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Phase diagram and critical points of a double quantum dot
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We apply a combination of numerical renormalization group (NRG) and renormalized perturbation theory
(RPT) to a model of two quantum dots (impurities) described by two Anderson impurity models hybridized to
their respective baths. The dots are coupled via a direct Coulomb interaction U12 and a spin exchange interaction
J . The model has two types of quantum critical points, one at J = Jc to a local singlet state and one at U12 = Uc

12

to a locally charge ordered state. The renormalized parameters which determine the low energy behavior are
calculated from the NRG. The results confirm the values predicted from the RPT on the approach to the critical
points, which can be expressed in terms of a single energy scale T ∗ in all cases. This includes cases without
particle-hole symmetry, and cases with asymmetry between the dots, where there is also a transition at J = Jc.
The results give a comprehensive quantitative picture of the behavior of the model in the low energy Fermi liquid
regimes, and some of the conclusions regarding the emergence of a single energy scale may apply to a more
general class of quantum critical points, such as those observed in some heavy fermion systems.
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I. INTRODUCTION

Experimental evidence in heavy fermion materials sug-
gests that there is a close connection between the regions
of anomalous spin fluctuations associated with a quantum
critical point and the occurrence of superconductivity.1 There
is a similar association in the cuprates and iron pnictide
superconductors.2 This has motivated many experimental
studies of quantum behavior in fermionic systems, which can
be induced by lowering the transition in a magnetically ordered
state to zero by application of pressure, a magnetic field, or
by alloying.3–5 Many conjectures have been put forward to
understand this behavior, but as yet there is no fully quantitative
or comprehensive explanation (for a recent review on this topic
see Ref. 3). This situation has led to a resurgence of interest in
local or impurity models which have quantum critical points.
There are two reasons for this. First, impurity problems are
simpler and well-established techniques have been developed
for tackling them. Second, such systems can be simulated using
nanoscale devices, such as quantum dots, where the parameters
can be varied in a controlled way via gate voltages and the
behavior examined over different regimes. An example is the
two-channel Kondo model, which has a quantum critical point
and non-Fermi liquid behavior. An arrangement of quantum
dots and gate voltages has been used successfully to test
experimentally theoretical predictions for this model in the
non-Fermi liquid regime.6

The two-impurity Kondo model is another example of
a model with local quantum critical behavior. Numerical
renormalization group studies for this model have shown
that there is a discontinuous transition on increasing the
(antiferromagnetic) exchange interaction between the two
impurities from a state in which the impurity spins are
predominantly screened by the conduction electrons (Kondo
screening) to one screened within a local singlet state.7 There
has been recent experimental work8 to examine the critical
behavior of this model using two magnetic impurities, one
on a scanning tunneling microscope (STM) tip and the other
on a metal surface, such that the interaction between the two

impurities can be modified by controlling the distance of the
STM tip from the surface. Yet another type of critical point
which has been studied theoretically,9 one that could occur in
two capacitatively coupled quantum dots, has a discontinuous
transition to a locally charge ordered state.

In a recent paper we studied a two-impurity Anderson
model which has direct and exchange interactions between
the two impurities and displays both types of transition.10 We
showed, by using a combination of renormalized perturbation
theory (RPT) and numerical renormalization group calcula-
tions (NRG), that we could derive many exact results for the
low temperature behavior in the Fermi liquid regime right
up to the quantum critical points. We were able to show the
emergence of a single energy scale on the approach to each
type of quantum critical point with renormalized Fermi liquid
parameters corresponding to a strong correlation regime. The
results were restricted to a model with symmetry between
the two impurities and particle-hole symmetry. In this paper
we enlarge upon those results, examine the phase diagram
more fully, and also relax the restrictions to include channel
asymmetry and lack of particle-hole symmetry.

The model for the system we study corresponds to two
quantum dots connected via leads with their respective
conduction baths. The Hamiltonian H for the system takes
the form H = H1 + H2 + H12, where the individual dots are
described by a single impurity Anderson model, so Hα for dot
α = 1,2 is given by

Hα =
∑

σ

εd,αd†
α,σ dα,σ +

∑
k,σ

εk,αc
†
k,α,σ ck,α,σ

+
∑
k,σ

(Vk,αd†
α,σ ck,α,σ +V ∗

k,αc
†
k,α,σ dα,σ ) + Uαnd,α,↑nd,α,↓,

(1)

where d†
α,σ , dα,σ , are creation and annihilation operators for

an electron at the impurity site in channel α, where α = 1,2,
and spin component σ = ↑, ↓. The creation and annihilation
operators, c

†
k,α,σ , ck,α,σ , are for conduction electrons with
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FIG. 1. (Color online) A schematic illustration of NRG chains
for the double dot system. The quantum dots (solid squares) interact
via an exchange J and a direct term U12, and are hybridized with the
first site of their respective conduction electron chains (solid circles).

energy εk,α in channel α. The hybridization function for
each dot is given by �α,σ (ω) = π

∑
k |Vk,α|2δ(ω − εk). We

will make the usual approximation and take �α,σ (ω) to be a
constant �α , independent of ω and σ , corresponding to the
wide band limit with a constant density of states.

The interaction between the two quantum dots is taken in
the form of a direct term U12, and an exchange term J , so that
the interaction Hamiltonian H12 has the form,

H12 = U12

∑
σ

nd,1,σ

∑
σ ′

nd,2,σ ′ + 2JSd,1 · Sd,2, (2)

where J > 0 for an antiferromagnetic coupling and J < 0 in
the ferromagnetic case.

Though the model here is taken to describe a double
quantum dot, it can serve equally well to describe a number of
other physical situations. It can describe a single magnetic im-
purity with twofold “orbital” degeneracy, where the exchange
coupling J then corresponds to a Hund’s rule term where a
ferromagnetic exchange term would be appropriate.11–13 In the
strong coupling regime U/π� � 1, the model corresponds
to two Kondo models and with U12 = 0 it has been much
studied as a model of a system with two coupled magnetic
impurities.7,14–16 The model with J = 0 has also been used to
study two capacitatively coupled quantum dots.9

For the numerical renormalization group calculations
(NRG) the conduction electron states are transformed to a
basis corresponding to a tight-binding chain such that the
model takes the form illustrated in Fig. 1. The densities of
states for the conduction electron baths (half-bandwidth D)
are discretized with a parameter 	(>1) as in the original
calculation of Wilson17 so that the couplings along the chain
fall off as 	−N/2, for large N , where N is the N th site along
the chain from the dot.

II. PHASE DIAGRAM

As the model used here is rather more general than those
studied so far, we show some results for the phase diagram
which now includes two QCPs. Before considering the general
case we look at the case with U12 = 0. In the Kondo regime
this is a much-studied model of a system with two coupled
magnetic impurities7,14–16 which has a QCP at J = Jc where
there is a sudden change in phase shift of the conduction
electrons from π/2 to zero. When J = 0 the two dots are
isolated and their ground states are (Kondo) singlets giving
a phase shift of π/2 in each channel. In the opposite limit
J → ∞ the impurity spins form a decoupled local singlet
such that the phase shift of the conduction electrons in each
channel is zero. In some related models the change between
these two limits was found to occur continuously with increase
of J . Affleck, Ludwig, and Jones,18,19 however, cleared up
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FIG. 2. (Color online) A plot of Jc/π�̃(U,0) as a function of
U/π� for π� = 0.01.

the confusion resulting from apparently conflicting results
from the different models, in giving the conditions for the
change to occur discontinuously, resulting in a QCP. In a
more recent study of a quantum dot version of the model, it
has been shown that the transition occurs even when there
is asymmetry between the two channels and away from
particle-hole symmetry.20 For the calculations of the phase
diagram we assume both channel symmetry U1,V1 = U2,V2

and particle-hole symmetry εd,α = −Uα/2, although we relax
some of these conditions later. It will be useful to introduce a
renormalized quantity �̃(0), which will be defined more fully
later, such that �̃(U,0) → � for U → 0 and in the Kondo
regime U/π� � 1, π�̃(U,0) → 4TK, where TK the Kondo
temperature of the isolated dot, defined by the relation TK =
(gμB)2/4χimp, where χimp is the T = 0 spin susceptibility for
an isolated dot.

In Fig. 2 we give a plot of the critical value Jc/π�̃(U,0) as a
function of U/π� for π� = 0.01, which sets the scale for the
dot/impurity properties provided � 	 D (D = 1). We take
this value for π� all subsequent calculations unless specified
explicitly. The transition in the NRG calculations corresponds
to a sudden change in the low energy fixed point from that
of a free chain with N sites, where N is even (odd) to one
with N odd (even). It can be seen that there is a transition
for all values of U including U = 0. For U/π� > 3 the
curve is flat indicating that in this regime Jc is proportional to
TK, corresponding to Jc = 1.378TK. These results are in line
with calculations based on the Kondo model where values
of Jc/TK ≈ 1.4 were estimated when expressed using our
definition of TK

7,14,15 (in previous studies TK was defined by
χs = 2μ2

B/πTK giving in our case Jc/TK = 2.165).
The second type of transition to a local charge ordered

state occurs in the model J = 0 when U12 reaches a critical
value Uc

12. For U12 = 0 the charges on the two impurities are
identical, but on increasing U12 such that U12 � U it becomes
energetically unfavorable and there is a local broken symmetry
resulting in a charge imbalance between the impurities. If
there are matrix elements connecting the two possible broken
symmetry states to restore the symmetry then they must be
exceedingly small because the NRG results indicate a precise

125134-2



PHASE DIAGRAM AND CRITICAL POINTS OF A DOUBLE . . . PHYSICAL REVIEW B 86, 125134 (2012)

0 1 2 3 4 5 6
U/πΔ

0

1

2

3

4

5

6

7

8

U12/πΔc

δ=π/2

δ=0

FIG. 3. (Color online) A plot of Uc
12/π�, as a function of U/π�

for the model with J = 0.

transition at a critical value U12 = Uc
12. We plot the value

of Uc
12/π� as a function of U/π� in Fig. 3. This transition

exists for all values of U and for U/π� � 3 the critical values
approach the value of U (i.e., Uc

12 → U ). These results are in
agreement with those given earlier by Galpin et al.9

The phase diagram for the model with finite J and U12,
where both types of transitions occur, is shown in Fig. 4
for the value U/π� = 5. The two types of transition are
separated by the line U12 = U + 3J/2 along which the phase
shift remains at the value δ = π/2. The two types of transition
asymptotically approach this line on opposite sides.

To investigate the low energy behavior of the model in
detail, we first derive a number of exact results in terms of
renormalized parameters using a renormalized perturbation
theory (RPT) for the low energy properties in the Fermi liquid
regime. An analysis of the low energy NRG fixed point is
then used to calculate the renormalized parameters in terms
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FIG. 4. (Color online) A plot of the critical lines (local singlet,
stars; local charge order, circles) separating the regions with phase
shift δ = π/2 and δ = 0 as a function of J/π� and U12/π� for
U/π� = 5. The dotted line corresponds to U12 = U + 3J/2. The
two vertical lines relate to results shown later in Figs. 26 and 27.

of the “bare” parameters that define the model. Once the
renormalized parameters have been calculated, they can be
substituted into the equations for the exact evaluation of the
low energy thermodynamics. The relevant equations based on
the renormalized pertubation theory (RPT) will be derived in
the next section.

III. RPT ANALYSIS

We start with the Fourier transform of the single-particle
Green’s function for the impurity d state,

Gd,α,σ (ωn′) = −
∫ β

0
〈Tτdα,σ (τ )d†

α,σ (0)〉eiωn′ τ dτ, (3)

where ωn′ = (2n′ + 1)/β and β = 1/T and the brackets 〈. . .〉
denote a thermal average. This Green’s function can be
expressed in the form,

Gd,α,σ (ωn) = 1

iωn − εd,α + i�α,σ sgn(ωn) − α,σ (ωn)
, (4)

where α,σ (ωn) is the self-energy.
For the zero temperature Green’s function, which will be

our main concern, ωn can be replaced by a continuous variable
ω, and summations over ωn replaced by integrations over
ω. For the renormalized perturbation theory,21 the Green’s
function in Eq. (4) can be re-expressed as Gd,α,σ (ωn) =
zαG̃d,α,σ (ωn), where G̃d,α,σ (ωn) is the quasiparticle Green’s
function given by

G̃d,α,σ (ωn) = 1

iωn − ε̃d,α + i�̃αsgn(ωn) − ̃α,σ (ωn)
, (5)

and the renormalized parameters ε̃d,α and �̃α are given by

ε̃d,α = zα(εd,α + α,σ (0)), �̃α = zα�α, (6)

where zα = 1/(1 − ∂α,σ (ω)/∂(iω)) evaluated at ω = 0. The
quasiparticle self-energy ̃α,σ (ω) is given by

̃α,σ (ω,H ) = zα

(
α,σ (ω) − α,σ (0) − iω

∂α,σ (ω)

∂iω

∣∣∣∣
ω=0

)
,

where we have assumed the Luttinger theorem,22 Im(0) = 0,
so that Im̃α,σ (ω) ∼ ω2 as ω → 0. When expressed in this
form, the ω = 0 part of the self-energy and its derivative have
been absorbed into renormalizing the parameters εd,α and
�α , so in setting up the perturbation expansion any further
renormalization of these terms must be excluded, or it will
result in overcounting. In working with the fully renormalized
quasiparticles it is appropriate to use the renormalized or
effective interactions between the quasiparticles. In the single
channel case, we identify the renormalized interaction Ũα

as the local four vertex �α
↑,↓,↓,↑(ω1,ω2,ω3,ω4) in the zero

frequency limit,21

Ũα = z2
α�α

↑,↓,↓,↑(0,0,0,0). (7)

In this case we need to include the local interchannel four
vertex; �αα′

(ω1,ω2) corresponds to the Fourier coefficient of
the connected skeleton diagram for the two-particle Green’s
function,

〈Tτ Sd,1(τ1) · Sd,2(τ2)〉, (8)
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with the external legs removed. We define

2J̃ = z1z2�σ1,σ2 (0,0,0,0), (9)

and we can define a renormalized direct interaction Ũ12 in a
similar way.

We can combine these terms to define a quasiparticle
Hamiltonian H̃ = ∑

α H̃α + H̃12, where

H̃α =
∑

σ

ε̃d,αd̃†
α,σ d̃α,σ +

∑
kσ

εk,αc
†
k,α,σ ck,α,σ

+
∑
k,σ

(Ṽkd̃
†
α,σ ck,α,σ +Ṽ ∗

k c
†
k,α,σ d̃α,σ ) + Ũα : ñd,α,↑ñd,α,↓ : ,

and

H̃12 = Ũ12 :
∑

σ

ñd,1,σ

∑
σ ′

ñd,2,σ ′ : +2J̃ : S̃d,1 · S̃d,2 : . (10)

The brackets :Ô: indicate that the operator Ô within the
brackets must be normal ordered with respect to the ground
state of the interacting system, which plays the role of the
vacuum. This is because the interaction terms only come into
play when more than one quasiparticle is created from the
vacuum.

The renormalized Hamiltonian is not equivalent to the
original model, and the relation between the original and renor-
malized model is best expressed in the Lagrangian formulation,
where frequency enters explicitly.23 If the Lagrangian density
L(εd,�α,U,J) describes the original model, then by suitably
rearranging the terms we can write

L(εd,�,U,J,U12) = L(ε̃d ,�̃α,Ũα,J̃ ,Ũ12) + Lc({λi}), (11)

where the remainder partLc({λi}) is known as the counterterm.
The set of coefficients {λi}, where i = 1,2,3,4,5, can be
expressed explicitly in terms of the self-energy terms and
vertices at zero frequency. These relations, however, are not
useful in carrying out the expansion. We want to work entirely
with the renormalized parameters and carry out the expansion
in powers of Ũα , J̃ , and Ũ12. We assume that the λi can be
expressed in powers of quasiparticle interaction terms, Ũα ,
J̃ , and Ũ12, and can be determined order by order from the
conditions that there should be no further renormalization
of quantities which have already been taken to be fully
renormalized. These conditions are

̃α,σ (0) = 0,
∂̃α,σ (ω)

∂iω

∣∣∣∣
0

= 0, (12)

and that the renormalized local and intersite 4-vertices at zero
frequency are unchanged.

The propagator in the RPT is the free quasiparticle Green’s
function,

G̃
(0)
d,α,σ (ωn) = 1

iωn − ε̃d,α + i�̃αsgn(ωn)
. (13)

From Fermi liquid theory, the quasiparticle interaction
terms do not contribute to the linear specific heat coefficient γ

of the electrons. The specific heat coefficient γ is given by

γ = 2π2
∑

α

ρ̃α(0)/3, (14)

where ρ̃α(ω) is the free quasiparticle density of states per single
spin and channel,

ρ̃α(ω) = �̃α/π

(ω − ε̃d,α)2 + �̃2
α

. (15)

The results for the spin susceptibility is given by

χs = 2μ2
B

∑
α

η̃s,αρ̃α(0), χc = 2
∑

α

η̃c,αρ̃α(0), (16)

where

η̃s,α = 1 + Ũαρ̃α(0) − J̃ ρ̃β(0),
(17)

η̃c,α = 1 − Ũαρ̃α(0) − 2Ũ12ρ̃β(0),

where β �= α. The equations for the spin and charge suscepti-
bilities, χs and χc, can be proved using the Ward identities
which follow from conservation of total spin and charge.
They also correspond to a simple mean field approximation
to first order in the effective interactions, Ũα , J̃ , and Ũ12,
in the quasiparticle Hamiltonian Eq. (10). The corresponding
equations for the staggered susceptibilities also follow from
these mean field equations and in the appendix we give an
alternative way they can be derived from the leading correction
terms to the NRG fixed point,

χst
s = 2μ2

B

∑
α

η̃st
s,αρ̃α(0), χst

c = 2
∑

α

η̃st
c,αρ̃α(0), (18)

where

η̃st
s,α = 1 + Ũαρ̃α(0) + J̃ ρ̃β(0),

(19)
η̃st

c,α = 1 − Ũαρ̃α(0) + 2Ũ12ρ̃β(0).

From the equation of motion of the Green’s function
Gα

kσ,k′,σ (ω), which is the Fourier transform of the retarded

conduction electron Green’s function 〈〈cα,k,σ (t) : c
†
α,k′,σ (t ′)〉〉

in channel α, we can derive the equation,

Gα
kσ,k′,σ (ω) = δk,k′

(ω − εk)
+ 1

(ω − εk)
t k,k′
α,σ (ω)

1

(ω − εk′)
, (20)

where the t matrix, tk,k′
α,σ (ω) is given by t k,k′

α,σ (ω) =
Vk,αGd,α,σ (ω)Vk′,α . From the definition of the phase shift as
the phase of the t matrix for ω = 0,

δα,σ = tan−1

(
Im Gd,α,σ (0)

Re Gd,α,σ (0)

)
, (21)

we find

δα − π

2
= −tan−1

(
εd,α + α(0)

�α

)
= −tan−1

(
ε̃d,α

�̃α

)
. (22)

The total occupation of the impurity sites
∑

nd,α = ∑
δα/π

at T = 0, which corresponds to the Friedel sum rule.
We consider first of all the model with U12 = J = 0,

which corresponds to two independent Anderson models.
With particle-hole symmetry εd,α = −Uα/2, ε̃d,α = 0, which
corresponds to a phase shift δα = π/2 in a given spin
channel, independent of the value of Uα . This leaves just two
renormalized parameters per dot, �̃α and Ũα , which are related
in the strong coupling regime, as there is only one relevant
low energy scale, the Kondo temperature TK,α . The relation
takes the form, Ũα = π�̃α = 4TK,α , where TK,α is defined
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such that spin susceptibility of a single impurity is given by
χs,α = (gμB)2/4TK,α .

On the approach to a quantum critical point we expect
both quasiparticle weight factors, z1 → 0 and z2 → 0, as a
singularity develops in the self-energy of the dot Green’s
functions, which implies a divergence in the specific heat
coefficient γ . It also implies a divergence in the quasiparticle
density of states at the Fermi level, ρ̃α(0) → ∞. As J → Jc

we expect a divergence in the staggered spin susceptibility
χst

s as it is the fluctuations in this channel that become
critical. We expect the other susceptibilities, χs , χc, and χst

c , to
remain finite, which leads us to require ηs,α → 0, ηc,α → 0
and ηst

c,α → 0 as J → Jc. These conditions give sufficient
equations for us to determine all the renormalized parameters
ρ̃α(0), Ũα , J̃ , and Ũ12 in terms of a single energy scale. We
find

Ũαρ̃α(0) → 1, J̃ ρ̃α(0) → 2, Ũ12ρ̃α(0) → 0. (23)

For the local charge transition it is only the the staggered charge
susceptibility χst

c which should diverge as U12 → Uc
12. For the

other susceptibilities to remain finite, ηs,α → 0, ηc,α → 0, and
ηst

c,α → 0 as U12 → Uc
12. This implies

Ũαρ̃α(0) → −1, J̃ ρ̃α(0) → 0, Ũ12ρ̃α(0) → 1. (24)

We can define an energy scale T ∗ as J → Jc on the approach to
the QCPs via 1/ρ̃(0) = 4T ∗ which for particle-hole symmetry
becomes π�̃ = 4T ∗, such that the renormalized interaction
parameters can be expressed in terms of this single energy
scale T ∗.

Other exact results can be obtained from the RPT. An exact
expression for the renormalized self-energy for the model
with particle-hole symmetry ̃(ω) to order ω2 and T 2 follows
from an RPT calculation10 taken to second order in interaction
parameters Ũ , J̃ , and Ũ12, and is given by

̃(ω,T ) = −iπ2I�̃

64

[( ω

T ∗
)2

+
(

πT

T ∗

)2
]

, (25)

where I = (2Ũ 2 + 3J̃ 2 + 4Ũ 2
12)/(π�̃)2, so I → 14 as J →

Jc and I → 6 as U → Uc
12, and we have taken the channel

symmetric case, U1 = U2, V1,k = V2,k . This is a generalization
of the calculations given earlier in a paper on an impurity
model with a Hund’s rule term.11,12 On substituting (25) into
the quasiparticle Green’s function, we deduce ω2 and T 2

contribution to the t matrix, tα(ω,T ),

iπD

16

[
(I + 4)

( ω

T ∗
)2

+ I

(
πT

T ∗

)2
]

. (26)

The ratio of the ω2 to the π2T 2 term is (I + 4)/I , which for
I = 14 gives 9/7 in agreement with the calculation of Mitchell
and Sela24 for the two-impurity Kondo model.

To evaluate the RPT expressions for the low energy
behavior of the model we need the values of the renormalized
parameters in terms of the “bare” parameters that define the
model. We give a brief description how they may be deduced
from the low energy fixed point in an NRG calculation. The
results of these calculations enable us to test the predictions
given in Eqs. (23) and (24). An evaluation of the RPT

expressions gives a comprehensive picture of the low energy
behavior of the model in the Fermi liquid regimes.

IV. NRG CALCULATION OF RENORMALIZED
PARAMETERS

The numerical renormalization group results can be used
to calculate the renormalized parameters, by identifying the
quasiparticle Hamiltonian in Eq. (10) as the NRG low energy
fixed point with the leading order correction terms. In the
NRG calculation the noninteracting Green’s function for the
impurity site α takes the form,

G
(0)
d,α,σ (ω) = 1

ω − εd − V 2G
(0)
0,α,σ (ω)

, (27)

where

G(0)
n,α,σ (ω) = 1

ω − εi − V 2
n G

(0)
n+1,α,σ (ω)

, (28)

with n = 0,1,2,....N for a tight binding N -site conduction
chain, where Vn are the intersite hopping matrix elements
and εn the energies, with Vn = 	−n/2ξn, where 	 (>1) is the
discretization parameter, and ξn is given by

ξn = D

2

(1 + 	−1)(1 − 	−n−1)

(1 − 	−2n−1)1/2(1 − 	−2n−3)1/2
. (29)

We use a discretization parameter 	 = 6, D = 1, particle-hole
symmetry in the conduction band εn = 0, and retain 4000
states at each NRG iteration.

The renormalized parameters, ε̃d and Ṽ , are calculated by
requiring the lowest energy single and hole particle excitations,
Ep,α(N ) and Eh,α(N ), for the interacting system with an NRG
chain of length N to correspond to the poles of the quasiparticle
Green’s function in the limit of large N . This gives to the
condition,

Ep/h,α(N ) − ε̃d − Ṽ 2G
(0)
0,α,σ (Ep/h,α(N )) = 0, (30)

where G
(0)
0,α,σ (ω) is given by Eq. (28). This equation defines

quantities, ε̃d,α(N ) and �̃α(N ), which in general depend upon
N . Plotting these quantities as a function of N a plateau
develops when they become independent of N for large N ,
which then determines the parameters for the free quasipar-
ticles. After diagonalizing the free quasiparticle Hamiltonian,
the renormalized interaction parameters, Ũ , J̃ , and Ũ12, can
be calculated from the leading order correction terms to
the difference between the lowest two-particle excitation,
Eσ

pp,α(N ) and the two lowest single-particle excitations for

large N , for example, E0
pp,α(N ) − E

↑
p,α(N ) − E

↓
p,α(N ) in

channel α determines Ũα . Once the renormalized parameters
have been determined the T = 0 susceptibilities and specific
heat coefficient γ , etc. can then be determined by substituting
them into the relevant RPT equations. For further details we
refer to earlier papers.12,13,25 This analysis differs from the
one used by Krishnamurthy, Wilkins, and Wilson26,27 for the
Anderson model where a distinction is made between a strong
coupling and weak coupling low energy fixed point. In our
analysis there is just one type of low energy fixed point for the
Anderson model, the Fermi liquid one. The relation between
the two approaches is discussed more fully in the Appendix.
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FIG. 5. (Color online) A plot of �̃/�, Ũ/π�, and J̃ /π� as a
function of J/Jc, for U = 0.

We now look in detail at the results for the renormalized
parameters as the interactions between the dots are increased
from zero to their critical values at the onset of the transitions.

A. NRG results for U12 = 0, J < Jc

We first of all show results of a calculation for the
renormalized parameters for the symmetric model. Results
for U/π� = 5, which corresponds to the Kondo regime of the
model, were given in earlier work,10 so here we show results in
a contrasting regime with U = 0 in Fig. 5. Although U = 0, a
renormalized interaction Ũ is induced when the interaction J

is switched on; although rather small initially, it increases until
J ≈ 0.7Jc and then falls to zero as J → Jc. It can be seen that
all the renormalized parameters, π�̃, Ũ , and J̃ tend to zero
on the approach to the quantum critical point J = Jc. The
ratios, Ũ/π�̃ and J̃ /π�̃, are shown in Fig. 6. The value of
Ũ/π�̃ increases monotonically with increase of J and tends
to the strong coupling value Ũ/π�̃ = 1 on the approach to the
critical point. The ratio J̃ /π�̃ also increases monotonically
such that J̃ /π�̃ → 2 as J → Jc. These results are in line with
the RPT predictions in Eq. (23).

We next look at a case where the two dots are hy-
bridized differently to their respective baths so we have
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J/πΔ~
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FIG. 6. (Color online) A plot of the ratios, Ũ/π�̃ and J̃ /π�̃, as
a function of J/Jc, for U = 0.
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FIG. 7. (Color online) A plot of �̃1(U,J )/�̃1(U,0) (dotted
line and triangles), �̃2(U,J )/�̃2(U,0) (fsolid line and circles),
Ũ1/π�̃1(U,0) (dashed line and squares), Ũ2/π�̃2(U,0) (dot-dashed
line and diamonds), and J̃ /π (�̃1(U,0)�̃2(U,0))1/2 (solid line and
stars) as a function of J/Jc, for U/π�2 = 6, �1/�2 = 4, π�2 =
0.01.

channel asymmetry. We take V1 = 2V2, which is such that
�1 = 4�2, and take �2 = 0.01 and U/π�2 = 6. For J = 0
we are dealing with two isolated Anderson models where
the ratio of the renormalized energy scales of the two
dots, �̃1(J = 0)/�̃2(J = 0) = 619.16, are very different. In
Fig. 7 we give plots of �̃1(U,J )/�1(U,0), �̃2(U,J )/�2(U,0),
Ũ1/π�1(U,0), Ũ2/π�2(U,0), and J̃ /π (�̃1(U,0)�̃2(U,0))1/2

as a function of J/Jc. We see that Ũ2 = π�̃2(U,0) at J = 0
showing that dot 2 is initially in the Kondo regime, but
the ratio Ũ1/π�̃1(U,0) < 1 so that initially dot 1 is not
quite in the Kondo regime due to the larger value of the
hybridization �1(U,0). As J is increased there is a transition
at Jc/π�2 = 0.08025 where all the renormalized parameters
tend to zero. The results imply that both z1 → 0 and z2 → 0,
corresponding to a loss of the local quasiparticle weight at the
Fermi level in both dots at the critical point.

To test the predictions based on the RPT given in Eq. (23)
for this case, we plot in Fig. 8 the ratios of the renormalized
parameters, J̃ /π�̃1, J̃ /π�̃2, Ũ1/π�̃1, Ũ2/π�̃2, and �̃2/�̃1

as a function of J/Jc over the range 0.9 < J/Jc < 1. Over
this range we see that Ũ1/π�̃1 = Ũ2/π�̃2 = 1, correspond-
ing to strong coupling on both dots. Remarkably the ratio
�̃2/�̃1, which was initially very small, 1/619.16 ≈ 0.001615,
approaches the strong coupling value 1 at the critical point.
The two ratios, J̃ /π�̃1 and J̃ /π�̃2, converge to a common
value 2 as J → Jc. These results confirm the predictions given
in Eq. (23) for the case U12 = 0. Furthermore, they show
rather dramatically the emergence of channel symmetry as
J approaches the critical value Jc.

We found precisely similar results when we fixed the value
of J at J/π�2 = 0.06 and U/π�2 = 6, and increased the
hybridization ratio r = �1/�2. A transition point was reached
at r = rc = 2.6732, where all the renormalized parameters
went to zero, and in the predicted ratios.

The transition in this model is remarkably robust and not
only persists in cases where there is asymmetry between the
two dots, but also away from particle-hole symmetry.20 Before
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FIG. 8. (Color online) A plot of J̃ /π�̃1 (dots and squares),
J̃ /π�̃2 (dashes, stars), Ũ1/π�̃1 (solid line, up triangle), Ũ2/π�̃2

(solid line, down triangle), and �̃2/�̃1 (dot-dash, circles) as a function
of J/Jc for U/π�2 = 6, �1/�2 = 4, π�2 = 0.01.

looking at an example of this type we consider how to calculate
the renormalized parameters for the regime J > Jc.

B. Extension of NRG results to J > Jc

1. Particle-hole asymmetric case

For the regime J > Jc there is a difference in the calculation
of the renormalized parameters for the cases with and
without particle-hole symmetry. In both cases the renormalized
hybridization, which couples to dots to their respective conduc-
tion baths, Ṽα → 0 as J → Jc for J < Jc. In the particle-hole
asymmetric case the renormalized hybridization re-emerges
in the regime J > Jc, which means we can apply precisely
the same analysis to the calculation of the renormalized
parameters, �̃ and ε̃d , using Eq. (30), as described earlier.
To see what happens as we pass through the transition we look
at the results for a particular example.

In Fig. 9 we show the results deduced for the renormalized
parameters over the range 0 < J/Jc < 1.2 (Jc/π� = 0.5442)
for the case with U/π� = 0.5 with εd/π� = 0.159, where
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FIG. 9. (Color online) A plot of �̃/�, ε̃d/π�, Ũ/π�, and J̃ /π�

as a function of J/Jc, for U/π� = 0.5, εd/π� = 0.159.
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FIG. 10. (Color online) A plot of 1/ρ̃(0) (=4T ∗) and ε̃d ρ̃(0)
as a function of J/Jc, for U/π� = 0.5, εd/π� = 0.159. The
discontinuity in ε̃d ρ̃(0) at the quantum critical point corresponds to a
jump in phase shift of π/2 per spin state per dot channel.

the level on the dot is initially above the Fermi level. It can be
seen that all the renormalized parameters, �̃, ε̃d , Ũ , and J̃ go to
zero as J → Jc both for J < Jc and J > Jc. To learn in more
detail what happens to the quantity ε̃d through the quantum
critical point we plot in Fig. 10 the product ε̃d ρ̃(0) and 1/ρ̃(0)
as a function of J/Jc. There is a discontinuity in ε̃d ρ̃(0) at
J = Jc which reflects the fact that there is a discontinuous
change in the phase shift δα of π/2. From the Friedel sum rule
(22) this implies that the total local occupation number in the
ground state for J > Jc has two more electrons than that for
J < Jc. The local density of states ρ(ω) at each dot in the low
frequency regime corresponds to zρ̃(ω), and this is plotted in
Fig. 11 for cases on either side of the transition, J/Jc = 0.98
and J/Jc = 1.02. The peak in ρ̃(ω) has shifted from just above

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

0

10

20

30

FIG. 11. (Color online) A plot of low energy local dot spectral
density ρ(ω) = zρ̃(ω) as a function of ω/π� for the two cases
J/Jc = 0.98 (solid curve) and J/Jc = 1.02 (dashed curve) for the
same parameter set as in Fig. 10. The inset shows ρ(0) (=zρ̃(0)) as a
function of J/Jc showing the discontinuous loss of spectral density
at the Fermi level as the value of J increases through the critical point
J = Jc.
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FIG. 12. (Color online) A plot of Ũ ρ̃(0) and J̃ ρ̃(0) as a function
of J/Jc, for U/π� = 0.5, εd/π� = 0.159.

the Fermi level for J/Jc = 0.98 to below for J/Jc = 1.02. In
the inset of Fig. 11 ρ(0) ( = zρ̃(0)) is plotted as a function of
J/Jc. It can be seen that as the value of J increases through
the transition there is a sudden loss of spectral weight at the
Fermi level but there is finite spectral weight on both sides of
the transition.

To check the RPT predictions given in Eq. (23) we have
plotted Ũ ρ̃(0) and J̃ ρ̃(0) in Fig. 12. It can be seen that
Ũ ρ̃(0) → 1 and J̃ ρ̃(0) → 2 as J → Jc on both sides of the
quantum critical point in agreement with the RPT prediction.

2. Particle-hole symmetric case

The case of particle-hole symmetry differs from the case
we have just considered as the renormalized hybridization
parameter Ṽα , calculated from the NRG, does not just go to
zero as J → Jc for J < Jc but remains equal to zero for all
J > Jc. This implies that we lose all the spectral weight at
the transition for the particle-hole symmetric case, and not just
some of the spectral weight as was the case with particle-hole
asymmetry. At the fixed point for J > Jc the two dots are
decoupled from the conduction electrons on the lowest energy
scale. We know, however, for J > Jc the low energy behavior
still corresponds to a Fermi liquid. We conjecture that this
Fermi liquid can be described by a similar set of renormalized
parameters and that the equations for the susceptibility and
low energy behavior are still valid. However, this needs to be
clarified.

The fact that z → 0 implies that the derivative of the self-
energy in the impurity Green’s function, ′(ω), diverges at
ω = 0 such that this self-energy develops a singularity as J →
Jc. The fact that z = 0 for J > Jc means that this singularity
persists in the regime J > Jc and the analysis outlined in
the previous section breaks down. To consider this situation
in more detail, we sum over k and k′ in Eq. (20) to obtain
an equation for the Green’s function on the first site of the
conduction electron chain in the NRG calculation which we
denote by G0,α,σ (ω),

G0,α,σ (ω) = G
(0)
0,α,σ (ω) + G

(0)
0,α,σ (ω)V 2

α Gd,α,σ (ω)G(0)
0,α,σ (ω).

(31)

If we take the conduction band in the wide band limit,
V 2

α G
(0)
0,α,σ (ω) = −iπ�α , this equation becomes

G0,α,σ (ω) = G
(0)
0,α,σ (ω)(1 − i�Gd,α,σ (ω)). (32)

If we introduce a self-energy 0
α,σ (ω) for the Green’s function

for the first site on the α conduction electron chain, which will
also include the effect of switching on the hybridization term,
Eq. (32) becomes

1 + iρc
0
α,σ (ω) = 1

1 − i�Gd,α,σ (ω)
. (33)

For J < Jc the self-energies on the dot are nonsingular and
from the Friedel sum rule εd + α(0) = 0 corresponding to a
phase shift δα = π/2. We then have Gd,α,σ (0) = 1/i�α for the
case of particle-hole symmetry and hence from Eqs. (32) and
(33) the Green’s function on the first site of the conduction
chain is zero, G0,α,σ (0) = 0, and the self-energy 0

α,σ (ω)
diverges at ω = 0.

For J > Jc, however, the dot self-energy develops a diver-
gence at ω = 0, such that the dot Green’s function vanishes
for ω = 0, and we get a phase shift δα = 0. The self-energy for
the first conduction site is now nonsingular and from Eq. (33),
0

α,σ (0) = 0. We can then develop a renormalized perturbation
approach and analysis of the low energy NRG fixed point with
the first conduction site playing the role of an effective dot. We
should, therefore, be able to describe the Fermi liquid behavior
for J > Jc in terms of renormalized parameters associated
with the first site on the impurity conduction electron chain.

For J < Jc we determine the renormalized parameters
ε̃d and Ṽ by requiring the lowest energy particle and hole
excitations of the interacting systems to correspond to poles of
the impurity quasiparticle Green’s function. For J > Jc we can
adopt the same procedure but replacing the Green’s function of
the impurity site by that for the first conduction electron site,
so that parameters for ε̃0 and Ṽ0 are required to correspond to
solutions of the equation,

Ep/h,α(N ) − ε̃0 − Ṽ 2
0 G

(0)
1,α,σ (Ep/h,α(N )) = 0, (34)

where G
(0)
1,α,σ (ω) is given by Eq. (28). The local quasiparticle

interaction terms, Ũ , J̃ , and Ũ12, can then be calculated as in
the case J < Jc.

As the effective impurities now correspond to the first
site on the conduction electron chain for each channel, there
are a some modifications to the analysis used for J < Jc.
The density of states of the conduction electron chain which
now starts at the second conduction site is modified, which
affects the calculation of the effective hybridization width
�0 = π |V0|2ρc, where ρc is the density of conduction states at
the Fermi level. The factor A	, which relates the hybridization
width of the discretized model to the continuum model, also
changes. These two effects can be combined into a single
additional factor B	 so that the hybridization width �0 for the
continuum model is calculated from �0 = π |V0|2/2A	B	D.
The value of B	 was estimated from the result for the isolated
Anderson model (J = 0) for U/π� � 1, Ũ/π�̃ → 1, which
for a discretization parameter 	 = 6, gave the value B6 =
2.2373.

In the limit J → ∞ the two impurities are entirely
decoupled from the conduction electrons. This is reflected
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FIG. 13. (Color online) A plot of �̃(U,J )/�̃(U,0) as a function
of J/Jc for values of U/π� = 4,5,6. The results fall on a single curve
indicating that this ratio becomes universal in the large U regime.

in the NRG results for the renormalized parameter Ṽ0, which
in this limit give Ṽ0 → 	−1/2ξ1, which is the value for the
free NRG conduction chain. The calculation of the impurity
susceptibility using the RPT expression with �̃0 includes
this extra conduction electron contribution. However, this
correction is negligible except in the regime when J/Jc is
very large and it is not necessary to take it into account.

C. NRG results for J �= 0, U12 = 0

We now consider the channel and particle-hole symmetric
model taking V1 = V2 so we can drop the channel index α. We
extend the results for the renormalized parameters to include
the regime J > Jc. We restrict attention first of all to the strong
correlation regime U/π� � 3 for different values of U . In
Fig. 13 we plot the results for the ratio �̃(U,J )/�̃(U,0) as
a function of J/Jc for U/π� = 4,5,6 over the range 0 <

J/Jc < 2. It can be seen that, although the values of Jc vary
significantly, all three results fall on a single curve indicating
universal behavior in this regime. We have dropped the index
on �0 and �̃0 for the regime J > Jc, to define a continuous
function �̃ through the transition point. With the definition of
the Kondo temperature TK, π�̃(U,0) = 4TK and the energy
scale T ∗(U,J ), π�̃(U,J ) = 4T ∗ we now have a single energy
scale over the range 0 < J/Jc < 2 such that in the strong
correlation regime,

T ∗ = TKF (J/Jc), (35)

where the function F (J/Jc) is independent of U for U/π� �
1, such that F (0) = 1 and F (1) = 0. We also have Jc =
1.378TK in this regime, so En. (35) can be re-expressed in
the form, T ∗ = TKF (0.726J/TK).

In Fig. 14 we plot the ratios Ũ/π�̃ and J̃ /π�̃, for U/π� =
4,5,6 over the same range. All the values for Ũ/π�̃ fall on
the same line Ũ/π�̃ = 1 corresponding to the strong coupling
limit. The values of J̃ /π�̃ also all lie on a single curve. Hence,
using Eq. (35), in this regime we have

J̃ = 4T ∗f (J/Jc), (36)
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FIG. 14. (Color online) A plot of Ũ/π�̃ and J̃ /π�̃, as a function
of J/Jc for U/π� = 4,5,6.

where f (J/Jc) is a universal function such that f (0) = 0 and
f (1) = 2. As from Eq. (35) T ∗ is a universal function of J and
TK then Eq. (36) can be re-expressed as J̃ = TKf̄ (0.726J/TK),
where f̄ (J/Jc) is a universal function such that f̄ (0) = 0 and
f̄ (1) = 0.

The universality found in the Kondo regime U/π� � 1 no
longer holds for smaller values of U as can be seen in Fig. 15
where we give results for the ratio of �̃(U,J )/�̃(U,0) over
the range 0 < J/Jc < 2 for values of U/π� = 0,0.5,1,2,6 as
a function of J/Jc. It can be seen that they all qualitatively
behave in a similar way, but for smaller values of U/π� the
results do not lie on the same curve.

In Figs. 16 and 17 we give the corresponding plot for the
ratios Ũ/π�̃ and J̃ /π�̃. There is no universality except in the
approach to the critical point where Ũ/π�̃ → 1 and J̃ /π�̃ →
2 in all cases in line with the predictions in Eq. (23).

The factors η̃s and η̃c in the expressions for the spin
and charge susceptibilities reflect the effect of the interaction
between the quasiparticles in enhancing or suppressing the
corresponding fluctuations. For the single impurity Anderson
model η̃s is better known as the Wilson ratio and in the
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FIG. 15. (Color online) A plot of �̃(U,J )/�̃(U,0) as a function
of J/Jc for values of U/π�̃ = 0,0.5,1,6.
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FIG. 16. (Color online) A plot of Ũ/π�̃, as a function of J/Jc

for U/π� = 0,0.5,1,6.

strong coupling regime has the value 2, enhanced over that
for noninteracting quasiparticles where the value would be 1.
In Fig. 18 we plot the values of η̃s for U/π� = 4,5,6 as a
function of J/Jc. We see that there is a universal curve in this
regime which falls from the value 2 for the isolated impurities
to zero at the critical point. In Fig. 19 the values of η̃s are
plotted as a function of J/Jc for U/π� = 0,0.5,1,4. There is
nonuniversal behavior in the regime, although the results for
U/π� = 4 correspond to the universal curve for the strong
coupling limit.

The values of η̃c for U/π� = 0,0.5,1 are shown in
Fig. 20. For U = 0 and J = 0 the value is 1 corresponding
to a noninteracting system and then, as J is increased,
progressively reduces to zero (corresponding to the Kondo
limit) as J → Jc. For the larger values of U , η̃c is already
reduced at J = 0, due to the on-site interaction U , and is then
further reduced to zero as the exchange interaction increases
to the critical value. For U/π� > 3.5, η̃c ≈ 0 as the charge
fluctuations are almost completely suppressed for all values of
J in this range.
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FIG. 17. (Color online) A plot of J̃ /π�̃, as a function of J/Jc

for U/π� = 0,0.5,1,6.
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FIG. 18. (Color online) A plot of the Wilson ratio η̃s as a function
of J/Jc for U/π� = 4,5,6 for π� = 0.01.

All the expressions given in the previous section apply
equally well to the situation with a ferromagnetic exchange
J < 0. In Fig. 21 we show the values of η̃s as a function of
J/π� extended to the ferromagnetic range for U/π� = 5,
where it extrapolates to the expected value 8/3.

D. Results for U12 < U c
12, J = 0

The transition to a locally charge ordered state in the model
with a finite interaction U12 (J = 0) has been studied in detail
by Galpin et al.9 Here we throw further light on this transition
by calculating the renormalized parameters. In particular we
test the RPT conjecture of the emergence of a single energy
scale on the approach to the QCP and the predictions given in
Eq. (24).

In Fig. 22 we give results for the ratio �̃/� as a function of
U12/U for the case U/π� = 5. Over the range U12/U < 0.8
there is a slow steady increase in �̃ with increasing U12. There
is then a rapid increase due to fluctuations of charge between
the two dots and �̃ reaches a maximum at the SU(4) point

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
J/Jc
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U/πΔ=4.0

~

FIG. 19. (Color online) A plot of η̃s , as a function of J/Jc for
U/π� = 0,0.5,1,4 for π� = 0.01.
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FIG. 20. (Color online) A plot of η̃c, as a function of J/Jc for
U/π� = 0,0.5,1 for π� = 0.01.

U12 = U , and an extremely rapid fall off beyond this point
to a QCP at U12/U = 1.028. In Fig. 23 the corresponding
results for the renormalized parameter ratios, Ũ/π�̃ and
Ũ12/π�̃, are shown as a function of U12/U over the same
range. Over the range U12/U < 0.9 these ratios differ very
little from the values for the Anderson model in the Kondo
regime, Ũ/π�̃ = 1 and Ũ12/π�̃ = 0. Beyond this point there
is a rapid change and the two curves cross at the SU(4) point
where Ũ/π�̃ = Ũ12/π�̃ = 1/3. This result follows from the
RPT equations for the susceptibility from the condition that
the uniform charge susceptibility χc is so small, due to the
large value of U , that it can be equated to zero. Beyond the
SU(4) point the ratios rapidly approach the values predicted
in Eq. (24) on the approach to the QCP, Ũ/π�̃ = −1 and
Ũ12/π�̃ = 1.

The question arises as to what happens for smaller values
of U and in particular the case U = 0. This is addressed
in Fig. 24 which shows a plot of Ũ/π�̃ as a function of
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ηs
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FIG. 21. (Color online) A plot of η̃s (Wilson ratio) as a function of
J/π�, including the ferromagnetic range, for U/π� = 5 for π� =
0.01.
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FIG. 22. (Color online) A plot of �̃/� as a function of U12/U

for U/π� = 5.

U12/Uc
12 for values of U/π� = 0,0.5,1,2,3,5. We see that in

all cases Ũ/π�̃ → −1 as U12 → Uc
12, though less rapidly the

smaller the value of U . This also holds for the case U = 0 so
that switching on the interaction term U12 induces an onsite
effective interaction Ũ in the quasiparticle Hamiltonian.

The corresponding curves for the ratio Ũ12/π�̃ as a
function of U12/Uc

12 are shown in Fig. 25. We see that in this
case all the curves approach the predicted value Ũ12/π�̃ → 1
as U12 → Uc

12, although much less rapidly for the smaller
values of U .

E. NRG results for J �= 0 and U12 �= 0

To complete the check on the predictions in Eqs. (23) and
(24) we look at some examples with finite values of both J

and U12. We look first at a case with U/π� = U12/π� = 5
over a range of values of J through the critical point Jc =
0.045075π�. This corresponds to moving along a vertical line

0 0.2 0.4 0.6 0.8 1
U12/U

-1

-0.5

0

0.5

1

~

~

~

~ /πΔ

/πΔU

U

12

FIG. 23. (Color online) A plot of Ũ/π�̃ (circles) and Ũ12/π�̃

(stars) as a function of U12/U for U/π� = 5. The dotted line which
passes through the SU(4) point corresponds to Ũ12/π�̃ = Ũ/π�̃ =
1/3.
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FIG. 24. (Color online) Plots of Ũ/π�̃ as a function of U12/Uc
12

for values of U/π� = 0,0.5,1,2,3,5, J = 0.

in Fig. 4 with U12/π� = 5.0. The results for the renormalized
parameter ratios, J̃ /π�̃, Ũ/π�̃ and Ũ12/π�̃ are shown in
Fig. 26. The results include the regime with ferromagnetic
coupling J < 0, and it can be seen that as the ferromagnetic
coupling increases Ũ/π� approaches the value 1 and J̃ /π�̃

the value −2/3 as expected in the regime where the channel
and charge fluctuations are suppressed. The value of U12/π�̃

is small in this limit but increases as the ferromagnetic coupling
is reduced. At J = 0 there is an SU(4) point where the curves
for Ũ/π�̃ and Ũ12/π�̃ meet at a common value 1/3, and
J̃ = 0. As J is increased from J = 0 the curves for J̃ /π�̃

and Ũ/π�̃ increase to a maximum at the transition point
J = Jc, where they reach the values 2 and 1, respectively.
At this point Ũ12/π�̃ = 0 in line with the general prediction
in Eq. (23). This means that switching on and increasing the
value of J have the effect of canceling out the Ũ12/π� ratio
which is finite for J = 0, and reducing it to zero as J → Jc.
For J > Jc, the values of J̃ /π�̃, Ũ/π�̃ fall off significantly
with increase of J and Ũ12/π�̃ has a slow increase.
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~ ~

FIG. 25. (Color online) Plots of Ũ12/π�̃ as a function of U12/Uc
12

for values of U/π� = 0,0.5,1,2,3,5, J = 0.
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FIG. 26. (Color online) A plot of the renormalized parameter ra-
tios, J̃ /π�̃, Ũ/π�̃, and Ũ12/π�̃ as a function of (J − Jc)/Jc where
Jc = 0.045075π� for U/π� = U12/π� = 5. As J is increased
there is an SU(4) point at J = 0 where Ũ/π�̃ = Ũ12/π�̃ = 1/3
and J̃ = 0 followed by a transition at J = Jc from the Fermi liquid
phase J < Jc to the second Fermi liquid phase J > Jc.

In Fig. 27 we plot the same ratios of the renormalized
parameters but in this case we take value U12/π� = 5.2.
We take a range of values of J corresponding to mov-
ing along a vertical line in Fig. 4, U12/π� = 5.2. We
see in this case the line passes through three QCPs. In
the ferromagnetic regime where (J − Jc)/Jc < −6, the charge
fluctuations are suppressed and the two 1/2 spins of the
dots become tied to give a combined spin 1 and the ratios
take on the expected values, Ũ/π�̃ = 1, J̃ /π�̃ = −2/3, and
Ũ12/π�̃ = 0.12 Around (J − Jc)/Jc ∼ −4 there is a rapid
change over as the values move to Ũ/π�̃ = −1, J̃ /π�̃ =
0, and Ũ12/π�̃ = 1 on the approach to the local charge
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(J-Jc)/Jc
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FIG. 27. (Color online) A plot of the renormalized parameter
ratios, J̃ /π�̃, Ũ/π�̃, and Ũ12/π�̃ as a function of (J − Jc)/Jc

where Jc = 0.13614π� for U/π� = 5, U12/π� = 5.2. As J is
increased there is first a transition from a Fermi liquid phase J < Jc

to a local charge ordered regime indicated by the box (CO) followed
by a return to the Fermi liquid phase J < Jc and then a transition to
the second Fermi liquid phase J > Jc.
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order transition at (J − Jc)/Jc ≈ −2.1. When (J − Jc)/Jc ≈
−0.25 the system emerges from the charge ordered state, with
the same set of ratios, but as J → Jc there is a rapid change
of the ratios of the renormalized parameters to the ratios,
Ũ/π�̃ = 1, J̃ /π�̃ = 2, and Ũ12/π�̃ = 0 on the approach to
the transition to the local singlet state. There is a rapid decrease
in Ũ/π�̃, J̃ /π�̃ and an increase in the ratio Ũ12/π�̃. For
(J − Jc)/Jc > 0.25 there is a slow fall off with increase of J

for all three ratios.

F. The case U12 = U + 3 J/2

There is a special line in the phase diagram shown in
Fig. 4, corresponding to U12 = U + 3J/2 along which there
appears to be no transition. With this set of parameters,
and a ferromagnetic exchange coupling (J < 0), the model
corresponds to a model introduced by Yoshimori11 to describe
a single impurity with an n-fold degenerate orbital for the case
n = 2. The exchange interaction J in this context corresponds
to a Hund’s rule term. The model in the ferromagnetic regime
was used to calculate the orbital susceptibility12,13 for a twofold
degenerate impurity with a Hund’s rule interaction J , where
the orbital susceptibility is given by

χorb = μ2
Bηorbρ̃(0)

4
, ηorb = 1 + (Ũ + 3J̃ )ρ̃(0). (37)

As the value of |J | is increased in the ferromagnetic range
the orbital fluctuations are suppressed and the two local spins
are coupled to give an effective spin 1. When η̃orb ∼ 0 from
Eq. (37) we find the value, |J̃ | = 2π�̃/3. The value η̃s

approaches η̃s = 8/3, as expected for the Wilson ratio for
a two-channel Kondo model.

We have previously calculated the renormalized parameters
for this model, both for the particle-hole symmetric and
antisymmetric models, for a ferromagnetic coupling.12,13 It is
interesting to check here what happens in the antiferromagnetic
case. The lack of a transition is likely to be due to the fact that
for the isolated dots at half filling the gain in energy in forming
a local singlet −3J/2 is compensated by an equal and opposite
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FIG. 28. (Color online) A plot of the renormalized parameters,
π�̃/π�, Ũ/π�, and J̃ /π� as a function of J/π� for U/π� = 5,
U12 = U + 3J/2.
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FIG. 29. (Color online) A plot of ratios of the renormalized
parameters, Ũ/π�̃ and J̃ /π�̃, as a function of J/π� for U/π� = 5,
U12 = U + 3J/2.

term from the J dependence of the U12 term. We look at the
results for the renormalized parameters in detail.

In Fig. 28 we plot the renormalized parameters π�̃/π�,
Ũ/π�, and J̃ /π� as a function of J/π� over an anti-
ferromagnetic range of J for U/π� = 5. The value of �̃,
and consequently the quasiparticle weight factor z, decreases
monotonically to very small values for large J without any
evidence of a transition. Somewhat surprisingly in this case the
value of Ũ/π� decreases and becomes negative with increase
of J .

In Fig. 29 we plot that ratios Ũ/π�̃ and J̃ /π�̃ as
a function of J/π�. For J = 0, Ũ/π�̃ = 1/3, which is
predicted from the condition that the η̃c ∼ 0 due to the large
value of U/π� which suppresses the charge susceptibility. For
large J , Ũ/π�̃ → −1/3 and J̃ /π�̃ → 2/3, so there is a
single energy scale for large values of J . These results are
in line with predictions based on the fact that for large U and
large J both the charge and spin susceptibilities are suppressed
so η̃c → 0 and η̃s → 0. From Eq. (17) the condition η̃c → 0
we find 3(Ũ + J̃ ) = π�̃. Using this result in the expressions
for η̃s and η̃orb we find

η̃s = 4

3
− 2J̃

π�̃
, η̃orb = 4

3
+ 2J̃

π�̃
. (38)

From the condition η̃s → 0, using Eq. (17), we find J̃ /π�̃ →
2/3. When this result is substituted into the earlier condition,
3(Ũ + J̃ ) = π�̃, we find Ũ/π�̃ → −1/3 in this limit, and
η̃orb → 8/3.

From earlier results for this model in the ferromagnetic
range,12 when |J | was large such that the orbital susceptibility
was suppressed we found J̃ /π�̃ → −2/3 and η̃s → 8/3,
which suggests from Eq. (38) the relation η̃s ↔ η̃orb if
J̃ /π�̃ ↔ −J̃ /π�̃ under the sign change J → −J . In Fig. 30
we plot the values of η̃s , η̃orb, and η̃c as a function of J/�̃(5,0)
for U/π� = 5. The results show that there is an approximate
symmetry η̃s ↔ η̃orb as J ↔ −J , but it is not precise for values
in the intermediate range of |J | where the differences, though
small, are greater than any that might arise from the estimated
errors in the calculation of the renormalized parameters.
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FIG. 30. (Color online) A plot of η̃s (circles), η̃orb (squares),
and η̃c (crosses) as a function of J/π�̃(5,0) for U12 = U + 3J/2,
U/π� = 5.

In the antiferromagnetic regime there is still the tendency
for the impurity spins to be screened more locally as J is
increased. This can be seen in the plot of χs shown in Fig. 31.
The value of χs decreases monotonically as J/π� increases
to a value J/π� ∼ 0.15. After that point there appears to be
a slight upturn, but no real significance can be attached to this
as it involves the product of a quantity tending to zero η̃s and a
diverging quantity 1/zπ� as z → 0, and numerical errors start
becoming significant when z becomes very small. Although
we get no transition in this case it does not correspond to the
category described by Affleck et al.,19 where the phase shift
δ decreases with increases of J . For the whole range of J

the phase shift remains at the value δ = π/2. It would appear
that provided the Friedel sum rule applies for particle-hole
symmetry 〈nd,α,σ 〉 = 1/2 and if εd + (0) = 0, we always
have a phase shift δ = π/2, so we cannot have a continuous
crossover from δ = π/2 to δ = 0. Either there is no transition
and δ = π/2 for all J or the self-energy develops a singularity
at ω = 0, with a breakdown of the Friedel sum rule, and a
sharp transition to a state with δ = 0.
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FIG. 31. A plot of χs(J )/χs(0) as a function of J/π�̃ for U12 =
U + 3J/2, U/π� = 5.

V. CONCLUSIONS

We have examined the low energy behavior in the Fermi
liquid regime of a model that has two types of quantum critical
points. The thermodynamic and dynamic response functions
in this regime can be expressed in terms of a limited number
of renormalized parameters, �̃, Ũ , J̃ , and Ũ12, which we
can calculate accurately from an analysis of the NRG low
energy fixed point. Once these have been determined they
can then be substituted into the relevant RPT formulas. The
fact that certain susceptibilities remain finite at the transition,
where the quasiparticle weight z → 0, gives enough equations
to predict the dimensionless parameters, Ũ ρ̃(0), J̃ ρ̃(0), and
Ũ12ρ̃(0) in the Fermi liquid region on the approach to the
critical point. These predictions have been confirmed from the
NRG results for both types of transition, including situations
away from particle-hole symmetry, and dot asymmetry in
the case of the transition at J = Jc. As these dimensionless
parameters are universal on the approach to the critical points,
the quasiparticle interactions, Ũ , J̃ , and Ũ12, can all be
expressed in terms of a single energy scale T ∗ = 1/4ρ̃(0),
where T ∗ → 0 at the critical point.

In this paper we have not examined the finite temperature
non-Fermi liquid regime in the region of the critical point
at J = Jc, but in our NRG results we found the same
higher energy non-Fermi liquid fixed point as observed in
previous calculations for the two-impurity Kondo model.19

Those results were explained by Affleck and Ludwig18,19

using conformal field theory. More recent work has clarified
with the relation between this transition and the non-Fermi
liquid fixed point of the two-channel Kondo model. A recent
paper of Sela and Mitchell24 has addressed the crossover
as a function of temperature between the Fermi liquid and
non-Fermi liquid regimes. It would be interesting to examine
this crossover in terms of renormalized parameters using the
approach which was developed and applied to the two-channel
Kondo model.28,29

It has proved difficult to probe the quantum critical point
of the two dot/impurity model experimentally. The problem is
that in any experimental setup there will be in addition to the
interdot/impurity interaction a direct or indirect hybridization
term. This was the case in the recent experimental work on
a two-impurity system which consisted of a cobalt ion on
an STM point and interacting with a second cobalt ion on
a metal surface. The hybridization term destroys the critical
point. Nevertheless it would be interesting to generalize the
model used here to model this experimental system, to see if
the quantum critical behavior could be observed due to the
presence of a higher energy non-Fermi liquid fixed point, as
was done in the case of the two-channel Kondo model.

The quantum critical points studied here are for impurity
models and cannot be applied directly to the experimental
results on quantum critical behavior observed in lattice heavy
fermion systems. However, certain features found may be
universal and apply to general class quantum critical points.
For example, the fact that on the approach to the quantum
critical points all the quasiparticle interactions could be
expressed in terms of a single energy scale T ∗ means that any
dynamic response function χ (ω) should take the form χ (ω) =
F (ω/T ∗,T /T ∗). At the critical point where T ∗ → 0 we would

125134-14



PHASE DIAGRAM AND CRITICAL POINTS OF A DOUBLE . . . PHYSICAL REVIEW B 86, 125134 (2012)

then expect a form, χ (ω) = T af (ω/T ), or ω/T scaling
which has been observed at several heavy fermion critical
points, such as in YbRu2Si2.30 The quantum critical point
induced in YbRu2Si2 by suppressing the antiferromagnetic
order with a magnetic field and has been interpreted as a Kondo
breakdown,3,5 where the loss of the f -electron states at the
Fermi surface results in a change in volume of the Fermi sur-
face at the quantum critical point. A schematic sketch is given
Fig. 4 in the paper of Pfau et al.30 of the evolution of the quasi-
particle weight factor z across such a quantum critical point. At
the critical point J = Jc in our calculations in the particle-hole
symmetric case there is a similar Kondo breakdown because
the Kondo resonance at the Fermi level for J < Jc collapses
at J = Jc and there are no impurity/dot f states at the Fermi
level for J > Jc. In Fig. 13 we have precise results for this
evolution of the quasiparticle weight factor z for the Kondo
collapse in a two-impurity model (note that for comparison
with the sketch for YbRu2Si2, the range J > Jc corresponds
to the small Fermi surface and J < Jc to the large one).
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APPENDIX

We clarify here how the analysis of the low energy NRG
fixed points which we use in this paper differs from the
approaches based on the work of Krishnamurthy, Wilkins,
and Wilson (KWW I and II).26,27 We consider the case of
the single impurity Anderson model. For the particle-hole
symmetric Anderson model in the KWW approach the low
energy NRG fixed point is taken to correspond to the free
conduction chain with the impurity and first conduction site
removed. This corresponds to V → ∞ in the bare model,
and the equivalent of the strong coupling fixed point taken for
the Kondo model in the original calculation of Wilson,17 as
the Kondo coupling J ∼ V 2/U . The low energy fixed point,
however, can equally well be viewed as the fixed point of
a noninteracting Anderson model with a finite hybridization
Ṽ �= 0, which we shall denote as the Fermi liquid (FL) fixed
point. The fixed point corresponding to a free NRG conduction
chain depends only on whether the chain has an even or
odd number of sites. As two sites are removed from the
original NRG chain in interpreting the fixed point in the KWW
approach, the KWW and FL fixed points are equivalent.

When the leading irrelevant corrections to the fixed point
are taken into account in the KWW calculation, the effective
Hamiltonian takes the form,

HN,eff = HN,SC + ω1	
(N−1)/2δH1 + 2ω2	

(N−1)/2δH2, (A1)

with

δH1 =
∑

σ

(c†1,σ c2,σ + c
†
1,σ c2,σ ), δH2 =

(∑
σ

n1,σ − 1

)2

,

(A2)

where HN,SC is the Hamiltonian for the truncated free con-
duction chain, δH1 corresponds to a correction to the hopping
matrix element between the first and second conduction sites of
the truncated conduction chain, and δH2, an on-site interaction
at the first site of the truncated chain. The corrections to the
free energy are then calculated to first order in ω1 and ω2, and
the following expression derived for the impurity specific heat
coefficient,

γ = −ω1

D

(
4

1 + 	−1

)
α0α1

ln	
, (A3)

in units of 2π2k2
B/3, and for the susceptibility,

χ = −ω1

D

(
2

1 + 	−1

)
α0α1

ln	
+ ω2

D

(
2

1 + 	−1

)
α4

0

(ln	)2
,

(A4)

in units of (gμB)2, where

α2
0 = 1

2 (1 − 	−1), α2
1 = 1

2 (1 − 	−3). (A5)

The values of ω1, ω2 in the KWW approach have to be
calculated from the asymptotic approach of the energy levels
to their fixed point values. If Ep(N ) is the energy of the lowest
single-particle excitation from the ground state in the NRG
calculation for a chain length N , and E∗

p is the corresponding
value at the fixed point, the value of ω1 can be obtained by
matching the difference Ep(N ) − E∗

p to that obtained from the
fixed point Hamiltonian with the leading order correction term
δH1 for large N . Similarly ω2 can be calculated from the dif-
ference between the lowest two-particle excitation Epp(N ) and
the lowest two single-particle excitations Ep(N ) for large N .

We contrast this with the FL analysis where the two leading
order corrections correspond to the effective hybridization
with the impurity Ṽ and the effective on-site interaction
Ũ at the impurity site. The hybridization term, although a
leading irrelevant term, is technically a dangerously irrelevant
term, because the fixed point changes when Ṽ = 0 from that
corresponding to an even (odd) chain to that for an odd (even)
one. The value of Ṽ can be obtained by requiring Ep(N ) for
large N correspond to the lowest single-particle excitation of a
noninteracting Anderson model with hybridization parame-
ter Ṽ , as described briefly in Sec. IV. The corresponding value
of �̃ for the continuum model is given by �̃ = πṼ 2/DA	,
where

A	 = 1

2
ln	

[
1 + 	−1

1 − 	−1

]
(A6)

is a correction factor to the bandwidth D on using a discretized
NRG chain with discretization parameter 	(>1). Once Ṽ

has been determined Ũ (and J̃ ) can be calculated from the
difference between the lowest two-particle and the lowest two
single-particle excitations in a similar way to the calculation of
ω2. Once the renormalized parameters have been determined
the physical quantities, such as the specific heat coefficient γ ,
and the spin and charge susceptibilities, can be calculated by
substituting into the relevant RPT formulas. For further details
we refer to references.12,25

We can establish a connection between the two approaches
using the equations given in Appendix E of the KWW I.26 In
this appendix ω1 and ω2 are calculated to first order in U for the
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symmetric Anderson model. In the RPT the exact results for γ

and χ correspond to such a calculation but with renormalized
parameters so we can use the results given in Eqs. (5.38) and
(5.39) in KWW I by replacing � (or � in the notation used in
the paper) by �̃, and U by Ũ , which gives

ω1 = −1

2

[
1

2
(1 + 	−1)

]2 (ln	)2

α3
0α1

D

2π�̃
, (A7)

ω2 =
[

1

2
(1 + 	−1)

]3 (ln	)4

α8
0

[
D

2π�̃

]2 [
Ũ

2D

]
. (A8)

We see that both ω1 and ω2 diverge as �̃ → 0, if Ũ/π�̃ re-
mains finite, which explains why the renormalized parameters
we calculate on the approach to the QCP tend to zero, and the
corresponding terms on using the KWW approach diverge.

On using Eqs. (A3)–(A6) we find for the continuum model,

γ = 2π2k2
B

3π�̃
, χ = (gμB)2

2π�̃

[
1 + Ũ

π�̃

]
, (A9)

which is the RPT result for the symmetric model.
There is a clear advantage in the Fermi liquid analysis for

the asymmetric Anderson model as one deals with the same
low energy fixed point with just the additional renormalized
parameter ε̃d , so that results in Eq. (A9) are generalized by
replacing 1/π�̃ by ρ̃(0). The corresponding KWW analysis
requires consideration of a number of low energy fixed
points, strong coupling, intermediate valence, etc., to cover
the full parameter range. The generalized results for Eq. (A9),
however, can be deduced from Appendix D in KWW II27 with
the substitutions, U → Ũ , � → �̃, and εd + U/2 → ε̃d in
Eqs. (D.23)–(D.25).
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