r which conserve charge and transverse
channel ν. Hence the elements of the reduced density matrix
P

χ

χ ′ that have to be taken into account fulfill the condition∑
lσ nlσν = ∑

lσ n′
lσν . Furthermore, due to large number of

relaxation channels in metallic islands we assume that the
electron dwell time τdw is larger than the energy relaxation time
τer. This results in the fact that coherent superpositions between
island states that differ in the number of electrons occupying
the level l decay quickly, such that

∑
σ nlσν = ∑

σ n′
lσν . With

that, the first contribution of the right-hand side of Eq. (13)
vanishes since spin degeneracy of the island spectrum yields
Eχ − Eχ ′ = 0 for all relevant states χ and χ ′. To get rid
of all remaining off-diagonal elements of ρ̂red in the second
contribution of Eq. (13), we neglect quantum corrections to
spin quadrupole and higher moments; that is, only spin-dipole
moments of the island are taken into account. This yields
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nlσν = n′
lσν , and Eq. (13) simplifies to the kinetic equation

0 = d

dt
P χ1

χ2
=

∑
χ

Wχ1 χ
χ2 χ Pχ . (14)

To describe the electronic structure of the central metallic
island it is useful to introduce the spin-dependent electro-
chemical potentials of the island spins μσ . These quantities
describe the two spin subsystems that are in general out of
equilibrium (i.e., μ↑ �= μ↓). In the considered limit τsf �
τer,τdw, the two different spin species act like two independent
reservoirs of electrons, which both may be described by
the Fermi distribution f (E − μσ ) = [exp(E−μσ

kBT
) + 1]−1. In

general, the spin-dependent chemical potentials μσ depend
on the number Nσ of spin-σ electrons occupying the island
[μσ = μσ (Nσ )] and have to be determined by the expression
Nσ = ∑

l f [εl − μσ (Nσ )]. In the case of small level splittings

ε � kBT ,eV it is reasonable to assume μσ to be independent
of Nσ .

The simplified master equation Eq. (14) still depends on the
microscopic island states χ that contain all information about
the individual occupation of each island level. However, most
of this information is irrelevant for the evaluation of the spin
dynamics, the average current, and the current-current cor-
relation function of the single-electron spin-valve transistor.
The independent degrees of freedom that have to be taken into
account are the three components of the accumulated island
spin S represented by its magnitude S = h̄ρI (μ↑ − μ↓)/2 and
its spatial orientation that is characterized by the angles α and β

as well as the probabilities of finding N electrons on the island.
The latter are defined as PN = ∑

χ PχδN,Nχ
with Nχ being the

number of island electrons in state χ . The equations that enable
a calculation of each relevant independent degree of freedom
are provided by the kinetic equations of the charging-state
projector |N〉〈N | = ∑

χ |χ〉〈χ |δN,Nχ
and the total island spin

operator Ŝ = (h̄/2)
∑

lσσ ′ν c
†
lσν �σσ σ ′clσ ′ν , where �σ is the Pauli

spin-matrices vector. One obtains

0 = d

dt
PN =

∑
χχ ′

δN,Nχ
W

χ χ ′
χ χ ′ Pχ ′ , (15)

0 = d

dt
〈Ŝ〉 =

∑
χ1χ2χ ′

〈χ2|Ŝ|χ1〉Wχ1 χ ′
χ2 χ ′ Pχ ′ . (16)

The elements of the kernel W are evaluated with the help
of the diagrammatic rules explained in detail in Ref. 61. By
inserting the obtained kernel elements and by additionally
utilizing the previously discussed model simplifications, we
eventually obtain the kinetic equations of the independent
degrees of freedom PN and S. The charging-state occupation
probabilities are given by

d

dt
PN = π

∑
rσ

[α+
rσ (
N−1)PN−1 + α−

rσ (
N )PN+1

−α+
rσ (
N )PN − α−

rσ (
N−1)PN ], (17)

while the time evolution of the accumulated island spin can be
expressed as a Bloch-like equation

d〈S〉
dt

=
(

d〈S〉
dt

)
acc

+
(

d〈S〉
dt

)
rel

+
(

d〈S〉
dt

)
rot

. (18)

The three contributions describe accumulation, relaxation, and
rotation of the island spin. Their explicit forms are given in the
appendix. We note that the interaction-induced exchange field
that exists between the ferromagnetic leads and the metallic
island is contained in the spin-rotation term.

In both sets of the kinetic equations, Eqs. (17) and (18), the
island rate functions

α±
rσ (E) := ±α0

rσ

E − (μr − μσ )

exp
[ ± E−(μr−μσ )

kBT

] − 1
(19)

with the dimensionless conductance α0
rσ = ρI Nc

2πh̄
�r

σ appear.
They describe tunneling of spin-σ electrons with energy E

between lead r and central island.

B. Charge current

The charge current operator Ir = −edNr/dt through lead
r , where Nr is the total number of electrons in lead r , is
obtained from the quantum-mechanical equation of motion in
the Heisenberg picture,

Ir = − ie

h̄
[H,Nr ] = − ie

h̄

∑
klsσν

V r
sσ a

†
rksνclσν + H.c. (20)

A comparison of this expression with the tunneling Hamilto-
nian of lead r , see Eq. (5), yields that Ir can directly be obtained
from HT,r by performing the replacement V r

sσ → −ieV r
sσ /h̄.

The constant complex prefactor can easily be incorporated in
the used diagrammatic technique. Eventually, the stationary
charge current through lead r is given by

Ir =
∑

χ χ ′
1χ

′
2

(WIr )
χ χ ′

1

χ χ ′
2
P

χ ′
1

χ ′
2

, (21)

where the matrix elements of the current transition rates WIr

are directly obtained by multiplying the corresponding matrix
elements of W with the net transported charge from lead
r to the island. We note that minus signs originating from
the complex prefactor and factors 1/2 that appear due to the
definition of the symmetrized current have to be taken into
account appropriately.

Since for the average current charge conservation yields
I = IL = −IR , we can consider the symmetrized current
I = (IL − IR)/2, which will be particularly useful for the
discussion of the finite-frequency noise; see Subsec. III C. The
symmetrized current can be written in matrix notation as

I = tr[WI (ω = 0)ρ̂red]. (22)

By adapting the same procedure that we used in deriving the
kinetic equation Eq. (14) to the expression of the current I ,
one gets

I = eπ

2

∑
rNσ

±[α+
rσ (
N ) − α−

rσ (
N−1)]PN. (23)

The upper (lower) sign has to be taken for the left (right) lead.

C. Current noise

Fluctuations of the current are described by the current-
current correlation function

SII (t) = 〈I (t)I (0)〉 + 〈I (0)I (t)〉 − 2〈I 〉2. (24)

125306-4



CURRENT FLUCTUATIONS IN NONCOLLINEAR SINGLE- . . . PHYSICAL REVIEW B 86, 125306 (2012)

Its Fourier transform defines the frequency-dependent current
noise:

SII (ω) =
∫ ∞

−∞
dt SII (t)e−iωt =

∫ ∞

−∞
dt[〈I (t)I (0)〉

+ 〈I (0)I (t)〉]e−iωt − 4π〈I 〉2δ(ω). (25)

By definition, SII (ω) is symmetric in frequency, SII (ω) =
SII (−ω). It represents a real physical observable. For finite
frequencies, the total current flowing through the single-
electron spin-valve transistor is not equal to the symmetrized
current I = (IL − IR)/2 that occurs in Eq. (25). In general,
displacement currents appear that have to be taken into account
by defining the current as I = (CLIL − CRIR)/(CL + CR).89

However, in our model we assume symmetric junction capaci-
tances (see Sec. II) and hence the general formula corresponds
to the definition of the symmetrized current.

In the following, we demonstrate how the calculation of
the noise SII (ω) can be realized within the diagrammatic
technique that was used to derive the kinetic equations and
the charge current formula. In Ref. 64, Braun et al. developed
a formalism relying on the same diagrammatic theory that
enables us to calculate the frequency-dependent current noise
of a quantum-dot spin valve, which is a single-level quantum
dot coupled to two ferromagnetic leads. However, due to the
large number of levels contributing to transport, this theoretical
framework is not applicable to our system. Hence we present
how we extend the theory to describe the current-current
fluctuations of the single-electron spin-valve transistor.

The frequency ω appearing in Eq. (25) is taken into account
in the diagrammatic language by introducing an additional
bosonic line carrying the energy h̄ω that connects the two
current vertices that replace two vertices originating from the
tunneling Hamiltonian.64

In matrix notation the frequency-dependent current noise is
given by

SII (ω) = −4π〈I 〉2δ(ω) + 1

2

∑
γ=±

tr[WII (γω)ρ̂red

+ WI
<(γω)�(γω)WI

>(γω)ρ̂red], (26)

with three new diagrammatic objects WII (ω), WI
<(ω), and

WI
>(ω).
In WI

<(ω) and WI
>(ω) one current vertex placed on the

upper or lower Keldysh contour is contacted by the bosonic
line that enters the diagrams from the left or leaves them to the
right, respectively. In the diagrams of WII (ω) the additional
line connects two current vertices.

The noise formula given in Eq. (26) represents the general
expression of the current fluctuations of the single-electron
spin-valve transistor. In the limit of weak island-lead coupling,
only diagrams containing one tunneling line contribute to the
kernels; that is, they are expanded up to first order in �.
For a systematic and consistent perturbation expansion of the
expression for the noise, we count the frequency as one order in
the tunnel-coupling strength, ω ∼ �, and expand to first order
in this small parameter. In this limit the frequency dependence
of the kernels can be neglected since each correction in ω

evokes contributions that are at least proportional to �2. The
only frequency dependence we keep is contained in the reduced

propagator �(ω); see Eq. (10). This expression is treated
consistently when only the frequency dependence of the free
propagator is taken into account. As a result, we find

SII (ω) = −4π〈I 〉2δ(ω) + 1

2

∑
γ=±

tr[WII ρ̂red

+ WI (�(0)(γω)
−1 − W)−1WI ρ̂red], (27)

with the definitions W = W(ω = 0), WI = WI
<(ω = 0) =

WI
>(ω = 0), and WII = WII (ω = 0). This formula for SII (ω)

depends on all the elements of the reduced density matrix P χ1
χ2

.
An effective description that only contains the charge-state
occupation probabilities PN and the accumulated island spin
S as degrees of freedom is obtained by executing the same
procedure as in the derivation of the kinetic equations. This
enables us to remove the coherent superpositions on the right-
hand side of Eq. (27); that is, only diagonal matrix elements Pχ

enter. In the island-charge-state basis the frequency-dependent
noise is then given by

SII (ω) = −4π〈I 〉2δ(ω) + eTW̃II P

+1

2
eT

[ ∑
γ=±

W̃I (�̃
(0)

(γω)
−1 − W̃)−1W̃I

]
P, (28)

where the vector e is defined by eN = 1 for all N

and the vector of the island-occupation probabilities P =
(. . . ,PN−1,PN,PN+1, . . . ) fulfills the normalization condition
eTP = 1. The matrix elements of the kernels in charge space
that have to be plugged in the formula Eq. (28) are defined as
follows:

W̃N,N ′ = π
∑
rσ

{δN,N ′+1α
+
rσ (
N−1) + δN+1,N ′α−

rσ (
N )

− δN,N ′ [α+
rσ (
N ) − α−

rσ (
N−1)]}, (29)

W̃ I
N,N ′ = eπ

∑
rσ

±[δN,N ′+1α
+
rσ (
N−1)

− δN+1,N ′α−
rσ (
N )], (30)

W̃ II
N,N ′ = e2π

2

∑
rσ

[δN,N ′+1α
+
rσ (
N−1)

+ δN+1,N ′α−
rσ (
N )]. (31)

In Eq. (30) the upper (lower) sign has to be chosen for the
kernel contributions representing the current through the left
(right) tunnel junction (r = L/R).

As mentioned above, in the considered limit the only
frequency dependence that is contained in the noise is
represented by the free propagator of the system. In charge
space it is given by

�̃
(0) N1

N2 N ′(ω) = i

−h̄ω + i0+ δN1,N ′δN2,N ′ . (32)

Hence �̃
(0)

(ω) is represented by a diagonal matrix. For finite
frequencies, the i0+ in Eq. (32) drops together with the δ

function in Eq. (28).
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In Eqs. (29)–(31) one finds that the kernels W̃, W̃I , and W̃II

are proportional to the island rate functions α±
rσ , which makes

the expression of the current noise reliable for frequencies
ω � α±

rσ .

IV. RESULTS

In the present section the results of our calculations
concerning the current fluctuations of a single-electron spin-
valve transistor are presented. We separately discuss the
zero-frequency limit and the finite-frequency noise of the
system in Subsecs. IV A and IV B, respectively. For simplicity
we assume that the ferromagnetic leads are symmetrically
polarized, pL = pR = p, which can be experimentally real-
ized by using electrodes of the same material. However, the
tunnel-coupling strengths to the leads �r are not restricted to
a symmetric setup and we define the asymmetry parameter
a ≡ �L/�R .

A. Zero-frequency current noise

We start with the case of collinear polarization of the
ferromagnets. Due to the symmetric degree of polarization
there is no spin accumulation on the central island for
parallel-aligned lead magnetization directions (φ = 0). This
results in the fact that both the current and the noise are
independent of the lead polarization and correspond to those of
the unpolarized case.84,85 In the more general setup pL �= pR

there is a finite island spin accumulation which results in
a polarization-dependent Fano factor. The situation changes
for the antiparallel setup (φ = π ), as in this case the spin
accumulation strongly depends on p. In Fig. 3 we show for
the antiparallel case (a) the current, (b) the Fano factor, and
(c) the second derivative of the current for different values
of the lead polarization and a large asymmetry parameter
(a = 10). We want to emphasize that for obtaining reliable
results in the Coulomb-blockade regime, where sequential-
tunneling transport is completely blocked (low bias voltages),
cotunneling processes have to be taken into account. This
regime is marked by the gray area. For vanishing polarization
the sub-Poissonian Fano factor exhibits strongly pronounced
Coulomb blockade oscilliations which represent the steps in
the current-voltage characteristics. Hence the maxima of these
oscillations occur at the excitation energies of the relevant
island charging states of the central island. The sharp structure
of the p = 0 Fano factor smears out for finite polarizations.
Additionally, the positions of the maxima change. Both effects
are caused by the island spin accumulation since it induces the
spin dependence of the charging-state excitation energies that
results in a more complex excitation spectrum. To illustrate
this behavior we plotted the second derivative of the current
in Fig. 3(c) and consider the case of p = 20%. The Coulomb
peaks of the unpolarized situation are split up into two peaks
representing the two different spin reservoirs of the island
(marked by the up and down arrows). We emphasize that the
first peak (N0 + 1) does not split due to the exponentially
suppressed island spin accumulation in the Coulomb-blockade
regime. For the charging states N0 + n with n ∈ N

+ the spin-
down (spin-up) excitation energies are shifted towards lower
(higher) bias voltages and vice versa for N0 − n. However, due

FIG. 3. (Color online) Antiparallel setup (φ = π ) of the single-
electron spin-valve transistor: (a) average current, (b) Fano factor,
and (c) second derivative of the current as a function of the applied
bias voltage V for different lead polarizations p. For all three plots,
the remaining parameters were chosen to be CGVG = 3e/10, EC =
50kBT , and a = 10.

to the asymmetric coupling the occupation of the latter states
is strongly suppressed.

Even for very large asymmetry parameters a � 1 and
highly polarized materials p > 90% the obtained Fano fac-
tors remain sub-Poissonian. This is in contrast to systems
consisting of two ferromagnetic leads tunnel coupled to a
central region that exhibits a discrete energy spectrum.64,71,96

In the case of a single-level quantum dot coupled to two fer-
romagnetic leads (quantum-dot spin valve) super-Poissonian
statistics arises as a result of bunching effects that are
caused by spin blockade. In the single-electron spin-valve
transistor such bunching effects do not occur since its transport
behavior is significantly different. To illustrate this we start by
considering the quantum-dot spin valve with parallel-aligned
lead magnetization directions in the regime where the single
level of the dot is predominant occupied by one electron. Finite
polarizations evoke that mainly majority spins enter the dot.
These can easily leave into the drain lead due to the parallel
lead magnetizations. However, if a minority spin occupies the
single level then its large dwell time (few minority states in the
drain electrode) leads to a temporary blockade of the current
through the system since there are no further charging states
in the transport window. Hence the rare event of a minority
charge carrier tunneling onto the dot bunches the flow of
majority electrons. This behavior leads to super-Poissonian
noise. In contrast to this, the continuous level structure of the
single-electron spin-valve transistor prevents bunching caused
by minority electrons. This is due to the fact that there are
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two different processes that change the charging state of the
system after a minority electron tunneled onto the island. On
the one hand the same electron or another minority charge
carrier can leave the central electrode into the drain with
a small probability (similar to the quantum-dot spin valve).
On the other hand, in contrast to the single-level system,
it is additionally possible that also majority electrons can
tunnel into the drain. Even for higher polarizations the latter
process is not suppressed. It transfers the system into the lower
island charging state and enables subsequent repetitions of
island filling and depletion processes. Therefore, the transport
through the system is not blocked by minority electrons as in
the case of single-level quantum dots arising in sub-Poissonian
Fano factors.

Having discussed the limit of parallel and antiparallel mag-
netization directions we now turn to the noncollinear single-
electron spin-valve transistor. If one neglects the Coulomb
interaction of electrons on the central island and additionally
assumes that the leads are held at zero temperature then the
following analytic expression of the Fano factor is obtained:101

F = 1

2

(
1 + p2 sin2 φ

2

)
. (33)

In this limit, the Fano factor exclusively depends on the
polarization of the leads and on the angle φ between the p

vectors. The formula represents a monotonically increasing
F from its minima F (0) = 1/2 to its maximal value F (π ) =
(1 + p2)/2. However, by neglecting the Coulomb-repulsion
energy, crucial single-charging effects that govern the transport
characteristics of the system are not taken into account.
Hence Eq. (33) is an insufficient description of the noise in
a single-electron spin-valve transistor.

In our formalism the electron-electron interaction on the
central island is taken into account nonperturbatively. Its
interplay with the finite spin polarization is giving rise to
the exchange field that acts on the accumulated spin on the
central island. In the following the impact of the field on
the current fluctuations of the system is discussed in detail.
The exchange field is an immanent part of the used theoretical
framework and occurs in the kinetic equation of the island
spin; see Eqs. (18) and (A3). The expression of the exchange
field contribution that is induced between island and lead r is
given by Eq. (A4). Due to the lead Fermi functions that appear
in the integral, the exchange field depends on the applied
bias voltage. Therefore, to investigate how the exchange field
affects the current noise we have to identify a voltage regime
where the field noticeably influences the transport. To this end,
we consider the current through the system as a function of
the bias voltage for a noncollinear angle φ = π/2; see Fig. 4.
In the presented figure the influence of the exchange field is
illustrated by the difference of the two shown graphs. Here,
the dashed line represents the current of an artificial situation
where both exchange-field kinetic-equation contributions Br

exc
were manually set to zero, while for the calculation of the solid
line the field is fully taken into account. A comparison of the
two graphs shows that in the vicinity of the threshold voltage,
which enables the occupation of the charging state N0 − 1,
the field strongly affects the current-voltage characteristics.
Here, we point out that to observe a significant effect of the

FIG. 4. (Color online) Current through the noncollinear (φ =
π/2) single-electron spin-valve transistor with (solid) and without
(dashed) the effect of the exchange field. The dashed vertical lines
represent the threshold voltages of different charging states. The
remaining parameters were chosen to be p = 9/10, CGVG = 3e/10,
EC = 50kBT , and a = 1.

exchange field highly polarized leads with p � 0.7 have to be
considered.

After identifying a voltage regime where the exchange
field is pronounced, we now describe its influence on the
current fluctuations of the single-electron spin-valve transistor.
In Fig. 5 the charge current, the zero-frequency noise, and the
Fano factor are plotted as a function of the angle between the
lead polarization directions φ. All three plots are calculated
for symmetric tunnel-coupling strengths (a = 1) and a bias
voltage of V = 2EC/e that lies in the voltage window
exhibiting pronounced exchange fields. The precession of the
island spin caused by the field leads to an increase of current
and noise. However, the enhancement of the latter is weaker
for all angles φ and therefore the spin precession results in
an decreased sub-Poissonian Fano factor. This behavior is also
present in systems with asymmetry parameters a being unequal
to one. The plotted Fano factors exhibit a monotonic behavior
between the two collinear situations. We emphasize that this
is caused by the special choice of the parameters; that is, there
are parameter sets for which the maxima (minima) of F do not
occur at the collinear angles. In Fig. 5(c), we additionally
plotted the graph of the Fano factor of the noninteracting
situation (EC = 0) given by Eq. (33). The comparison shows
that a consideration of the noninteracting limit is insufficient to
obtain reliable results of the current fluctuations of the single-
electron spin-valve transistor. Even for collinear setups the in-
teracting Fano factor strongly deviates from the noninteracting
one.

It is worth mentioning that in the exact parallel and
antiparallel situations the exchange field contributions of both
ferromagnetic leads point in the same direction as the spin
accumulation and hence the spin does not rotate in BL

exc + BR
exc;

that is, the respective graphs coincide.

B. Finite-frequency noise

To analyze the frequency dependence of the current noise
we consider F (ω) for different bias voltages. The result is
shown in Fig. 6. We restrict our investigations to a bias voltage
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FIG. 5. (Color online) Noncollinear single-electron spin-valve
transistor: (a) charge current, (b) zero-frequency noise, and (c) Fano
factor as a function of the angle between the lead polarization
directions φ with (solid) and without (dashed) the effect of the
exchange field. The parameters were chosen to be p = 9/10, eV =
2EC , CGVG = 3e/10, EC = 50kBT , and a = 1.

range where the island is exclusively occupied by N0 or by
N0 + 1 electrons. In the upper plot the zero-frequency Fano
factor is shown, and the different voltages Vi with i = 1,2,3
for which we study the current noise are marked by the
dashed black lines in Fig. 6(a). The energy eV1 = 0.84EC

is slightly larger than the excitation energy of the charging
state N0 + 1; that is, it represents a Coulomb step in the
current-voltage characteristics. The other two voltages lie in
between two charging steps and the condition PN0 + PN0+1 =
1 is fulfilled. The respective frequency-dependent Fano factors
(fixed Vi) are plotted as functions of the frequency ω in
Fig. 6(b). For all voltages the Fano factors are composed
of a dynamical frequency-dependent contribution reflecting
correlations (V2,V3) and anticorrelations (V1) as well as a
constant contribution. The explicit value of the latter is given by
SII (ω � EC/h̄). A comparison shows that for larger voltages
the noise spectra are broadened and the constant term is
shifted below the value of the zero-frequency noise to current
ratio.

All three graphs in Fig. 6(b) indicate that the structure in the
noise is destroyed for sufficiently large frequencies. Hence we
consider the half width ωF1/2 of the frequency-dependent Fano
factor as a function of the applied bias voltage to determine the

FIG. 6. (Color online) Current fluctuations of the noncollinear
(φ = π/2) single-electron spin-valve transistor. (a) Zero-frequency
Fano factor as a function of bias voltage V . (b) Frequency-dependent
Fano factor as a function of ω for different V . For both plots the
parameters were chosen to be p = 2/10, CGVG = 3e/10, EC =
50kBT , and a = 40.

scale on which the system looses its correlation information;
see Fig. 7. In the considered voltage regime where only two
charging states are allowed the half width is linear in V . The
slope of the obtained straight line is proportional to πα0, with
the used definition α0 ≡ ∑

rσ α0
rσ . It is maximal for p = 0 and

decreases with increasing degree of lead polarization. Here, we
emphasize that as soon as the voltage is large enough to bring
additional higher charging states into the transport window,
this simple behavior of ωF1/2 is not valid anymore.

FIG. 7. (Color online) Half width of the frequency-dependent
Fano factor as a function of V for different polarizations p. The
frequency is measured in units ECρINc and the remaining parameters
were chosen to be φ = π/2, CGVG = 3e/10, EC = 50kBT , and a =
40.
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V. CONCLUSION

We have presented a diagrammatic real-time technique
to investigate the current fluctuations of the single-electron
spin-valve transistor in the limit of weak tunnel coupling. The
theory allows for noncollinear lead magnetization directions
and simultaneously takes Coulomb charging effects on the
central electrode into account.

For the collinear as well as for the noncollinear setup, sub-
Poissonian transport statistics were observed. We found that
finite lead polarizations smear out the characteristic Coulomb
blockade oscillations of the Fano factor as a function of the
bias voltage. The origin of this behavior was addressed to the
splitting of the charging-state excitation energies caused by
the nonvanishing spin accumulation on the metallic island.
Furthermore, we identified the voltage regime in which the
effect of the exchange field is pronounced and demonstrated
that Br

exc leads to a reduction of the zero-frequency Fano factor.
Finally, we analyzed the frequency dependence of the

current noise and found that F (ω) reflects correlations and
anticorrelations. However, this noise structure is lost for
sufficiently high frequencies. We identified the frequency scale
for the corresponding crossover.
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APPENDIX: KINETIC EQUATIONS OF ISLAND SPIN

The three different contributions of the kinetic equation
for the island spin describing accumulation, relaxation, and

rotation processes are found to be(
d〈S〉
dt

)
acc

= πh̄

2

∑
Nrσ

pr

�r

�r
σ

[n̂r + (n̂r · n̂S)n̂S]

× [α−
rσ (
N−1) − α+

rσ (
N )]PN, (A1)

(
d〈S〉
dt

)
rel

= −
∑
Nrν

PN

∫
dω �rs(ω)

× [f −
r (ω + 
N−1) − f +

r (ω + 
N )], (A2)

(
d〈S〉
dt

)
rot

= −gμB

h̄

∑
r

∫
dω s(ω) × Br

exc(ω), (A3)

with the Bohr magneton μB , the dimensionless magnetic
moment of electrons g, and the notation f +

r (E) = f (E −
μr ) or f −

r (E) = 1 − f (E − μr ). Furthermore, the following
definitions have been used: the energy-dependent spin density
in the island s(ω) = h̄ρI

2 [f (ω − μ↑) − f (ω − μ↓)]n̂S and the
interaction-induced exchange field between central electrode
and lead r

Br
exc(ω) = pr�rNc

2πgμB

n̂r

∑
N

PN

∫ ′
dω′

[
f −

r (ω′)
ω′ − ω − 
N

+ f +
r (ω′)

ω′ − ω − 
N−1

]
. (A4)

A detailed discussion of the different spin contributions and
the exchange field is presented in Ref. 61.

1J. Bardeen and W. H. Brattain, Phys. Rev. 74, 230 (1948).
2K. K. Likharev, IEEE Trans. Magn. 23, 1142 (1987).
3D. Goldhaber-Gordon, M. S. Montemerlo, J. C. Love, G. J.
Opiteck, and J. C. Ellenbogen, Proc. IEEE 85, 521 (1997).

4S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
5S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton,
S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M.
Treger, Science 294, 1488 (2001).

6J. F. Gregg, I. Petej, E. Jouguelet, and C. Dennis, J. Phys. D: Appl.
Phys. 35, R121 (2002).
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53I. Weymann, J. Barnaś, J. König, J. Martinek, and G. Schön, Phys.

Rev. B 72, 113301 (2005).
54J. Fransson, Europhys. Lett. 70, 796 (2005).
55I. Weymann, Europhys. Lett. 76, 1200 (2006).
56P. Simon, P. S. Cornaglia, D. Feinberg, and C. A. Balseiro, Phys.

Rev. B 75, 045310 (2007).
57J. Splettstoesser, M. Governale, and J. König, Phys. Rev. B 77,

195320 (2008).
58B. Sothmann, D. Futterer, M. Governale, and J. König, Phys. Rev.

B 82, 094514 (2010).

59B. Sothmann and J. König, Phys. Rev. B 82, 245319 (2010).
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62Ya. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).
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