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Snapshots of Anderson localization beyond the ensemble average
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We study (1 + 1)D transverse localization of electromagnetic radiation at microwave frequencies directly
by two-dimensional spatial scans. Since the longitudinal direction can be mapped onto time, our experiments
provide unique snapshots of the buildup of localized waves. The evolution of the wave functions is compared with
semianalytical calculations. Studies beyond ensemble averages reveal counterintuitive surprises. Oscillations of
the wave functions are observed in space and explained in terms of a beating between the eigenstates.
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I. INTRODUCTION

Recent years witnessed a renaissance in experimental stud-
ies on Anderson localization. This phenomenon, conceived by
P. W. Anderson in 1958,1 originally described the absence of
diffusion of electrons in random lattices due to interference.
Since Anderson localization is in essence a wave phenomenon,
physicists have successfully extended the scope of localization
studies to electromagnetic waves,2–5 ultrasound,6 and matter
waves.7–9

Similar to other phase-transition phenomena, dimensional-
ity plays an important role. For d � 2, all states are localized,
whereas for d = 3 a phase transition from diffusive to localized
behavior occurs at a critical scattering strength.10 In the
special case of transverse localization, formulated by De Raedt
et al.,11 one dimension is designed not to be disordered,
whereas disorder is introduced in the other dimension(s). As a
consequence, waves spread out in the disorder-free dimension,
but are confined in the other dimensions as long as the
transverse system length L is larger than the localization length
ξ . In the paraxial limit transverse localization is described
by an equation which closely resembles the time-dependent
Schrödinger equation,11

i
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2kn0
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with ψ the wave field and k the vacuum wave number. The
effective index of refraction is given by n2

0 ≡ L−1
∫
L

n2(x)dx.
The Hamiltonian is defined as
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0

]
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Effectively, transverse localization thus reduces the number of
spatial coordinates in the system, since the coordinate along
which the sample is extruded can be seen as the time axis in
the time-dependent Schrödinger equation.

Pivotal experiments on weakly scattering disordered pho-
tonic lattices12,13 have focused on the observation of ensemble
averaged intensity profiles after a certain fixed propagation
distance. However, due to the very low refractive index contrast
(∼10−4),12 these studies did not reach the regime in which
the spatial extent of the wave functions is fully arrested by
disorder even after propagating over thousands of wavelengths.
To make sure the localization length has truly converged in
a transverse localization scheme requires measurements of
the intensity along the disorder-free dimension. Very recently,

transverse localization was experimentally put forward as a
robust mechanism for optical waveguiding in fibers.14 For
this type of application, knowledge on transverse localization
beyond its ensemble averaged properties and as a function of
propagation distance are prerequisites.

The central topic of this paper is therefore to measure
and understand the evolution of transverse localized waves
along the disorder-free dimension. After showing that our
samples are indeed in the localizing regime by measuring
over an ensemble of samples, we focus on the remarkable
dynamics of a typical localized wave in a single realization.
Counterintuitive nonstationary behavior of localized waves is
observed, which we explain by decomposing these waves into
the system’s eigenstates semianalytically.

II. EXPERIMENTAL METHODS

In order to map the evolution of waves in a transverse
localization sample, we scan a microwave antenna over the
sample of interest using a stepper motor and a home-built scan-
ning stage. The microwave transmission spectrum between
this scanning antenna and a source antenna is measured using
a vector network analyzer (Rhode and Schwartz ZVA 67).
Figure 1 shows a sketch of the experimental apparatus.

Samples were fabricated by placing nylon bars (3 mm ×
10 mm × 1000 mm) on top of an oxygen-free copper plate
(500 mm × 1000 mm). These nylon bars [n = 1.73 (Ref. 15)]
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L

FIG. 1. (Color online) Experimental setup. Nylon bars (red) are
placed on top of an oxygen-free copper plate, the distance between
the bars is random in the transverse x direction. The z direction is
disorder free. One of the two microwave antennas (black disks) is
scanned over the sample and a vector network analyzer is used to
measure the transmitted spectrum between the two antennas. Each
scan along the x axis is equivalent to a snapshot in time.
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are the scatterers in our system. Disorder was introduced
into the system by varying the spacing between the nylon
bars. The spacings were chosen randomly from a Poissonian
distribution with a mean of 10 mm. Introducing Poissonian
disorder ensures that the presence of stop band effects is
negligible.16 In addition, ordered samples were prepared with
a lattice spacing of 20 mm in which clear stop bands were
observed and calculated around 7 and 13 GHz. Styrofoam
spacers ensured parallel alignment of the nylon bars.

III. RESULTS

The propagation of waves within an ordered and a disor-
dered sample is shown in Fig. 2. The excitation frequency was
set at 9.2 GHz, that is, outside any of the stop gaps of the
ordered sample. The data were normalized for every row in
the xz plane to enhance the visibility of the wave function far
away from the source. In the ordered sample, Fig. 2(a), waves
spread out ballistically as a function of propagation distance.
However, for the disordered sample, Fig. 2(b), the wave
propagation is different: the wave initially spreads out, but
at a certain stage stays confined to a bounded region. This type
of two-dimensional spatial scans provides us with exceptional
data for analyzing transverse localization in unprecedented
detail.

In order to quantify the transverse confinement of wave
intensity as a function of propagation distance, we calculate
the inverse participation length (IPL).17 The IPL for a one-
dimensional intensity distribution I (x) is defined as

P (z) ≡
∫

I 2(x,z)dx
(∫

I (x,z)dx
)2 (3)

and has a unit of inverse length. The IPL is inversely pro-
portional to the spread of the wave function: a homogeneously
extended wave spread out over the entire sample length L leads
to an IPL of 1/L. The IPL is insensitive to homogeneous losses
that are possibly present in our semiopen system. To obtain a
reliable value for the spread of wave functions, the ensemble
averaged intensity profiles were determined by averaging over
20 realizations of disorder.

Figure 3 shows how the inverse of the IPL develops with
increasing propagation distance for both the ordered sample
and the ensemble of disordered samples at 9.2 GHz. In
agreement with the qualitative picture we obtained from Fig. 2,
we see that the extent of the wave function given by the inverse
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FIG. 2. (Color online) Experimentally determined false color
images of the amplitude distribution for (a) an ordered and (b) a dis-
ordered sample at 9.2 GHz. Every row is normalized independently.
The scale bar denotes 100 mm.

z (mm)

FIG. 3. (Color online) Participation ratio versus propagation
distance at 9.2 GHz for an ordered sample (blue) and a disordered
ensemble (red). Red line: calculation for an ensemble of 100
disordered samples. Blue line: linear fit.

of the IPL increases linearly for the ordered sample. For the
disordered ensemble, on the other hand, the IPL flattens off
after a certain propagation distance. This settling of the IPL to a
finite value constitutes a first direct experimental observation
of the spatial evolution of transversely localized waves and
ensures that we are truly in the transverse localizing regime.

After having studied the ensemble averaged properties
of our system, we now aim to understand the propagation
of waves for single realizations of disorder. What does a
transverse localized wave look like? How does it evolve as
a function of propagation distance? And how does it depend
on the method of excitation? The answers to these questions
simply cannot be given by focusing on an ensemble perspec-
tive, yet they are crucial for a complete understanding and pos-
sible application of the transverse localization phenomenon.

Figure 4(a) shows the first surprise we encountered when
studying localized waves in a single realization of disorder.
As shown in Fig. 4(a), we observe a periodic dynamics of
the wave propagation. This oscillation contrasts to the general
picture of localization as a “frozen” wave.18,19

In a second experiment we set out to determine the
excitation dependence of the localized waves. In Fig. 5(a), we
plot the spatial profile for 17 different excitation positions in
one sample after 365 mm of propagation. Based on Fig. 3, this
distance ensures that we are truly looking at localized waves.
One might expect for a localizing sample clearly isolated
regions of higher intensity that are independent on the position
of excitation. Such patterns would appear as vertical stripes
in Fig. 5(a). However, the measured spatial patterns of the
isolated regions along the transverse dimension x turn out to
be strongly dependent on the position of the excitation antenna.
To a large extent the detected radiation follows the position of
the excitation antenna as indicated by the white diagonal, but
some patterns appear to be antidiagonal.

IV. MODEL

In order to build a basis for understanding the ensemble
averaged data and the remarkable excitation dependence of
localized waves in single realizations of disorder, the system
is analyzed semianalytically. The solutions to Eq. (1) can

125132-2



SNAPSHOTS OF ANDERSON LOCALIZATION BEYOND THE . . . PHYSICAL REVIEW B 86, 125132 (2012)

180

230

26 365
180

230

z (mm)

x 
(m

m
)

x 
(m

m
)

(a)

(b)

(c) (d)

ex
p.

m
od

el

FIG. 4. (Color online) (a) Experimental and (b) calculated oscilla-
tions in the intensity profile for one sample excited at 10.2 GHz. Every
column is normalized independently. (c) Expansion coefficients for
the different eigenstates. Only two eigenstates, indicated by the stars,
contribute significantly. (d) Center of mass of the intensity versus
propagation direction for both the calculated and experimental data
shown in (a) and (b).

be written as a linear combination of the Hamiltonian’s
eigenstates un(x):

ψ(x,z) =
∑

n

cnun(x)exp(−iλnz), (4)

where λn is the eigenvalue belonging to eigenstate un and
cn is the nth expansion coefficient given by cn = 〈ψ |un〉.
The eigenvectors having eigenvalues closest to zero localize
the easiest and correspond with eigenvectors with a small kx

component.
The eigenstates and eigenvalues are calculated by

diagonalizing the Hamiltonian matrix. The diagonal of the
matrix contains the potential k2[n2(x) − n2

0] and the derivative
in x is approximated by using central differences creating
a tridiagonal matrix when assuming absorbing boundary
conditions. In principle, diagonalizing a N × N matrix results
in N eigenvalues and eigenvectors. However, most of these
eigenvectors contain too high spatial frequencies in the
transverse dimension, kx > k, that are not excitable in our
system. As a result we end up with only 30 eigenstates that
obey the relation kx � k. This number is determined by the
spatial size of the system. The initial wave at z = 0 is modeled
as a Gaussian with a width of 1.15 cm given by the aperture of
the excitation antenna. To compare the numerical calculation
with experiment, we convolved the intensity of the calculated
wave function with the aperture of the detection antenna

A decomposition into the system eigenstates for the sample
in Fig. 4 reveals that just two eigenstates contribute signifi-
cantly to the wave function as shown in Fig. 4(c). Using only
these two eigenstates and their corresponding eigenvalues, we
calculated the z development of the wave function in Fig. 4(b)
and compared them directly with experiment in Fig. 4(d).
The calculated oscillations are quantitatively similar to those
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FIG. 5. (Color online) (a) Experimental and (b) numerically
calculated false color plots of the wave function intensity in transverse
direction after 365 mm of propagation along the z direction for
different positions of the excitation antenna at 9.2 GHz. The white
lines indicate the position of the excitation antenna. The dashed
box marks an antidiagonal wave profile. Scale bar denotes 100 mm.
(c)–(e) Calculations using mode decomposition for the area marked
with the dashed box in (a) for 180, 365, and 1950 mm of propagation,
respectively. Beating of eigenmodes can result in (c) circular,
(d) antidiagonal, or (e) diagonal patterns.

observed in experiment. In general, the number of significantly
contributing eigenvectors is often higher than 2, which makes
the beating less visible.

Motivated by the experimentally observed and unforeseen
excitation dependence of the wave functions, we also calcu-
lated the excitation-detection patterns. In Fig. 5(b), it is shown
that the position and shape of these patterns correspond with
the measurements. The antidiagonal shapes are also clearly
present in our numerical calculation, indicating that they are
not caused by spurious effects such as mode perturbation due
to the proximity of the receiver antenna.

In fact, the antidiagonal patterns shown in Figs. 5(a)
and 5(b) are another observable consequence of the beating
between the system’s eigenstates. Depending on the accumu-
lated phase during propagation, these antidiagonal excitation-
detection patterns can become circular or diagonal as shown
in Figs. 5(c)–5(e). The patterns are to a large extent point
symmetric which originates from a flip in sign of the expansion
coefficients when the excitation antenna crosses the central
position of the beating oscillation.

V. CONCLUSION AND DISCUSSION

By using a disordered array of open waveguides, we have
effectively measured the temporal dynamics of transverse
localized waves from the moment of excitation until its com-
plete halt. This observation is made possible by two important
aspects of our setup: (1) mapping one spatial coordinate along
the waveguides onto time in the corresponding wave-equation,
and (2) the near field access to the wave function. We have
observed, and confirmed by theoretical modeling, the beating
between the localized eigenstates in time. Our observations
prove that in a disordered system all localized states can be
singled out as the true eigenstate of the system and their
dynamics be measured individually. The localized eigenmodes
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have been isolated, and the eigenstates are identified based on
their phase dynamics in an open system while they propagate,
rather than their spectral line in the stationary regime.5 This
enhanced control over the selective measurement of Anderson
localized states enables us to study the nontrivial dynamics of
them beyond the ensemble average.

We stress that the observed beatings and coherent mixing
of localized waves is a general consequence of exciting a
multimode system with an initial condition other than one of
its eigenmodes. However, the modes of a strongly disordered
optical system are peculiar in the sense that they have almost
no direct relation with the form of the local potential and can
only be solved when the full Hamiltonian is decomposed into
its eigenfunctions. Therefore a method like ours that enables
direct measurement of the modes will be very important in
studies where quantum sources are interacting with Anderson
localized modes.20

Since the transverse localization scheme allows for mea-
suring snapshots of wave functions in time, it is a very
convenient tool for studying the effect of different forms
of disorder on wave propagation as put forward by recent
work on photonic quasicrystals.21,22 Our work suggests that
transverse localization can also be an excellent platform for
studying the influence of perturbations and partial incoherence
on localization.23
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