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Theory of the SrTiO3 surface state two-dimensional electron gas
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We present a theory of the quasi-two-dimensional electron gas (2DEG) systems that appear near the surface
of SrTiO3 when a large external electric field attracts carriers to the surface. We find that nonlinear and nonlocal
screening by the strongly polarizable SrTiO3 lattice plays an essential role in determining 2DEG properties. The
electronic structure always includes weakly bound bulklike bands that extend over many SrTiO3 layers. At 2D
carrier densities exceeding ∼1014 cm−2, tightly bound bands emerge that are confined within a few layers of the
surface.
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I. INTRODUCTION

Two-dimensional electron gases can be formed in SrTiO3

crystals1–3 by gating,4–6 by forming an interface with a polar
perovskite,1,3,7,8 or by placing a δ-doped9 layer inside a bulk
crystal. Although 2D electronic systems at LaAlO3/SrTiO3

interfaces have received particular attention,7,8 there has also
been important progress with other material systems.10 SrTiO3

two-dimensional electron gases (2DEGs) appear to be strongly
correlated when their thermodynamics is probed capacitively11

and exhibit both superconductivity12 and magnetism,13 some-
times simultaneously.14 There is at present only a very
primitive understanding of the measured properties of these
potentially interesting 2DEG systems. The current paper
is motivated by the view that progress can be accelerated
by the development of concrete microscopic models that
are simplified relative to full ab initio electronic structure
calculations,15–18 allowing electric properties to be estimated
easily and compared with experiment.

In this paper, we present a model of SrTiO3 2DEGs that is
partly phenomenological and simplified, but still sufficiently
realistic to be predictive. We focus on electrostatically gated
surface 2DEGs, although our approach applies without much
change to the case of interface-confined systems. The same
model is readily adapted to describe δ-doped 2DEGs inside
the STO bulk, STO 2DEGs that are modulated by a back gate,
and 2DEGs in other d0 systems, for example KTaO3. The
model assumes that the itinerant electronic degrees of freedom
are derived from the SrTiO3 t2g bands. We use a nearest-
neighbor tight-binding model to describe hopping between
TiO2 planes and either tight-binding or �k · �p models to describe
wave-function variation within TiO2 planes. The strength of
interplane hopping parameters, and the values of the heavy
and light masses within planes are estimated on the basis of
recent ARPES19 and bulk magnetic oscillation20 experimental
results. Some aspects of the 2DEG electronic structure are
sensitive to the influences of spin-orbit coupling and SrTiO3’s
low-temperature tetragonal distortion on the host material’s
conduction band, even at the highest 2D carrier densities.

The extremely strong dielectric response of the SrTiO3

lattice plays a key role in our model at all carrier densities. Our
main results are summarized in Fig. 1. We conclude that unless
vertically confined on both sides by vacuum or insulating
tunnel barriers, SrTiO3 2DEGs spread across a large number of
TiO2 planes. This property is a direct consequence of the host

material’s very large linear dielectric constant, which weakens
confinement, and occurs in spite of relatively large carrier
masses which favor confinement. At high carrier densities,
and hence large electric fields, dielectric screening saturates
and the 2DEG is mostly confined to the first few TiO2 planes.
However, a portion of the 2DEG, making a contribution to
the 2D density that is approximately fixed in absolute terms,
still spills over many layers. This low-density weakly confined
part of the 2DEG can make an important contribution to some
2DEG properties.

Our paper is organized as follows. In the following section,
we provide a detailed explanation of the model that we
use. We have identified three different density regimes for
SrTiO3 surface-bound 2DEGs. In Secs. III–V, we characterize
the nature of the 2DEG electronic structure in low (n <

1 × 1014 cm−2), mid (1 × 1014 cm−2 < n < 5 × 1014 cm−2),
and high (n > 5 × 1014 cm−2) 2DEG carrier density regimes,
respectively. Finally, in Sec. VI, we summarize our results and
speculate on the types of electronic properties that might be
achievable in SrTiO3 2DEG systems.

II. MODEL

A. t2g tight-binding model

SrTiO3 is a nonpolar pseudocubic band insulator with an
electronic gap of ∼3.2 eV separating its oxygen p-orbital
dominated valance band, from its Ti t2g-orbital dominated
conduction band. The Ti eg bands are split by the crystal field
and pushed up in energy by ∼2 eV (see Ref. 21) relative to
the t2g bands and are therefore neglected in our model. The
conduction band minimum is at the � point. The bulk t2g

bands are split at the � point, in the first place by spin-orbit
interactions, which push one time-reversed pair of t2g bands
up by ∼18 meV relative to the other two pairs. The two
lower-energy bands are further split below 110 K by a rotation
of the octahedral oxygen environment, which is responsible
for a tetragonal distortion.22

The starting point for any phenomenological description of
the electronic structure of SrTiO3 2DEGs is an accurate rep-
resentation of the bulk material electronic structure. Although
this material has been studied for many years, its conduction
band minimum was until recently not characterized with an
accuracy sufficient to model low-carrier density 2DEGs. To
remedy this, Allen et al. conducted20 magnetotransport studies
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on a series of low-density electron-doped MBE-grown samples
of SrTiO3 in fields up to 31 T and fit a six band k · p model
of the Ti t2g bands to the magnetic oscillation data. The bulk
band parameters used here have been taken from that study.
These experiments suggest that in the absence of spin-orbit
coupling the tetragonal distortion at 4 K would push the xy

bands up by ∼3.2 meV relative to yz and zx bands. Together
the two-corrections fully lift the t2g manifold degeneracy, even
in the bulk. [Because of orbital mixing, the spin-orbit (SO)
splitting and tetragonal splitting parameters do not directly
correspond to the � point band energies.]

Although the p-d oxygen bonding and eg antibonding
orbitals do not explicitly enter our model, they do appear

implicitly in the form of the Hamiltonian. Consider, for
example, hopping between a Ti xy orbital and its neighboring
oxygens within a TiO2 plane [see Fig. 2(a)]. Along the x

direction, the dominant bonding is πpd through the O-py

orbital and along the y direction, πpd through the O-px orbital.
Overlap with other O-p orbitals is small by symmetry. This
rule is preserved througout the Ti-O-Ti bonding network. For
the Ti-yz orbital, πpd bonding dominates along the y direction
through O-pz orbitals. Bonding along the x direction vanishes
in a Slater-Koster two-center approximation and is weak.
Temporarily ignoring the spin-orbit and tetragonal distortion
effects, these observations suggests a tight-binding model for
a single isolated layer of the form

H SL
σ =

⎛
⎝−2t ′ cos(kx) − 2t cos(ky) 0 0

0 −2t cos(kx) − 2t ′ cos(ky) 0
0 0 −2t cos(kx) − 2t cos(ky)

⎞
⎠

⎧⎨
⎩

yz,σ

zx,σ

xy,σ

⎫⎬
⎭ , (1)

where the cubic lattice constant is used as a length unit, the metal lattice site energies are used as the zero of energy, t quantifies
the dominant πpd bonding process, and t ′ describes the weaker bonding process. The column on the right specifies the orbital
representation used for this Hamiltonian matrix. Hopping terms that couple different t2g orbitals are allowed23 from a symmetry
point of view. However, Allen et al. were unable to distinguish this mixing parameter from zero in their recent analysis of
SdH data.20 We therefore ignore these processes in our model. For lower-carrier densities, it is sometimes convenient to use a
simplified version of this model in which we expand Eq. (1) around the 2D � point. We find that for 2D wave vectors that are
small compared to Brillouin zone dimensions,

HSL
σ =

⎛
⎝ εyz,0 + t ′k2

x + tk2
y 0 0

0 εzx,0 + tk2
x + t ′k2

y 0
0 0 εxy,0 + tk2

x + tk2
y

⎞
⎠

⎧⎨
⎩

yz,σ

zx,σ

xy,σ

⎫⎬
⎭ , (2)

where εyz,0 = εzx,0 = −2t − 2t ′ and εxy,0 = −4t . We use this
low-density form for the planar Hamiltonian for most of the
calculations presented below. The more general tight-binding
model must be used when 2D carrier densities are large and
confinement is strong and can be adopted when required
without essential complication.

In the same representation, adjacent 2D layers are coupled
by an interlayer hopping term of the form

HC
σ =

⎛
⎝ t 0 0

0 t 0
0 0 t ′

⎞
⎠

⎧⎨
⎩

yz,σ

zx,σ

xy,σ

⎫⎬
⎭ . (3)

Here, the symmetry of the bonding network has again been
employed to note that the xy orbital has the weaker interlayer
coupling, t ′. Because t ′ is expected to be substantially smaller
than t , the xy bands in single-layer 2DEGs are pulled down
by ∼2t at the � point relative to the yz and zx bands. In the
bulk limit, on the other hand, the three bands are degenerate
because each has two strong hopping and one weak hopping
direction. Any amount of confinement in the ẑ direction pushes
the bottom of the {yz,zx} bands up relative to the xy band and
leads to orbital polarization.

For low-carrier densities, on-site (k-independent) terms
due to tetragonal distortions and spin-orbit coupling must
be included.23 The tetragaonal distortion is represented by a

parameter �T which characterizes the difference in site energy
between xy and {yz,zx}-orbitals and spin-orbit coupling
by an interaction strength parameter �SO. The distortion
Hamiltonian is

Tσ =
⎛
⎝ 0 0 0

0 0 0
0 0 �T

⎞
⎠

⎧⎨
⎩

yz,σ

zx,σ

xy,σ

⎫⎬
⎭ , (4)

and the spin-orbit Hamiltonian, modeled in an atomic approx-
imation, is

H SO = �SO

3

⎛
⎜⎜⎜⎜⎜⎝

0 i 0 0 0 −1
−i 0 0 0 0 i

0 0 0 1 −i 0
0 0 1 0 −i 0
0 0 i i 0 0

−1 −i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yz, ↑
zx, ↑
xy, ↑
yz, ↓
zx, ↓
xy, ↓

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

(5)

Our model for the electronic structure of SrTiO3 2DEGs
combines the single-particle model explained above with a
Hartree approximation for electron-electron interactions. The
external electric field, which produces surface confinement, is
screened by carriers and by lattice relaxations of the partially
ionic SrTiO3 crystal. In SrTiO3 lattice screening is strong and
nonlinear and plays a subtle and essential role in confinement.
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FIG. 1. (Color online) Orbital character at k⊥ = 0 of occupied
doubly degenerate 2D subbands for a series of total areal densities.
The xy and {yz,zx} fractions in the orbital character of each band are
represented by light blue and light red shading, respectively, and the
band indices are ordered from lowest energy to highest. Both spin-
orbit interactions and tetragonal splitting have been included in the
band-structure model. The percentage of the total density associated
with a given subband is summarized in the inset pie chart in which
the rings from inside to outside correspond to the density values
from lowest to highest. Individual band contributions for a particular
density are ordered lowest energy to highest in a clockwise direction.
The red lines in the pie chart separate the low, mid, and high density
regimes identified in the text. At the highest total densities, most
electrons occupy a small number of strongly confined bands.

B. Lattice relaxation model

The exceptionally strong and temperature-dependent linear
dielectric response of bulk SrTiO3 is associated with a soft
optical phonon mode in which positively charged Sr and Ti
atoms move in opposition to the negatively charged oxygen

FIG. 2. (Color online) (a) p-d bonding network for Ti-xy orbital.
The dominant bonding is in-plane πpd , while the out-of-plane bonding
is weak. (b) Schematic representation of the electric field drop in
our model due to lattice (dashed blue) and electronic (solid red)
screenings. Numerical factors have been dropped.

octahedra. Displacement of this mode in response to an
external electric field produces screening. Because the mode
is extremely soft only near the center of the Brillouin zone,24

it responds strongly only when a large external field persists
over several TiO2 layers. In addition, this screening response is
very nonlinear, saturating at very large electric fields. Since the
reduction in electric field is proportional to the phonon mode
displacement, saturation occurs because the phonon mode is
anomalously soft only for small displacements.24 In an attempt
to capture this behavior qualitatively, we use a simple model
of lattice relaxation which focuses on the soft-mode only. We
write the lattice energy as

U = 1

2

∑
i,j

uiKi,juj − Q
∑

i

Eiui + γ

4

∑
i

u4
i , (6)

where ui is the displacement of the soft mode on the ith lattice
site, Ei is the average electric field in the ith cell, Q is an
effective charge defined in terms of the polarization density per
unit soft-mode displacement, and γ is a parameter chosen to
capture the nonlinearity of the dielectric response as discussed
further below. Here, Ki,j = Ki−j is the dynamical matrix at
2D wave vector q⊥ = 0. We fit Kij to the soft-mode phonon
dispersion using a form with a local on-site contribution and
a Gaussian nonlocal contribution. In momentum space, this
takes the form

K(q,G) = (2π )2μ
[
f 2

0 − f 2
1 e− α2

1
2 (q+G)2 − f 2

2 e− α2
2
2 (q+G)2

]
,

(7)

where q is the lattice momentum, G is a reciprocal lattice
vector, and μ = 24 amu is the appropriate reduced mass for
the Ti atom moving opposite the oxygen octahedra. The
parameters f0, the strength of the on-site term, and f1 and α1

were chosen to reproduce the measured phonon dispersion. f2

and α2 have been chosen to fit the low temperature dielectric
response and agree well with the low temperature phonon
dispersion.25 By minimizing Eq. (6) in the absence of an
electric field and evaluating Eq. (7) at q = 0, we find that

γ =
[

2π (f0 − f1 − f2)

uNL

]2

, (8)

where uNL is the mode displacement at which nonlinear
dielectric response is seen. (See the discussion below).

Because the relative displacements of all atoms are known,
only a single displacement coordinate, ui , is needed to describe
the response of the unit cell to perturbations along the
principle crystal axes. Given the electric field in each cell of
the crystal, Eq. (6) can be minimized to find the appropriate
set of displacements, {u∗

i }. We define the three-dimensional
polarization density of the SrTiO3 as

Pi = 1

a3
Qu∗

i [
(zi − a/2) − 
(zi + a/2)] , (9)

where zi is the location of the TiO2 layer of interest, a is
the lattice constant of the crystal, and 
(z) in the Heaviside
function. The precise way in which the polarization density is
mapped onto our lattice model is immaterial on length scales
larger than a lattice constant. To find the effective charge
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TABLE I. Parameters used in the current study. The electronic
structure parameters have been taken from Ref. 20, while ε∞, ε1, and
ε0 were taken from Refs. 24 and 27.

Model parameters

Lattice constant a 3.904 Å
Electronic parameters t 236 meV

t ′ 35 meV
�SO 18 meV
�T 3.2 meV

Dielectric response ε0 24408
ε1 1340
ε∞ 5.5
Q 8.33e

uNL 0.0034 Å
Dynamical matrix f0 4 × 1012 c/s

f1 2.73 × 1012 c/s
f2 0.97 × 1012 c/s
α1 1.15a

α2 5a

parameter, we use the standard definition of the screened
electric field and linear dielectric constant,

E = E0 + 4πP ≈ εE0. (10)

After minimizing Eq. (6) in the linear, bulk limit and using the
definition of the polarization from Eq. (9), we find that

Q =
√

μω2
1

4π
(ε − 1). (11)

To make contact with the measured properties of the bulk
material in a straightforward way, we use 90-K values for
the phonon dispersion24 and dielectric constant.27 In terms of
model parameters ω1 = 2π (f0 − f1) and the 90-K dielectric
constant are given in Table I. With this we find Q = 8.33e, a
value comparable to those used in models of this type for bulk
SrTiO3.24

The electric field in Eq. (6) can be found by solving

∇ · E(z) = −4πe

ε∞

∑
i

niδ(z − zi) − 4π
∑

i

∇ · Pi, (12)

with the boundary conditions that E(−∞) = E0 and E∞ = 0.
The electric field boundary conditions are discussed below. In
Eq. (12), e is the electron charge, ε∞ is the high frequency
dielectric constant due to electronic screening, and ni is the
number density of itinerant electrons in TiO2 layer i. Both
lattice relaxation and conduction band charge accumulation
screen the external electric field. This is represented pictorially
in Fig. 2(b).

C. Electric field boundary conditions

In the calculations presented below, we assume that the
electric field above the surface of the SrTiO3 has been set
experimentally either by gating or by forming an interface with
a polar dielectric.26 In the latter case, E0 is ideally set by the
polarity of the material, but can also be influenced by surface
reconstructions or other detailed material considerations that
can be sensitive to uncontrolled aspects of growth. Because

we have gated systems in mind, we consider that E0 can be
varied experimentally over a broad range. In this calculation,
we set the electric field below the SrTiO3 2DEG, Ebulk, to
zero, assuming that the sample lies on a grounded metallic
substrate. (If the SrTiO3 sample was thin, a conducting layer
under the sample could be used as a gate and Ebulk could be
varied.) By integrating the Poisson equation [see Eq. (12)] and
noting that the lattice relaxation contribution to E(z) vanishes
far below the surface when Ebulk → 0, we conclude that the
2DEG density is fixed by E0 alone: nT = ∑

i ni = E0/4πe.
We can, therefore, replace this parameter by the total 2DEG
density nT and present results as a function of that parameter.

We incorporate the layer-dependent electric potential con-
tribution to the Hamiltonian by integrating E(z) across the
2DEG to obtain a layer-dependent potential Vi , which must
be determined self-consistently along with the 2DEG density-
distribution and the soft-mode displacement field. With this,
the Hamiltonian of the system becomes

H =
∑
〈i,j〉

�ci
†HC �cj +

∑
i

�c †
i (H SL + T + H SO + Vi)�ci, (13)

where the double sum in the first term is over neighboring
layers. In Eq. (13), we work in the representation �c =
{cxy,↑,cyz,↑,czx,↑,cxy,↓,cyz,↓,czx,↓} so that H SO has the form
of Eq. (5).

The layer resolved density ni = 〈�c†i �ci〉 is calculated from
Eqs. (12) and (13) and minimization of Eq. (6). We have
carried these self-consistent field calculations to convergence
over a wide range of densities for a system that is 60 unit
cells wide. Because of the long tail in the density-distribution
discussed at length below, it is difficult to achieve self-
consistency, and we were forced to mix in no more than
∼1% of new results in the iterative update of the charge
density. Although the model described in this section is
crude in some respects, certainly crude compared to ab initio
electronic structure calculations with full lattice relaxation,
it is strongly motivated by the cumbersome character of the
fully microscopic calculations under these circumstances. The
model could be made more quantitative by being bench marked
against ab initio calculations or, perhaps more reliably, by
comparison with experiment.

III. LOW-CARRIER DENSITIES 1 × 1014 cm−2 < nT

For the circumstance considered here, the total carrier
density is proportional to the electric field just above the
SrTiO3 surface and the largest internal electric fields are
closest to the surface. We define the low-density regime by
the requirement that the largest electric fields are smaller than
the scale at which nonlinear screening becomes important.
This field scale is set by the model parameters uNL and ε∞,
which can be determined approximately from experiment.
We have estimated uNL by comparing Eq. (9) with the
deviation from linear response seen in the polarization of
bulk STO crystals.27 This value is listed along with other
model parameters in Table I. The model parameters we have
chosen reflect the estimate that nonlinear screening becomes
important for carrier densities larger than ∼1 × 1014 cm−2.

For linear screening, some 2DEG properties are similar to
those of covalent semiconductor 2DEGs and can be estimated
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following the same lines as in Stern’s pioneering study of
Si/SiO2 MOSFET 2DEGs.28 In particular, the confinement
length scale w can be crudely estimated by equating the
quantum confinement kinetic energy cost and the confinement
electric potential scale. Neglecting numerical factors we,
therefore, set

h̄2

mw2
∼ eE0w

ε
∼ 4πe2nT w

ε
(14)

to obtain

w ∼
(

h̄2ε

4πme2nT

)1/3

. (15)

In the linear screening regime, the confinement length
scale decreases quite slowly with the total 2DEG density.
The hopping parameters of Table I can be converted to effective
masses for the t2g bands; the light mass that describes the
vertical confinement of the most poorly confined {yz,zx}
bands is ∼m0 where m0 is the bare electron mass. When
combined with the extremely large low-temperature bulk
dielectric constant of SrTiO3 (ε ∼ 25 000), we estimate that
w is close ∼50 SrTiO3 unit cells even at the top end of the
low-density regime. We therefore expect that the hard wall at
60 unit cells used in our calculations influences our numerical
results. The main point of these qualitative considerations is
that we should expect weak surface confinement at low carrier
densities because of very strong dielectric screening.

In Fig. 3, we illustrate a typical 2D band structure in the
low-density regime. Here, the bottom band is beginning to
reflect the increase in xy character expected from confinement,
and the small size of the subband splittings is in qualita-
tive agreement with the estimated scale of size-quantization

FIG. 3. (Color online) (a) Fermi surface and 2D band structure
for nT = 8.3 × 1012. The dominant orbital character at the 2D � point
is represented for each band by the color of the bands and Fermi lines
are blue and red for xy and {yz,zx}, respectively. The zero of energy
is set to the potential minimum in the first layer. The Fermi energy is
indicated by a solid (black) horizontal line.

energies:

h̄2

mw2
∼ 10−4 eV. (16)

The small subband splittings imply that the 2DEG is 3D in
character unless temperatures are low and disorder extremely
weak. The vertical spread of the 2DEG is expected to get
smaller, and the subband splitting larger with increasing
temperature as the dielectric constant value decreases.27

Low-carrier density properties are strongly influenced by
spin-orbit coupling, which hybridizes the t2g basis states
and induces a splitting at the � point in the bulk. One
effect of spin-orbit coupling is to weaken the 2DEG surface
confinement by hybridizing xy bands with yz and zx bands that
have smaller masses perpendicular to the surface. Spin-orbit
induced hybridization allows the xy subbands to communicate
between layers through their {yz,zx} admixtures, which are
less easily confined. In the low-density regime, spin-orbit
splitting is pronounced enough to change the dominant orbital
character of the 2D subbands.

The tetragonal distortion increases the site energy of the xy

band further enhancing the role of the less confined {yz,zx}
components. (We have assumed that the tetragonal axis is
parallel to the surface normal, as expected near a surface.)
Initially, confinement energy scales are weak compared to
the tetragonal splitting energy. As the carrier density and
the energetic width of the occupied states increase, spin-orbit
coupling becomes less important and the xy fraction of the
lowest energy most highly occupied band increases. (See
Fig. 1.) The influence of the spin-orbit and tetragonal splittings
on the spatial distribution of electrons is summarized in Fig. 4.
Estimating 3D densities using n3D = n2D/〈z〉, where 〈z〉 is

FIG. 4. (Color online) Average separation from surface, 〈z〉 and
standard deviation σ of the electron distribution across layers as a
function of total density, and its dependence on SO splitting and the
tetragonal distortion. The tendency of SO coupling and tetragonal
splitting to weaken surface confinement is suppressed when densities
reach the mid range. When confinement energy scales are not strong
enough to overcome the tetragonal distortion, SO and tetragonal-
splitting induced hybridization decrease the spread of the {yz,zx}
bands (see text).
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FIG. 5. (Color online) Lattice displacement as a function of total
2D density. For each density, the lattice displacement of layer i (count-
ing from the surface) is plotted as the height of the ith bar segment
(counting from the bottom). For low densities, the lattice displace-
ments are small and in the linear regime. For mid-range densities, lat-
tice displacements are suppressed by nonlinear screening effects near
the surface. Weaker lattice screening results in stronger confinement,
larger 2D subband separations, and fewer occupied 2D subbands.

taken from Fig. 4 and n2D is the total density in the linear
screening spatial region, we find a power law of 4/3. This
suggests that the qualitative estimate of Eq. (14) is accurate
when screening is linear.

IV. MID-RANGE DENSITIES:
1 × 1014 cm−2 < n < 5 × 1014 cm2

We define the mid-range of densities as that in which lattice
screening is markedly reduced because of nonlinear dielectric
screening (see Fig. 5). Because the electric field is larger closer
to the surface, nonlinear screening is more important there.
The strong surface electric fields cause a large fraction of the
total electron density to be confined close to the surface, and
size-quantization effects to increase much more rapidly with
carrier density than would be suggested by Eq. (14). Even
though a substantial fraction of the total charge density starts to
become confined within the top few layers, there is still a wide
tail in the density distribution in the spatial region over which
the external electric field has been reduced to a value less than
∼1014 cm−2ε∞/(4πe) so that the screening is locally linear.
In our model, the nonlocality of these screening properties is
set by the width in momentum space of the long-wave-vector
limit of the soft mode. In our numerical calculations, this
low-density quasi-3D regime is influenced by our hard-wall
cutoff of the 2DEG beyond a width of 60 unit cells.

As was the case in the low-density regime, the inclusion
of SO coupling and the tetragonal distortion alters the the
orbital character of the lowest energy band and decreases its
surface confinement. Their influence is reduced compared to
the low-density regime however. As illustrated in Fig. 6 we find
that, at the 2D � point, the two lowest bands are dominantly xy

in character and that the next occupied subbands are {yz,zx} in
character. Although the number of 2D subbands has increased
significantly, only a few are needed to account for the most
strongly confined part of the density (see the inset of Fig. 1).

FIG. 6. (Color online) (a) Fermi surface and 2D band structure
for nT = 2.0 × 1014. The dominant orbital character of a band at the
2D � point is represented by line color with blue and red indicating
xy and {yz,zx}, respectively. The zero of energy is set to the potential
minimum in the first layer. The Fermi energy is represented by a solid
(black) horizontal line. Although the separation between the lowest
energy 2D subbands is large, many low-density subbands with small
energy separations are still present near the Fermi energy.

V. HIGH-CARRIER DENSITIES: ABOVE 5 × 1014 cm−2

The 2DEG electronic structure simplifies again in the
high-density limit, which we define as the limit with more
than half of the total density in the first TiO2 layer; see Fig. 7.
For large electric fields, and therefore large carrier densities,

FIG. 7. (Color online) Layer resolved density (as a percent of
total density) as a function of the total density. For each density
each segment represents the percent of the total density in the
corresponding TiO2 layer, starting with the first layer and moving
upward. For low densities, the 2DEG is spread over many layers.
Above nT ∼ 1014 cm−2, the confinement becomes pronounced. In the
high density regime, more than 50% of the total density is confined
within the first layer due mainly to reduced lattice screening at large
electric fields.
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FIG. 8. (Color online) (a) Fermi surface and 2D band structure
for nT = 5.9 × 1014. The dominant orbital character of the band at
the 2D � point is represented by line color with blue and red for xy

and {yz,zx}, respectively. The zero of energy is set to the potential
minimum in the first layer. The Fermi energy is represented by a solid
(black) horizontal line. The 2D subband splitting is ∼200 meV—
becoming comparable to the single layer model of Eq. (1). Near the
Fermi energy, many subbands are present with about a milli-electron-
volt splitting, which contribute to the carrier density far from the
surface.

lattice screening is irrelevant near the surface. Because of the
relatively large conduction band masses, compared to typical
covalent semiconductor cases, and the much stronger electric
fields at these carrier densities, surface confinement occurs
on an atomic length scale. The �-point splitting becomes
comparable to the single layer limit of Eq. (2); see Fig. 8.
While the SO coupling leads to hybridization and a decrease
in confinement that mainly affects the quasi-3D tail of the
electronic distribution, the tetragonal distortion does not have
a noticeable effect. In this regime, if we neglect the quasi-3D
tail region, there are only a few spin-degenerate 2D subbands
contributing to the density. At the 2D � point, the first three
bands are dominantly xy and {yz,zx}—going from low to high
energy. For the high-density regime, the tight-binding model
of Eq. (1) must be used.

VI. SUMMARY AND DISCUSSION

Using a simplified tight-binding model for the t2g bands, we
find that nonlinear screening plays an essential role in deter-
mining the electronic properties of surface confined 2DEGs in
grounded SrTiO3. For low-density (nT < 1014 cm−2) 2DEGs,
electrons are distributed over many layers because surface
confinement is weakened by the host material’s extremely
large linear dielectric constant. In the mid- and high-density
regimes, a low-density tail is still present over 50 or more
layers but a high-density region emerges over the first few
atomic layers. Although many 2D subbands are always present
in the mid- and high-density regimes, the few lowest energy

FIG. 9. (Color online) Calculated 3D density in the low density
regime. The relationship between 2D density and average 3D density
follows a 4/3 power law that is consistent with Eq. (14) is correct.

subbands, which contain strongly confined orbitals, account
for most of the total density (see Fig. 1). Subbands that have
substantial {yz,zx} orbital character are present at all densities
in the grounded configuration investigated in this study. The
presence of many subbands with different orbital character at
the Fermi level suggests that the interpretation of transport
properties in these systems is not likely to be straightforward.

SrTiO3 is well known for exhibiting superconductivity in
the bulk29 where it appears over a broad range of carrier
densities from ∼1018 cm−2 to more than ∼1020 cm−2 and has
a maximum value ∼400 mK.29 In one study of gated SrTiO3

2DEG systems,4 with Hall densities in the range from ∼1013

to ∼1014 cm−2, the superconducting transition temperature
initially increased with carrier density but decreased at the
higher densities. Referencing to Fig. 9 for 3D densities associ-
ated with the weakly confined tail, we find that the measured
surface 2DEG Tc’s compare well with values reported for
bulk systems.29 In another study,5 superconductivity was seen
only at a Hall density of 3.9 × 1014 cm−2 with a transition
temperature of near ∼400 mK. Because of experimental
limitations, superconductivity was not seen at other densities
but could have been present at lower transition temperatures.5

In LaAlO3/SrTiO3 systems, the reported 2DEG densities are
in the low-density range. It is therefore not surprising that
the measured Tc values are correspondingly suppressed.12,14

(The carriers found in LaAlO3/SrTiO3 2DEG systems are
thought to be induced by a polarization discontinuity, although
the small value of the measured 2D carrier densities is not
completely understood.) We conclude that existing studies are
consistent with surface 2DEG and bulk superconductivity in
SrTiO3 having a common origin.

The strongly confined portion of the electron distribution
in the mid- and high-density regimes has significant {yz,zx}
character (see Figs. 6 and 8). The increase in the density of
states associated with these heavy 2D bands could account
for the observed ferromagnetism,13,14 if it is describable by a
Stoner criterion. The spatial separation between the strongly
confined and the low-density tail portions of the 2DEG
distribution may account for the coexistence of superconduc-
tivity and magnetism seen in some systems.14 This scenario
should be compared with one in which superconductivity and
magnetism both occur in strongly confined subbands; the two
pictures should be experimentally distinguishable because of
the strong influence of magnetism and spin-orbit coupling on
superconducting properties30 in the spatially coincident case.
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The low-density tail is a consequence of the property
that the electric field vanishes far from the surface of a
grounded system with a surface-bound 2DEG. The nonlinear
screening properties that we have discussed imply that a
back-gate applied to the surface 2DEG to increase the
strength of the electric field strength deep below the surface
will have an exaggerated impact on the low-density tail of
the distribution function and on the corresponding closely
spaced 2D subbands near the Fermi surface. A gate electric
field with strength ∼1014 cm−2ε∞/4πe should essentially
eliminate the tail region. Our prediction that superconductivity
is associated with the low-density tail can, therefore, be tested
by back gating which should suppress and eventually elimi-

nate superconductivity7 without having a large influence on
magnetism. Irrespective of the reliability of these predictions,
it seems clear that studies of the electronic properties in
dual-gated samples could be quite informative in building up
a confident understanding of 2DEG properties.
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