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Spin-orbit scattering in quantum diffusion of massive Dirac fermions
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We theoretically study the effects of spin-orbit scattering on weak (anti)localization in two-dimensional massive
Dirac systems. We clarify that weak antilocalization and localization of a single massive Dirac cone come from
the diffusion of a singlet Cooperon in the massless limit and one of triplet Cooperons in the large-mass limit,
respectively. Spin-orbit scattering behaves like random magnetic scattering to the triplet Cooperon, and suppresses
the weak localization in the large-mass regime, different from in conventional systems where spin-orbit scattering
leads to a crossover from weak localization to antilocalization. This behavior suggests an experiment to detect
the weak localization of bulk subbands in topological insulator thin films, in which an enhancement of “weak
antilocalization” is expected after doping heavy-element impurities. Finally, we compare the conventional electron
and Dirac fermion systems in the quantum diffusion transport under ordinary, spin-orbit, and magnetic scattering.
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I. INTRODUCTION

A key feature in magnetoresistance measurements of topo-
logical insulators (TIs)1–3 is the weak antilocalization, which
exhibits as a negative magnetoconductance in a small magnetic
field.4–14 The prevailing understanding to it is based on the π

Berry phase of the massless surface states.15,16 The π Berry
phase gives a destructive quantum interference correction
to backscattering, leading to a conductivity enhancement,
that is, the weak antilocalization (WAL). WAL is not a
stranger to conventional electrons. It also occurs in a number
of metal and semiconductor systems with strong spin-orbit
scattering,17–20 where WAL is formulated by backscattering
correlation functions, known as Cooperons21 (examples of
their Feynman diagrams are shown at the bottom of Fig. 1).
Cooperons are functions of the summations of quantum num-
bers on their incoming and outgoing sides, thus they contribute
sensitively to backscattering (momenta kin + kout ∼ 0) and
magnetoconductivity (effect of the magnetic vector potential A
on canonical momentum k → k + eA/h̄ is doubled → kin +
kout + 2eA/h̄). Because of the double degeneracy, spin of a
conventional two-dimensional electron can be either flipped
or conserved after backscattering. The summation j of the
spins before and after backscattering can be used as an index
to characterize three spin-triplet (j = 1) and one spin-singlet
(j = 0) Cooperons.22,23 Diffusion of the singlet Cooperon
leads to WAL, while the triplet Cooperons give weak localiza-
tion (WL). Usually the triplet Cooperons outnumber the singlet
Cooperon in conventional systems, and consequently the total
effect exhibits WL. However, the triplets can be suppressed by
strong spin-orbit scattering due to their nonzero spin, leaving
only the singlet and accompanied WAL.20,22–24

In this work we study the effects of spin-orbit scattering on
WAL and WL of massive Dirac fermions. Both the surface and
bulk states in a topological thin film can be described by a two-
dimensional Dirac model in the massless and large-mass limits,
respectively. Their WAL and WL come from the “singlet
Cooperon” in the massless limit and one of “triplet Cooperons”
in the large-mass limit, respectively (see Fig. 1). Spin-orbit
scattering behaves like random magnetic scattering, only to
the triplet, and drastically suppresses WL of the bulk states

in the large-mass regime. In contrast, it leaves WAL of the
surface states almost unaffected. Different from conventional
electrons, strong spin-orbit scattering cannot turn WL of Dirac
fermion in the large-mass case into WAL. The picture is
thereby unified in the language of Cooperon for conventional
and massive Dirac fermions. We expect the suppression of WL
to be observed by doping impurities of heavy nonmagnetic
elements (e.g., Au) onto thin films of topological insulators.

The paper is organized as follows. In Sec. II we describe
the massive Dirac model and the parameters to characterize
spin-orbit scattering. In Sec. III we present the results directly.
All the details of the calculations of the quantum interference
(weak localization) correction to conductivity are presented in
Sec. IV, where elastic, magnetic, and spin-orbit scattering are
considered on the same footing. In Secs. III A and III B we
compare the results of weak (anti)localization for the massive
Dirac model, in the presence of weak and strong spin-orbit
scattering. In Sec. III C we illustrate the physical picture in the
language of Cooperons. In Sec. III D we propose an experiment
to detect the weak localization from the bulk states of a topo-
logical insulator thin film, using the suppression of the weak
localization from the triplet Cooperon by the spin-orbit scatter-
ing. Finally, a conclusion is given in Sec. V by comparing the
conventional electron and Dirac fermion systems in the quan-
tum diffusion transport under different scattering mechanisms.

II. MODEL

The massive Dirac model reads

H = h̄v(σxky − σykx) + mσz, (1)

where (kx,ky) is the wave vector, (σx,σy,σz) are Pauli matrices,
h̄ is Planck’s constant over 2π , v is the effective velocity, and
m is the mass or energy gap. The equation can be used to
describe the two-dimensional bulk25 and surface bands26–28 in
the thin-film limit by introducing different model parameters.
The simplified description for the bulk states is supported by
a recent work that describes the bulk states with the three-
dimensional Dirac model, where the weak localization of the
bulk states was also found,29 qualitatively consistent with our
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FIG. 1. (Color online) “Cooperons” for Dirac fermion. Top: Dirac
cone and spin polarization (short arrows on dashed loops) on the
Fermi surface, in the massless and large-mass limits, respectively.
Bottom: Corresponding “Cooperon” Feynman diagrams for weak
(anti)localization. They depict the correlation of backscattering events
(i.e., momentum k becomes −k, long arrowed lines). At the four
corners, ±k,�/↑ represent the states of scattered electrons. The mass
of Dirac cone determines the spin polarization on the Fermi surface.
In the massless limit, spin is in-plane and locked to momentum.
Spin must be flipped after backscattering, so the summation of the
incoming spin and outgoing spin is 0 (“singlet Cooperon”). In the
large-mass limit, spin is out of plane and independent on momentum.
Spin remains unchanged after backscattering, so the total spin is 1
(“triplet Cooperon”).

previous conclusion.25 Spin-orbit scattering is characterized by
a length �so. Shorter �so means stronger spin-orbit scattering.
�so is related to the spin-orbit scattering time τso by �so =√

Dτso, where D is the diffusion constant. The total scattering
time τso is given by 1/τso = 2/τso,x + 1/τso,z, where τso,x and
τso,z are its in-plane and out-of-plane components, respectively.
The Dirac model and spin-orbit scattering are intrinsic and
extrinsic consequences of spin-orbit interaction,30 respectively
(see Table I).

III. RESULTS

Weak (anti)localization exhibits as: (i) a positive (nega-
tive) logarithmic magnetoconductivity or (ii) a suppressed
(enhanced) quantum conductivity at low temperatures in the
metallic regime. They originate from the quantum interference
correction to conductivity, and can be calculated by the
diagrammatic techniques.17,20,31–35 We obtain the quantum
conductivity and magnetoconductivity in the presence of spin-
orbit scattering (see Sec. IV). Their formulas (in Secs. IV G

TABLE I. Consequences of spin-orbit interaction. v and m are
the velocity and mass, respectively, in the Dirac model. �so and τso

are the spin-orbit scattering length and time, respectively. Shorter �so

means stronger spin-orbit scattering.

Intrinsic (uniform) Extrinsic (random)

Hamiltonian Dirac model Spin-orbit scattering
Parameter v and m �so, τso

and IV H) are of the same structures as those with only elastic
and magnetic scatterings,36 but the crucial difference is that all
the relaxation times from the spin-orbit scattering have the op-
posite signs with respect to those from the magnetic scattering:
1/τx → 1/τx − 1/τso,x and 1/τz → 1/τz − 1/τso,z, where τx/z

are magnetic scattering times. This sign change reflects the
difference between the unitary symmetry of the magnetic
scattering and the symplectic symmetry of the spin-orbit
scattering. The total scattering time τ now is given by 1/τ =
1/τe + 1/τm + 1/τso, τe is the elastic scattering time.

A. Weak spin-orbit scattering

We first review the results in the absence of spin-orbit
scattering (�so → ∞). The massive Dirac model in Eq. (1)
carries a Berry phase

γ = π

(
1 − m√

m2 + (vh̄kF )2

)
,

where kF is the Fermi wave vector. The Berry phase γ can be
tuned from π to 0 as m varies from 0 to �h̄vkF , corresponding
to the massless and large-mass limits, respectively. In the
massless limit, the destructive interference due to the π Berry
phase leads to WAL.33 In the large-mass limit (γ → 0), the
quantum interference is reversed, giving rise to WL.11,36,37

B. Strong spin-orbit scattering

Inclusion of spin-orbit scattering will suppress WL in
the large-mass regime. Figures 2(a) and 2(b) show the
magnetoconductivity with weak (�so = 10 000 nm) and strong
(�so = 300 nm) spin-orbit scattering, respectively. WAL can be
recognized as negative curves, while WL as positive curves.
Comparing Figs. 2(a) and 2(b), the WAL curves in small-mass
regime (γ /π = 1, 0.9, 0.75) are almost unaffected, while the
WL curves in the large-mass regime (γ /π = 0.5, 0.1, 0.001)
are suppressed. Especially, WL totally vanishes in the limit
γ → 0. Figure 2(c) shows the quantum conductivity σF (0) as a
function of γ and �so. Positive σF (0) means WAL and negative
σF (0) means WL. The dashed curve separates the WAL and
WL regimes. Without spin-orbit scattering (�so → ∞), both
WAL and WL regimes exist. Increasing spin-orbit scattering
(decreasing �so) shrinks the WL regime. In the limit of
strong spin-orbit scattering (�so → 0), the WL regime vanishes
totally.

The suppression of WL by spin-orbit scattering can be
further examined from the effective phase coherence lengths.
WL or WAL happens because an electron can be scattered
by static centers many times but still maintains its phase. The
phase is protected by long phase coherence length. In our
calculation, the WL-WAL crossover can always be described
by two competing terms, one for WL and the other for WAL.
Each term is characterized by an effective phase coherence
length, denoted as �L and �AL, respectively. For weak spin-orbit
scattering (�so → ∞), the WL phase coherence length �L

diverges as γ → 0 [see dashed curves in Fig. 3(a)]. The
divergence of �L protects WL in the large-mass limit (γ → 0).
For strong spin-orbit scattering (�so → 0), �L in the large-mass
regime is shortened [the solid curve in Fig. 3(a)]. Figure 3(b)
shows �L as a function of �so in the large-mass limit. The
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FIG. 2. (Color online) (a) and (b) Magnetoconductivity �σ (B)
for different Berry phase γ and with: (a) weak spin-orbit scattering
(spin-orbit scattering length �so = 10 000 nm) and (b) strong spin-
orbit scattering (�so = 300 nm). γ /π = 1 in the massless limit and
0 in the large-mass limit. (c) Zero-field quantum conductivity σF (0)
(in units of e2/h, color bar on the right). The dashed curve separates
the positive WAL and negative WL regimes. Other parameters:
elastic scattering length �e = 10 nm and phase coherence length
�φ = 300 nm.

slope of the curves becomes steeper as the mass increases (i.e.,
γ decreases), showing that spin-orbit scattering has stronger
influence on larger mass cases. In the γ → 0 limit, �L → 0
as �so → 0, leading to the vanishing magnetoconductivity in
Fig. 2(b).

C. Physical picture in the language of Cooperons

The suppression of WL can be interpreted in the language
of Cooperon. The quantum conductivity is proportional to

σF ∼
∑

q

	(q),

where the Cooperon vertex function 	 is a function of q, the
summation of incoming and outgoing momenta, and can be
found by the diagrammatic calculation as [Eq. (37)]

	(q) ≈ 	(0) + 	(1)ei(ϕk−ϕq−k), (2)

where ϕk and ϕq−k are momentum angles for incoming and
outgoing states. 	(0) gives WL. For backscattering q → 0,
then ei(ϕk−ϕq−k) ≈ eiπ = −1, thus 	(1) term is related to the
π Berry phase and gives an opposite contribution to 	(0) (i.e.,

FIG. 3. (Color online) (a) The weak antilocalization phase co-
herence length (�AL, red and magenta) and the weak localization
phase coherence length (�L, blue and cyan) as a function of Berry
phase γ for weak (�so = 10 000 nm) and strong (�so = 300 nm)
spin-orbit scattering. γ /π = 1 in the massless limit and 0 in the
large-mass limit. (b) The weak localization phase coherence length
�L as a function of the spin-orbit scattering length �so in the large-mass
regime (γ /π � 0.4).

WAL).33,38 On the other side, if we regard the Cooperon vertex
function as an operator 	̂ acting on the states at its four corners
(see Fig. 1), 	(0) and 	(1) in Eq. (2) are found as (see Sec. IV I)

	(0) = cos4 θ

2
〈1,1|	̂|1,1〉, 	(1) = 1

2
sin2 θ〈0,0|	̂|0,0〉,

where |j,m〉 labels the total spin of incoming and outgo-
ing states and its z component,24,39 respectively. cos θ ≡
m/

√
m2 + (h̄vkF )2. Therefore, 	(0) is from one of the triplets,

while 	(1) is from the singlet. These two limits (massless
and large mass) are shown in Fig. 1. These mass-dependent
Cooperons are similar to the “soft” Cooperon modes of the
bulk states in a recent work.29

In the absence of spin-orbit scattering, 	(0) and 	(1) diverge
as 1/q2, respectively, in the large-mass and massless limits,
leading to the WL and WAL in Fig. 2. By adding spin-orbit
scattering, 	(0) becomes suppressed since it is not invariant
under SU(2) rotation in the total spin space.23 In other words,
spin-orbit scattering behaves like random magnetic scattering
only to the triplet Cooperon, giving rise to the suppression
of WL.

D. Experiment to detect the localization from the bulk states

The suppression of WL by spin-orbit scattering suggests an
experiment to detect WL of bulk states in topological insulator
thin films. It is known that both the bulk and surface states con-
tribute to the transport in as-grown topological insulators.40,41

In a thin film of a topological insulator, the three-dimensional
bulk states split into a series of two-dimensional subbands. If
the film is thin enough, only the lowest bulk subbands cross
the Fermi energy. This case is shown in Fig. 4(b). Both the
surface states and bulk states in a topological insulator thin
film can be described by the same massive Dirac model,
with the surface states in the massless limit and the bulk
states in the large-mass regime. Therefore, unlike in other
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FIG. 4. (Color online) (a) A topological insulator thin film doped
with impurities that bring strong spin-orbit scattering (e.g., Au).
(b) Schematic description of the band structure of a thin film of a
topological insulator. Solid and dashed lines depict the bulk subbands
and surface states, respectively. EF is the Fermi energy. Each solid line
represents a pair of bulk subbands. (c) Surface and bulk contributions
to the magnetoconductivity before (�so = 10 000 nm) and after
(�so = 300,100 nm) Au impurities are doped. In the simulation, one
surface band (with γ = π ) and two bulk subbands (with γ = 0.15π )
are assumed. (d) The total magnetoconductivity from the surface
states and bulk subbands before and after Au impurities are doped.
The spin-orbit scattering length is in units of nanometers.

systems with strong spin-orbit coupling, the bulk states in the
topological insulator could give WL that neutralizes WAL from
the surface states [Fig. 4(c)]. The observed WAL-like negative
magnetoconductivity actually comes from the summation of
the stronger WAL from the surface states and WL from the
bulk states. Introducing impurities that can bring spin-orbit
scattering will suppress WL from the large-mass bulk states,
but not affect WAL from the massless surface states. Overall
speaking, one will expect an enhancement of WAL as shown
in Fig. 4(d). The recent experiment on the five quintuple-layer
Bi2Te3 thin film with Au impurities may have already implied
the effect.8

IV. DIAGRAMMATIC TECHNIQUES

In this section we present the calculation of the quantum
interference (weak localization) correction to conductivity
with the help of the diagrammatic techniques. Although
this work focuses on the spin-orbit scattering, the magnetic
scattering is also included in the calculation.

A. Eigenstates

The two-dimensional massive Dirac Hamiltonian in Eq. (1)
describes a conduction band and a valence band. We suppose
that the Fermi level EF intersects with only the conduction
band, and in the limit of weak scattering EF � h̄/τ , the
valence band becomes irrelevant for transport, where τ is the

total scattering time. The dispersion of the conduction band is

εk =
√

m2 + h̄2v2k2 (3)

and its wave function is given by

〈r|k〉 = ψc,k(r) = 1√
S

(
a

−ibeiϕk

)
eik·r, (4)

where S is the area, tan ϕk ≡ ky/kx , a = cos θ
2 , b = sin θ

2 , and
cos θ = m/EF . The Fermi energy EF is measured from the
Dirac point.

B. Impurity potentials

The impurity potentials are given by

U (r) = U0(r) + Um(r) + Uso(r), (5)

where U0(r) is for the elastic scattering, Um(r) is for the
magnetic scattering, Uso(r) is for the spin-orbit scattering, and

U0(r) =
∑

i

ui
0δ(r − Ri),

Um(r) =
∑

i

∑
α=x,y,z

ui
ασαδ(r − Ri), (6)

Uso(r) =
∑

i

h̄

4m2c2
�σ · ∇u(r − Ri) × p,

where u(r − Ri) represents the random potential by an
impurity located at Ri . �σ = (σx,σy,σz) is the vector of Pauli
matrices.

The scattering (Born) amplitude Uk,k′ can be found as

Uk,k′ ≡ 〈k|U (r)|k′〉
= 〈k|U0(r)|k′〉 + 〈k|Um(r)|k′〉 + 〈k|Uso(r)|k′〉, (7)

where for the elastic scattering

〈k|U0(r)|k′〉 = 1

S

∑
i

ui
0e

i(k′−k)·Ri (a2 + b2ei(ϕk′ −ϕk)), (8)

for the magnetic scattering

〈k|Um(r)|k′〉
=

∑
i

1

S
ei(k′−k)·Ri

[
iui

xab(e−iϕk − eiϕk′ )

−ui
yab(eiϕk′ + e−iϕk ) + ui

z(a
2 − b2ei(ϕk′ −ϕk))

]
, (9)

and for the spin-orbit scattering

〈k|Uso(r)|k′〉 = 1

S

∫
dr(a,ibe−iϕk )ei(k′−k)·r ∑

i

h̄2

4m2c2

× σ · [∇u(r − Ri) × k′]
(

a

−ibeiϕk′

)

≡ 1

S

∑
i

iui
soe

i(k′−k)·Ri (a,ibe−iϕk )

× σ · (k × k′)
(

a

−ibeiϕk′

)

=
∑

i

iui
so

S
ei(k′−k)·Ri [iab(e−iϕk − eiϕk′ )(k × k′)x
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− ab(e−iϕk + eiϕk′ )(k × k′)y
+ (a2 − b2ei(ϕk′ −ϕk))(k × k′)z], (10)

where we have assumed the δ potential h̄2

4m2c2 u(r − Ri) =
ui

soδ(r − Ri).

C. Green’s functions and relaxation times

The retarded (R) and advanced (A) Green’s functions have
the form

G
R/A

k (ω) = 1

ω − εk ± i h̄
2τ

, (11)

where the disorder-induced self-energy is described by the
relaxation time τ , which has the form

1

τ
= 2π

h̄

∑
k′

〈Ukk′Uk′k〉impδ(EF − εk′) (12)

under the first-order Born approximation (see Fig. 5).
The correlation function in Eq. (12) is evaluated as

〈Ukk′Uk′k〉imp = n0u
2
0

S
[a4 + b4 + 2a2b2 cos(ϕk − ϕk′)]

+ tx

S
(2a2b2)[1 − cos(ϕk + ϕk′)]

+ ty

S
(2a2b2)[1 + cos(ϕk + ϕk′)]

+ tz

S
[a4 + b4 − 2a2b2 cos(ϕk − ϕk′)], (13)

with

ti = nmu2
i + nsou

2
so(k × k′)2

i , i = x,y,z, (14)

where n0, nm, and nso represent concentrations of non-
magnetic, magnetic, and spin-orbit impurities, respectively.
u0, ux,y,z, uso are their spatially averaged strengthes. The
correlation between different types of scattering or different
components of the same type is neglected. Therefore the
relaxation time can be given according to different scattering
mechanisms

1

τe

= 2πNF

h̄
n0u

2
0(a4 + b4),

1

τz

= 2πNF

h̄
nmu2

z(a4 + b4),

1

τx

= 1

τy

= 2πNF

h̄
nmu2

x(2a2b2), (15)

1

τso,z

= 2πNF

h̄
(a4 + b4)nsou

2
so,z(k × k′)2

z,

1

τso,x

= 1

τso,y

= 2πNF

h̄
(2a2b2)nsou

2
so,x(k × k′)2

x,

FIG. 5. (Color online) The retarded Green’s function with its self-
energy given by the first-order Born approximation. The solid and
dash lines represent electron Green’s function and impurity scattering,
respectively.

FIG. 6. (Color online) The ladder diagram correction to velocity.
vx

k and ṽx
k label the bare and dressed velocities, respectively. The blue

(red) line represents retarded (advanced) Green’s function GR (GA).

where the in-plane isotropy has been assumed, and (k × k′)2
i

are replaced by their average (k × k′)2
i .17 In this way, τ in

Eq. (11) is given by

1

τ
= 1

τe

+ 1

τm

+ 1

τso
,

1

τm

= 1

τm,x

+ 1

τm,y

+ 1

τm,z

, (16)

1

τso
= 1

τso,x

+ 1

τso,y

+ 1

τso,z

.

D. Ladder diagram correction to velocity

For Dirac fermions, the ladder diagram correction to
velocity (see Fig. 6) should be considered. The diagram
describes the iterative equation for the corrected velocity ṽx

k ,

ṽx
k = vx

k +
∑

k′
GR

k′G
A
k′ 〈Uk′,kUk,k′ 〉impṽ

x
k′ , (17)

which leads to a correction ηv to the bare velocity vx
k ,

ṽx
k = ηvv

x
k, (18)

where the bare velocity vx
k = v sin θ cos ϕk and the correction

factor

ηv = 1

1 + a2b2

a4+b4 (τ/τso,z + τ/τz − τ/τe)
. (19)

E. Bare and dressed Hikami boxes

The quantum interference correction to conductivity in-
volves the calculation of bare Hikami box in Fig. 7 and the
dressed Hikami boxes in Fig. 8. At zero temperature, the bare
Hikami box (Fig. 7) can be calculated as

σF
0 = e2h̄

2πS

∑
q

	(q)
∑

k

ṽx
k ṽx

q−kG
R
k GA

k GR
q−kG

A
q−k, (20)

where the vertex function 	(q) depends only on the total
incoming momentum q, and the contribution from small q

FIG. 7. (Color online) The bare Hikami box. The blue (red) line
represents retarded (advanced) Green’s function.
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FIG. 8. (Color online) The retarded (a) and advanced (b) dressed
Hikami boxes.

dominates the summation. Approximately, we can take k
summation for q = 0 first and get

σF
0 = −e2v2η2

vNF τ 3

h̄2 sin2 θ
∑

q

	(q). (21)

For Dirac fermions, two dressed Hikami boxes (see Fig. 8)
should also be considered. We denote them as σF

R and σF
A , and

their diagrams can be calculated as

σF
R = e2h̄

2πS

∑
q

	(q)
∑

k

∑
k1

ṽx
k ṽx

q−k1
GR

k GR
k1

GR
q−k

×GR
q−k1

GA
k GA

q−k1
〈Uk1,kUq−k1,q−k〉imp, (22)

σF
A = e2h̄

2πS

∑
q

	(q)
∑

k

∑
k1

ṽx
k ṽx

q−k1
GR

k GR
q−k1

GA
k

×GA
k1

GA
q−kG

A
q−k1

〈Uk,k1Uq−k,q−k1〉imp, (23)

and we have

σF
R = σF

A = −e2v2η2
vNF τ 3

h̄2 ηH sin2 θ
∑

q

	(q), (24)

with

ηH =−1

2

[
a2b2

a4 + b4

(
τ

τe

− τ

τz

+ τ

τso,z

)
− τ

τx

+ τ

τso,x

]
. (25)

The total contribution is given by the summation of three
diagrams in Figs. 7 and 8,

σF = σF
0 + σF

R + σF
A

= −e2v2η2
vNF τ 3

h̄2 sin2 θ (1 + 2ηH )
∑

q

	(q). (26)

F. Bethe-Salpeter equation

Now the main task is to derive the vertex function 	(q) for
the maximally crossed diagrams. First we need to evaluate the
bare vertex 	0(q), which has the form

	0
kαkβ

≡ 〈
Ukβ ,kα

Uq−kβ ,q−kα

〉
imp

≈ h̄

2πNF τS
(A + Bei(ϕα−ϕβ ) + Ce2i(ϕα−ϕβ )), (27)

FIG. 9. (Color online) The Bethe-Salpeter equation for the vertex
of maximally crossed diagrams.

in the limit q → 0, where

A = a4

a4 + b4

(
τ

τe

+ τ

τz

− τ

τso,z

)
,

B = 2a2b2

a4 + b4

(
τ

τe

− τ

τz

+ τ

τso,z

)
− 2

(
τ

τx

− τ

τso,x

)
, (28)

C = b4

a4 + b4

(
τ

τe

+ τ

τz

− τ

τso,z

)
.

The full vertex function 	(q) is related to 	0(q) by the
Bethe-Salpeter equation (see Fig. 9),

	kαkβ
= 	0

kαkβ
+

∑
kμ

	0
kαkμ

GR
kμ

GA
q−kμ

	kμkβ
, (29)

with kα,β labeling the independent incoming and outgoing
momenta, respectively. This equation can be solved by
expanding 	(q) and 	0(q) into

	kαkβ
= h̄

2πNF τS

∑
n,m∈0,1,2

Znmei(nϕα−mϕβ ),

(30)

	0
kαkβ

= h̄

2πNF τS

∑
n,m∈0,1,2

znmei(nϕα−mϕβ ).

If we further define that

�nm = 1

2π

∫ 2π

0
dϕμ

ei(m−n)ϕμ

1 + iτq · vμ

, n,m = 0,1,2, (31)

the expansion coefficients can be obtained in a matrix form

Z = (I − z�)−1z, (32)

where

z =
⎛
⎝A 0 0

0 B 0
0 0 C

⎞
⎠ (33)

and up to q2 terms in the small q limit

� ≈

⎛
⎜⎜⎝

1 − Q2

2 − iQ+
2 −Q2

+
4

− iQ−
2 1 − Q2

2 − iQ+
2

−Q2
−

4 − iQ−
2 1 − Q2

2

⎞
⎟⎟⎠ , (34)

with Q2 = Q2
x + Q2

y , Q± = Qx ± iQy , and Q = vτ sin θq.
Two diagonal terms of Z can be found as

Z00 = 2

g0 + (
1 + 1

g1

)
Q2

,

(35)

Z11 = 2

g1 + (
1 + 1

g0
+ 1

g2

)
Q2

,
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where the “Cooperon gaps” have been introduced

g0 = 2(1 − A)/A,

g1 = 2(1 − B)/B, (36)

g2 = 2(1 − C)/C,

and Z22 has been omitted because it always has a nonvanishing
Cooperon gap.

Put Eq. (35) into Eq. (30) and let kα = k and kβ = q − k,
the vertex is found as

	kαkβ
→ 	k(q) ≈ 	(0) + 	(1)ei(ϕk−ϕq−k), (37)

with

	(0) = h̄

πNF τ

1

g0 + (
1
g1

+ 1
)
Q2

,

(38)

	(1) = h̄

πNF τ

1

g1 + (
1 + 1

g0
+ 1

g2

)
Q2

.

For q � kF , it becomes approximately only a function of q,

	(q) ≈ h̄

πNF τ

[
1

g0 + (
1
g1

+ 1
)
Q2

− 1

g1 + (
1 + 1

g0
+ 1

g2

)
Q2

]
.

(39)

G. Quantum interference correction to conductivity
at zero field σ F(0)

Put Eq. (39) into Eq. (26), the zero-field quantum interfer-
ence correction to conductivity can be found as

σF (0) = − e2

πh

∑
i=0,1

∫ �−2
e

�−2
φ

d(q2)
αi

�−2
i + q2

= − e2

πh

∑
i=0,1

αi ln
�−2

i + �−2
e

�−2
i + �−2

φ

, (40)

with

α0 = η2
v(1 + 2ηH )

2
(
1 + 1

g1

) , �−2
0 = g0

2�2 sin2 θ
(
1 + 1

g1

) ,

α1 = − η2
v(1 + 2ηH )

2
(
1 + 1

g0
+ 1

g2

) , �−2
1 = g1

2�2 sin2 θ
(
1 + 1

g0
+ 1

g2

) ,

(41)

and � = √
Dτ . The quantum diffusion condition is reflected in

the upper bound qmax = �−1
e and the lower bound qmin = �−1

φ

of the integration over q.

H. Magnetoconductivity �σ (B)

In the presence of a perpendicular magnetic field B, the
finite-field conductivity correction σF (B) can be derived by
replacing q2 in Eq. (40) with q2

n = (n + 1
2 )/�2

B , where n labels
the Landau levels for 2D massive Dirac fermions and �B =√

h̄/4eB is defined as the magnetic length for a Cooperon.

Therefore the finite-field conductivity correction becomes

σF (B) = − e2

πh

∑
i=0,1

αi

[
�

(
�2

B

�2
e

+ �2
B

�2
i

+ 1

2

)

−�

(
�2

B

�2
φ

+ �2
B

�2
i

+ 1

2

)]
, (42)

where � is the digamma function. The magnetoconductivity
is found as

�σ (B) ≡ σF (B) − σF (0)

= e2

πh

∑
i=0,1

αi

[
�

(
�2

B

�2
φ

+ �2
B

�2
i

+ 1

2

)
− ln

(
�2

B

�2
i

+ �2
B

�2
φ

)]
,

(43)

where we have assumed small magnetic field limit, in which
�B � �e and

�

(
�2

B

�2
e

+ �2
B

�2
i

+ 1

2

)
≈ ln

(
�2

B

�2
e

+ �2
B

�2
i

)
. (44)

By defining two effective phase coherence lengths �L and �AL,

1

�2
L

≡ 1

�2
0

+ 1

�2
φ

,
1

�2
AL

≡ 1

�2
1

+ 1

�2
φ

, (45)

the magnetoconductivity can be written as

�σ (B) = e2

πh

∑
i=L,AL

αi

[
�

(
�2

B

�2
i

+ 1

2

)
− ln

(
�2

B

�2
i

)]
, (46)

where αL,AL are given by α0,1 in Eq. (41).

I. Singlet and triplet Cooperon channels

In this section we provide an understanding to the vertex
function of the maximally crossed diagram 	 from the view
of singlet and triplet Cooperon channels. The Bethe-Salpeter
equations of the vertex function are equivalent to the diffusion
equations of Cooperons. The coordinates of Cooperons are
given by the summations of the quantum numbers (momentum,
spin,. . .) on the incoming and outgoing sides of the vertex
function. It is like to pair two spin-1/2 particles, and the

TABLE II. Cooperon channels for the conventional electrons and
Dirac fermions. Triplet (singlet) channel gives WL (WAL). Spin-orbit
scattering only quenches the triplet channels, leading to the crossover
from WL to WAL for conventional electrons and the suppression of
WL in the large-mass limit of Dirac fermions. γ is the Berry phase.

Triplet Singlet
Cooperon channels (⇒WL) (⇒WAL)

Conventional electron ×3 ×1
Massless Dirac fermion (γ = π ) ×1
Large-mass Dirac fermion (γ → 0) ×1
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TABLE III. Two-dimensional quantum diffusive transport of conventional and Dirac fermions for impurities of orthogonal (elastic), unitary
(magnetic), and symplectic (spin-orbit) symmetries.42 τm and τso are magnetic and spin-orbit scattering times, respectively. Elastic scattering
(1/τe �= 0) is present in all the cases. γ is the Berry phase.

Orthogonal Unitary Symplectic
(1/τm = 1/τso = 0) (1/τm �= 0,1/τso = 0) (1/τm = 0,1/τso �= 0)

Conventional electron WL both suppressed WL → WAL
Massless Dirac fermion γ = π WAL suppressed WAL WAL
Massive Dirac fermion γ ∈ (0,π ) WAL → WL both suppressed WAL or suppressed WL depending on γ

Dirac fermion in large-mass limit γ = 0 WL suppressed WL suppressed WL

coupled spin states are given by the singlet and triplets

|1,1〉 = |↑〉 ⊗ |↑〉, |1,−1〉 = |↓〉 ⊗ |↓〉,
|1,0〉 = 1√

2
(|↑〉 ⊗ |↓〉 + |↓〉 ⊗ |↑〉), (47)

|0,0〉 = 1√
2

(|↑〉 ⊗ |↓〉 − |↓〉 ⊗ |↑〉),

where |j,m〉 labels the total spin angular momentum j and its
z component m.

The Cooperon vertex function 	 can be expressed as a
tensor operator acting on the states at the four corners of its
diagram in Fig. 9, and

	kαkβ
= 〈

ψkβ

∣∣ ⊗ 〈
ψq−kβ

∣∣	̂∣∣ψkα

〉 ⊗ ∣∣ψq−kα

〉
. (48)

By substituting the eigenstates defined in Eq. (4) for q → 0,
the vertex function becomes

	kαkβ
= a4〈1,1|	̂|1,1〉 + 2a2b2ei(ϕα−ϕβ )〈0,0|	̂|0,0〉

+ b4e2i(ϕα−ϕβ )〈1,−1|	̂|1,−1〉, (49)

where we have used the definition in Eq. (47) and neglected
the terms with factors ei(nϕα−mϕβ ) for m �= n. Comparing this
expression with Eqs. (30) and (35), we find that

Z00 = a4〈1,1|	̂|1,1〉,
Z11 = 2a2b2〈0,0|	̂|0,0〉, (50)

Z22 = b4〈1,−1|	̂|1,−1〉.
This means that the diagonal terms Z00 and Z22 come
from the triplet Cooperon channels, while Z11 from the
singlet.

V. CONCLUSIONS

To summarize, Tables II and III compare the 2D massive
Dirac fermion and conventional electron in terms of the
diffusion of Cooperons. Weak antilocalization results from
the singlet Cooperon and weak localization from triplet
Cooperons. For 2D conventional electrons, there are two spin-
degenerate bands at the Fermi surface, giving rise to one singlet
and three triplet Cooperon channels. Spin-orbit scattering can
suppress the triplet Cooperons, leading to a crossover from
weak localization to weak antilocalization. In contrast, 2D
Dirac fermions have only one spin-polarized band at the Fermi
surface. In the massless limit, the in-plane spin-momentum
locking requires spin to be flipped after backscattering. The
summation of incoming and outgoing spins is 0, leading to
the weak antilocalization from the singlet Cooperon. In the
large-mass limit, spin is polarized along the z axis, the total
spin before and after backscattering is 1, corresponding to one
of the triplet Cooperons that give weak localization. Due to
its nonzero angular momentum, the “triplet” is vulnerable to
spin-orbit scattering. The suppressed triplet is accompanied
by a crossover from the weak localization into the unitary
regime with ignorable magnetoconductivity. Compared with
the spin-orbit scattering, the magnetic scattering only induces
the crossover to the unitary regime in either weak localization
or antilocalization regime.

ACKNOWLEDGMENTS

This work is supported by the Research Grant Council
of Hong Kong under Grant No. HKU 7051/10P and HKU
UGC Seed Funding Programme for Basic Research No.
201206159001.

*luhz@hku.hk
1M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
2X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
3J. E. Moore, Nature (London) 464, 194 (2010).
4J. G. Checkelsky, Y. S. Hor, M. H. Liu, D. X. Qu, R. J. Cava, and
N. P. Ong, Phys. Rev. Lett. 103, 246601 (2009).

5H. L. Peng, K. J. Lai, D. S. Kong, S. Meister, Y. L. Chen, X. L.
Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, Nature Mater. 9, 225
(2010).

6J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang,
J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu,
Phys. Rev. Lett. 105, 176602 (2010).

7J. G. Checkelsky, Y. S. Hor, R. J. Cava, and N. P. Ong, Phys. Rev.
Lett. 106, 196801 (2011).

8H. T. He, G. Wang, T. Zhang, I. K. Sou, G. K. L. Wong, J. N. Wang,
H. Z. Lu, S. Q. Shen, and F. C. Zhang, Phys. Rev. Lett. 106, 166805
(2011).

9M. H. Liu, C. Z. Chang, Z. C. Zhang, Y. Zhang, W. Ruan,
K. He, L. L. Wang, X. Chen, J. F. Jia, S. C. Zhang, Q. K.
Xue, X. C. Ma, and Y. Y. Wang, Phys. Rev. B 83, 165440
(2011).

10J. Wang, A. M. DaSilva, C. Z. Chang, K. He, J. K. Jain, N. Samarth,
X. C. Ma, Q. K. Xue, and M. H. W. Chan, Phys. Rev. B 83, 245438
(2011).

125303-8

http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1038/nature08916
http://dx.doi.org/10.1103/PhysRevLett.103.246601
http://dx.doi.org/10.1103/PhysRevLett.105.176602
http://dx.doi.org/10.1103/PhysRevLett.106.196801
http://dx.doi.org/10.1103/PhysRevLett.106.196801
http://dx.doi.org/10.1103/PhysRevLett.106.166805
http://dx.doi.org/10.1103/PhysRevLett.106.166805
http://dx.doi.org/10.1103/PhysRevB.83.165440
http://dx.doi.org/10.1103/PhysRevB.83.165440
http://dx.doi.org/10.1103/PhysRevB.83.245438
http://dx.doi.org/10.1103/PhysRevB.83.245438


SPIN-ORBIT SCATTERING IN QUANTUM DIFFUSION OF . . . PHYSICAL REVIEW B 86, 125303 (2012)

11M. H. Liu, J. S. Zhang, C. Z. Chang, Z. C. Zhang, X. Feng, K. Li,
K. He, L. L. Wang, X. Chen, X. Dai, Z. Fang, Q. K. Xue, X. C. Ma,
and Y. Y. Wang, Phys. Rev. Lett. 108, 036805 (2012).

12J. Chen, X. Y. He, K. H. Wu, Z. Q. Ji, L. Lu, J. R. Shi, J. H. Smet,
and Y. Q. Li, Phys. Rev. B 83, 241304(R) (2011).

13Y. S. Kim, M. Brahlek, N. Bansal, E. Edrey, G. A. Kapilevich,
K. Iida, M. Tanimura, Y. Horibe, S. W. Cheong, and S. Oh, Phys.
Rev. B 84, 073109 (2011).
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