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We study topological phases of interacting systems in two spatial dimensions in the absence of topological
order (i.e., with a unique ground state on closed manifolds and no fractional excitations). These are the closest
interacting analogs of integer quantum Hall states, topological insulators, and superconductors. We adapt the
well-known Chern-Simons K-matrix description of quantum Hall states to classify such “integer” topological
phases. Our main result is a general formalism that incorporates symmetries into the K-matrix description.
Remarkably, this simple analysis yields the same list of topological phases as a recent group cohomology
classification, and in addition provides field theories and explicit edge theories for all these phases. The bosonic
topological phases, which only appear in the presence of interactions and which remain well defined in the
presence of disorder, include (i) bosonic insulators with a Hall conductance quantized to even integers, (ii) a
bosonic analog of quantum spin Hall insulators, and (iii) a bosonic analog of a chiral topological superconductor,
whose K matrix is the Cartan matrix of Lie group E8. We also discuss interacting fermion systems where
symmetries are realized in a projective fashion, where we find the present formalism can handle a wider range
of symmetries than a recent group super-cohomology classification. Lastly, we construct microscopic models of
these phases from coupled one-dimensional systems.
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I. INTRODUCTION

The recent discovery of topological insulators1–16 has lead
to a renewed interest in phases of matter that are not described
within the usual Landau paradigm of symmetry breaking and
order parameters.17 Topological insulators and topological
superconductors, like integer quantum Hall states, are gapped
in the bulk but differ from trivial phases in the topology of
their electronic states. They are characterized by gapless edge
excitations that reflect the bulk topology. A new aspect of Z2

spin-orbit topological insulators is the role of symmetry (time
reversal in this case) in protecting the topological distinction.
In the absence of symmetry, the topological properties, such
as gapless edge states, are generally destroyed. As with the
integer Hall effect, topological insulators and superconductors
can be described in terms of noninteracting particles. A
complete classification of such free fermion topological phases
that are stable to disorder, in all spatial dimensions, has
been achieved.18,19 The remaining outstanding questions for
fundamental theory have to do with interacting systems.

Interacting topological phases have been studied at two
levels. First, the stability of the noninteracting classifica-
tion to interactions has been examined.20–23 In some cases,
interactions reduce the number of topological phases,20–25

i.e., two topologically distinct phases of free fermions be
continuously connected, via intermediate states that involve
interactions. The second possibility, of interactions leading to
new phases, not possible within noninteracting particles has
also been studied. Largely, these have attempted to extend
the analogy between integer and fractional quantum Hall
states, to topological insulators. Thus fractional topological
insulators have been theoretically discussed,26–32 along with
lattice realizations of fractional quantum Hall insulators.33–42

These phases are topologically ordered—in that they involve
fractional excitations in the bulk and feature ground-state
degeneracies that depend on the topology of the space on
which they are defined. They are also characterized by a finite
topological entanglement entropy (TEE) in the ground state.
In contrast, integer quantum Hall and topological insulators
(and superconductors), despite being topologically distinct,
are not topologically ordered. Bulk excitations are essentially
like electrons or groups of electrons, and the ground state is
unique when defined on a manifold without boundaries. The
TEE vanishes for these phases. Henceforth we shall refer to
gapped phases without topological order as being short-range
entangled (SRE) states. (This terminology differs slightly
from that of Chen-Gu-Wen,47 who require a state to also be
nonchiral to be short range entangled.) It seems appropriate
to define interacting “integer” topological phases, as new
topological phases without topological order, but which only
appear in the presence of interactions. Do such phases exist?
And if so, how can they be studied?

In one dimension, topological order is absent, and all
topological phases found are “integer” (or SRE) phases. They
include examples like the Haldane (or AKLT) state of gapped
spin-1 chains.43 Using the matrix product representation of
gapped states,24,44–46 they are argued to be classified by projec-
tive representations of the symmetry group (G) or equivalently
by the second group cohomology H2(G,C) of symmetry
group G. In higher dimensions, such rigorous results are not
available. Nevertheless, new work indicates that these are also
amenable to theoretical study. Recently, Chen, Gu, and Wen47

have proposed that higher-dimensional group cohomology
describes d = 2,3-dimensional interacting topological states
without topological order. For example, bosonic systems were
studied, where there are no topological phases in the absence
of interactions. With interactions, topological phases were
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predicted in two (and three) dimensions, without topological
order. While Chen et al.47 restrict attention to the nonchiral
subset of these states (i.e., ones that do not have a net imbalance
of left and right movers at the edge of a two-dimensional
system) protected by symmetry, Kitaev48 has also considered
chiral states. Explicit examples of such phases in special cases
have been given.49,50 However, predictions in the general case
rely on writing Wess-Zumino-Witten terms for generalized
sigma models. While this is a powerful approach, the physical
meaning of the phases that are predicted are obscure. For
example, the nature of edge excitations in these phases is
not apparent. Moreover, a knowledge of group-cohomolgy
machinery is required, which is mathematically sophisticated
even by the standards of the field.

(a) K-matrix formulation. Here, we take a completely
different and simpler approach to the problem, focusing on
the case of two spatial dimensions. We rely on the K matrix
formulation of quantum Hall states, a symmetric integer
matrix that appears in the Chern-Simons action (h̄ = 1, and
summation is implied over repeated indices μ,ν,λ = 0,1,2):

4πSCS =
∫

d2xdt
∑
I,J

εμνλa
I
μ[K]I,J ∂νa

J
λ . (1)

While this has been utilized to discuss quantum Hall states
with Abelian topological order, here we show that it is
also a powerful tool to discuss topological phases in the
absence of topological order. The latter requires |det K| =
1 (i.e., K is a unimodular matrix). The bulk action also
determines topological properties of the edge states. For
example, the signature of the K matrix (number of positive
minus negative eigenvalues) is the chirality of edge states—
the imbalance between number of right and left moving
edge modes. Maximally chiral states have all edge modes
moving in the same direction. Physically the fluxes εμνλ∂μaν

are related to densities and currents of bosons of different
flavors.

(b) Strategy and results. Let us briefly review our strategy
and results. Although we mainly focus on nonchiral states, we
begin by looking for maximally chiral states of bosons without
topological order. These are bosonic analogs of the integer
quantum Hall effect or chiral superconductors of fermions. It is
readily shown that the smallest dimension of bosonic K matrix
that yields a maximally chiral state is eight. This is consistent
with the prediction of Kitaev, derived from topological field

theory. Here, we explicitly construct a candidate K matrix for
this state, corresponding to the Cartan matrix of the group E8.

We then consider nonchiral states of bosons, with equal
number of left and right moving edge modes. In the absence
of symmetry, we argue that there are no nontrivial topological
phases with |det K| = 1. However, the presence of a symmetry
can lead to new topological phases. The main result of this
work is a scheme to classify topological phases with |det K| =
1, that are protected by symmetry.

Given a particular symmetry (e.g., time reversal, charge
conservation, etc.), we study distinct ways in which the
symmetry can act on the elementary quasiparticles. The
symmetries are realized by a set of symmetry transforma-
tions on elementary quasiparticles, which form a (faithful)
representation of the symmetry group G. Distinct realizations
are potentially different phases—analogous to the space group
classification of crystals. However, an additional requirement
to realize a nontrivial topological phase is the existence of
symmetry protected edge states, i.e., either the edge is gapless,
or if it is gapped, it must spontaneously break the symmetry.
Note, an internal symmetry can never provide such protection
to a purely one-dimensional system—hence the edge states
enjoy these special properties by virtue of their connection
to the bulk topological phase. We will call such phases
symmetry protected topological (SPT) phases following the
terminology of Ref. 47. To access these states, we supplement
the Chern-Simons action with insertion/removal of “local”
quasiparticles that are bosonic and have trivial mutual statistics
with any other excitation. Symmetry imposes additional, and
crucial, constraints on the possible terms. The set of these
symmetry-allowed perturbations can be used to analyze if
stable edge states exist or not. While we outline the general
rules that apply to a K matrix of any dimension, for the most
part we restrict our attention to 2 × 2 K matrices.

Remarkably, this simple analysis yields the same set
of interacting topological phases as the group cohomology
classification of Chen et al. for a large set of symmetry groups
G (see Table I and Fig. 1). For example, bosonic phases
with G = U (1) are classified by an integer which is just the
quantized Hall conductance in units of 2Q2/h where Q is
the unit of boson charge. When U (1) is broken to a discrete
subgroup Zn, the set of topological phases is also reduced to
Zn. Similarly, both schemes find a Z2 classification of bosonic
insulators with conserved charge and time reversal symmetry
[G = U (1) � ZT

2 , the semidirect product ensures that this is

TABLE I. Topological classification of gapped D = 2 + 1 dimensional phases of bosons with short-range entanglement (no topological
order).

Symmetry Topological classification Comments

No symmetry (chiral) Z E8 state and derivatives with chiral central charge51 c− = 8n.
ZT

2 Z1 Time-reversal symmetry
U (1) Z Charge conserved. Quantized Hall conductance σxy = 2nq2/h with n ∈ Z

U (1) � ZT
2 Z2 Bosonic quantum Spin Hall with charge U (1) and time reversal T 2 = +1.

U (1) × ZT
2 Z1 U (1) spin conservation and time reversal.

Zn Zn U (1) broken down to a discrete subgroup
Zn � ZT

2 Z
2
(n,2) (a,b) ≡ greatest common divisor of a and b.

Zn × ZT
2 Z

2
(n,2)

U (1) × Z2 Z × Z
2
2
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FIG. 1. (Color online) Summary of some simple integer bosonic
topological phases. (a) A chiral phase of bosons (no symmetry
required). An integer multiple of eight chiral bosons at the edge is
needed to evade topological order, leading to a quantized thermal
Hall conductance κxy/T = 8nL0 in units of the the universal

thermal conductance L0 = π2k2
B

3h
. These are bosonic analogs of chiral

superconductors. (b) A nonchiral phase of bosons protected by
U (1) symmetry (e.g., charge conservation). Distinct phases can be
labeled by the quantized Hall conductance σxy = 2nσ0, which are
even integer multiples of the universal conductance σ0 = q2/h for
particles with charge q. These are bosonic analogs of the integer
quantum Hall phases. (c) A nonchiral phase stabilized in the presence
of time reversal and U (1) charge conservation symmetries, the same
symmetries used to define quantum spin Hall (topological) insulators.
A Z2 topological classification is obtained, although bosonic time
reversal that squares to +1 is involved.

the usual relation between charge and time reversal], the analog
of fermionic quantized spin Hall insulators, despite the fact
that the time reversal operation is “bosonic” and squares to
+1. An advantage of the present formulation is that the edge
states of these phases are explicit—typically being nonchiral
c = 1 conformal field theory (CFT) when gapless. Moreover,
being cast in the familiar Abelian Chern-Simons form, it is
amenable to further investigation using standard field theory
methods. We focus on symmetries (such as time reversal) that
are realized locally. Spatial symmetries such as translation
invariance, inversion, etc., will be left for future work. Since
we do not make any assumption about spatial uniformity, the
topological phases we find are well defined in the presence of
disorder.

A disadvantage of our method is that it is less suited
to discuss non-Abelian Lie group symmetries, and we are
currently restricted to two spatial dimensions, neither of which
is a restriction for group cohomology theory.47 Also, our
method does not automatically produce a group structure
for the set of topological states. On general grounds, one
expects the set of topological phases protected by a particular
symmetry to form an Abelian group, which is automatically
satisfied in the group cohomology classification and in the
classification of free fermion topological phases. We handle
this by defining an Abelian group structure, addition and
subtraction, on pairs of phases described within the K matrix
formulation. With this refinement the group structure of the
resulting sets of phases is readily determined. For phases with
topological order (|det K| > 1) and exotic bulk exceptions,
it is less apparent whether such an Abelian group structure
of topological phases will emerge. Nevertheless, a similar K

matrix approach could be used to discuss topologically ordered
phases in the presence of global symmetries, which is left for
future work.

(c) Topological phases of interacting fermions. We extend
our discussion to classifying topological phases of interacting
fermion, in the absence of topological order. A key difference
from the bosonic case is that since fermion insertion is a
nonlocal operation, symmetries may be realized projectively
on the fermion fields. We compare our results to a recent super-
cohomology classification of interacting fermion phases.25 In
addition to the relative simplicity of our method, an advantage
over supercohomology classification is that we are able to
handle Kramers time reversal symmetry T 2 = (−1)N̂f (N̂f is
the total fermion number operator). A disadvantage, shared
by the super-cohomology classification, is that we are not
able to capture chiral or nonchiral states with odd numbers
of Majorana edge modes. As expected, we recover the Z2

classification of time reversal symmetric quantum spin Hall
insulators, from this interacting formalism as well. We also
compare our results with the recent work21–23 on topological
phases of interacting fermions with Z2 × Z

T
2 symmetry. We

also discuss topological phases of the symmetry group Z4 �

Z
T
2 , corresponding to time reversal symmetric superconductors

with four particle (charge 4e) condensates. For the cases we
considered, the topological phases of interacting fermions
either descend from noninteracting phases, or correspond to a
bosonic topological phases, where the bosons are bound states
of fermions. Whether this is a general property of fermion
topological phases is an open question. Our classifications of
SPT phases of interacting fermions with various symmetries
are summarized in Table II.

(d) Microscopic quasi-1D realization. Finally, to give
a deeper insight into the obtained topological phases we
utilize a quasi-one-dimensional (coupled wire52,53) approach
to construct a candidate state consistent with the edge content
that emerges from the classification. The K matrix approach
naturally suggests such a construction. This sheds light on
various paradoxical results such as the fact that there is a
bosonic analog of the quantum spin Hall state although time
reversal acts only on bosons with T 2 = 1.

Some aspects of this work are similar in spirit to a number of
previous works that have discussed the role of symmetry and
stability of edge states in various specific contexts.28,50,54–60

For example, Refs. 28 and 60 discussed the stability of edge
states in fractional topological insulators. However, the general
machinery presented here to generate symmetry protected
topological states has not previously been discussed.

II. K MATRIX FORMULATION OF 2 + 1-D
TOPOLOGICAL PHASES

It is believed61–63 that K matrix provides a complete
classification of all Abelian fraction quantum Hall (FQH)
states in 2 + 1 dimensions. In this section, we briefly review the
K matrix formulation of Abelian FQH states. We then discuss
how it can be applied to study states without topological order.
In particular, we point out that in the absence of symmetry,
fields that have trivial (or bosonic) self and mutual statistics
will be “Higgsed,” and the stability of the edge is examined in
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TABLE II. Topological classification of gapped D = 2 + 1-dimensional nonchiral phases of fermions with short range entanglement (no
topological order). Here, Pf denotes fermion parity, which is always conserved. Note, states with an odd number of right(left)-moving Majorana
edge modes (such as class DIII topological superconductor) are not captured in this formalism.

Symmetry Minimal topological classification Comments

Z
f

2 (no symmetry) Z1 No symmetry (fermion parity always conserved) nonchiral phase
ZT

2 × Z
f

2 Z1 Time-reversal symmetric superconductor
U (1) � ZT

2 , T 2 = 1 Z2 Bosonic quantum spin Hall insulator of Cooper pairs
U (1) � ZT

2 , T 2 = Pf Z
2
2 Including fermionic quantum spin Hall insulator

U (1) × ZT
2 × Z

f

2 Z1 U (1) spin conservation and time reversal.
Z2 × Z

f

2 Z4 Superconductor with Ising-type symmetry
Z4 Z2 Bosonic Z2-symmetric SPT phase of Cooper pairs
Z2 × ZT

2 × Z
f

2 Z4 × Z2 Discussed in Ref. 21–23 with Z8 classification
Z4 × ZT

2 Z
3
2 Superconductor with Z4 spin symmetry

Z4 � ZT
2 Z

2
2 Time-reversal-symmetric charge-4e superconductor

the presence of these terms. This is then applied to study chiral
topological phases of bosons that lack topological order.

A. A brief review of the K matrix formulation

The low-energy effective theory of an Abelian quantum
Hall state is captured by (h̄ = 1)

LCS = εμνλ

4π
aI

μKI,J ∂νa
J
λ − aI

μj
μ

I + · · · (2)

(summation over repeated indices is assumed). The aI
μ, I =

1,2, . . . ,N are internal gauge fields coupled to quasiparticles
currents j

μ

I , and K is a symmetric matrix with integer entries.
For states built entirely out of underlying bosons, the diagonal
elements of K are all even integers, while for those built from
underlying fermions (electrons), at least one diagonal entry is
an odd integer.

The topological order is also characterized by the K

matrix. The ground-state degeneracy (GSD) on a torus can
be calculated by quantizing the Chern-Simons theory (2) and
is given by64

GSD on a torus = |det K|. (3)

We will mainly be interested in states without topological
order, i.e., with |det K| = 1.

Quasiparticles are characterized by integer vector l and
couple minimally to the combination

∑
I lI a

I
μ. The self-

(exchange) statistics θ of a quasiparticle is obtained by
integrating out the gauge fields:

θ = π lT K−1l, (4)

while the mutual (braiding) statistics on taking quasiparticle
l1 around quasiparticle l2 is

θ12 = 2π l1T K−1l2. (5)

The effective action describing the gapless edge excitations
of a FQH state characterized by K can also be derived65

from gauge invariance of Lagrangian (2) on a manifold with
boundary:

S0
edge =

∫
dtdx

4π

∑
I,J

(KI,J ∂tφI ∂xφJ − VI,J ∂xφI ∂xφJ ). (6)

Here, VI,J is a positive definite constant matrix, that is
nonuniversal. However, the commutation relations between
fields is fixed by the first term that is simply the K matrix
in the bulk. The number of right movers n+ and left movers
n− are given by the signature of symmetric matrix K, i.e., the
matrix K has n+ positive and n− has negative eigenvalues.

One important question is are different FQH states char-
acterized by different K matrices fundamentally different? In
other words, can two different K matrices represent the same
phase? This means that two FQH states have exactly the same
set of quasiparticles but these quasiparticles are labeled in
two different ways. It turns out61,63,66 that a generic change of
label (or change of basis) for the same set of quasiparticles is
realized by the following GL(N,Z) transformation:

aI
μ →

∑
J

WI,J aJ
μ, W ∈ GL(N,Z). (7)

Here, GL(N,Z) denotes all N × N integer matrix with
determinant ±1. After this relabeling of quasiparticles, the
K matrix and currents j I

μ transform as

K → WT KW, j I
μ →

∑
J

WJ,I j
J
μ . (8)

Any two K matrices related by such a GL(N,Z) transforma-
tion represent the same state (in the absence of any global
symmetry). It is straightforward to see that physical properties
such as the determinant and the signature of a K matrix is
invariant under such a GL(N,Z) transformation.

When there is a U (1) symmetry associated with charge
conservation, one couples an external U (1) gauge field Aμ

to the conserved U (1) current with charge q via an integer
vector t ≡ (t1, . . . ,tN )T called the charge vector.63 This is
incorporated by adding the following term to the Lagrangian
(2) above: 2πLcharge = −qεμνλtIAμ∂νa

I
λ . By integrating out

internal gauge fields {aI
μ}, one obtains the quantized Hall

conductance

σxy = q2

2π
tT K−1t (9)

and the U (1) charge of a quasiparticle with integer vector l is
given by Q = qtT K−1l.
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The many-body wave function of a multilayer FQH state
described by effective theory (2) is given by64,67

�K =
∏

i<j,I,J

(
z

(I )
i − z

(J )
j

)KI,J
e−∑i,I |z(I )

i |2/4 (10)

in a disk geometry. Here, z
(I )
i ≡ x

(I )
i + iy(I )

i denotes the
two-dimensional coordinates of the ith particle in the I th
layer. Multiparticle pseudopotentials can be constructed68,69,71

as ideal Hamiltonians, whose zero-energy ground states are
the above multilayer FQH states.

B. K matrix + Higgs formulation

The Lagrangian (2) seems to have U (1)N symmetry (or N

conserved currents) due to the existence of N internal gauge
fields {aI

μ}. When these correspond to bosonic excitations
(featured by trivial self and mutual statistics with other
quasiparticles), and in the absence of any symmetry, one
generically does not expect them to be conserved. This can
be implemented by adding terms to the action (2) that create
and destroy these bosonic particles, which we (in the absence
of a better phrase) call Higgs terms. To be precise, denote
the annihilation operator for a quasiparticle of I th type as bI

and the associated creation operator as b−1
I ≡ b

†
I . If an integer

vector l = (l1, . . . ,lN )T characterizes a boson, then we demand

π lT K−1l = 0 mod 2π (11)

and

2π lT K−1l′ = 0 mod 2π (12)

for trivial mutual (braiding) statistics with all other quasiparti-
cles l′. Then, in the absence of symmetry, we can add a Higgs
term

δLCS = Cl

∏
I

b
lI
I + H.c., Cl = const., (13)

to the Lagrangian LCS that condenses the boson with vector l.
Note, since this particle has trivial statistics, we can dispense
with the gauge field in this expression, whose only role
here is to keep track of statistics. One can show that the
topological properties of the corresponding state, such as
the quasiparticle statistics (4) and ground-state degeneracy (3)
are not influenced by these Higgs terms. Therefore the generic
Lagrangian describing a 2 + 1-D gapped Abelian phase is the
following:

L2+1 = LCS +
∑

{l= bosonic}

(
Cl

∏
I

b
lI
I + H.c.

)
. (14)

Taken at face value, the Chern-Simons theory, which attaches
flux to particles, would require monopole terms to account for
a change in particle number. We have argued above why this
may be unnecessary.70 In any event, as we will see below, the
only action of the Higgs terms we will need is their effect on
the boundary, which does not suffer from these problems.

1. Stability of edge states

Now, the action of edge excitations corresponding to bulk
Lagrangian (14) is

Sedge = S0
edge + S1

edge,
(15)

S1
edge =

∑
{l= bosonic}

C̃l

∫
dtdx cos

(∑
I

lI φI + αl

)
,

where S0
edge is given in Eq. (6). The bare action S0

edge indicates
the following Kac-Moody algebra:

[∂xφI (x),∂yφJ (y)] = 2π iK−1
I,J ∂xδ(x − y). (16)

Notice that each allowed Higgs term (13) in the bulk has a
one-to-one correspondence with those on the edge in S1

edge,
i.e.,[

Cl

∏
I

b
lI
I + H.c.

]
→
[
C̃l cos

(∑
I

lI φI + αl

)]
. (17)

While all these perturbations are present at the edge a more
stringent requirement needs to be placed if they are to gap
out the edge modes. For example, we expect a maximally
chiral edge, where all modes move in the same direction, to be
stable even in the absence of any symmetry. The required
condition can be deduced by studying the commutation
relation implied by the Kac-Moody algebra above for the field
lT · φ =∑I lI φI :

[lT · ∂xφ(x),lT · ∂yφ(y)] = 2π i (lT K−1l)∂xδ(x − y), (18)

thus, in order to be able to localize this field at a classical value,
and gap out an edge mode, we require that the commutator
vanishes i.e.,

lT K−1l = 0. (19)

For a maximally chiral state where K−1 is a positive definite
matrix, no nonvanishing vector satisfies this condition. Hence
the edge states cannot be gapped. Similarly, when there are an
imbalanced number of right and left moving modes, n+ �= n−
the system has a net number of chiral modes and we call
it a 2 + 1-D chiral phase. In a 2 + 1-D chiral phase, even
in the absence of any symmetry, there will be gapless edge
excitations.54

To completely gap out an edge, one requires equal number
of counterpropagating modes, i.e., a nonchiral edge. Then,
dimension of K matrix N is even and N/2 = n+ = n−. Let
us call, i.e., cos(l1T φ + αl1 ) and cos(l2T φ + αl2 ) independent
Higgs terms if and only if:

l1T K−1l1 = l2T K−1l2 = l1T K−1l2 = 0. (20)

In this case, they form a pair of commuting variables
according to the Kac-Moody algebra. According to Heisen-
berg’s uncertainty principle, these mutually commutating
fields {lnT φ|n = 1,2, . . . } can be pinned at certain classical
values simultaneously, and consequently, their associated edge
excitations will be gapped. Then, to completely gap out the
edge, one needs a set of N/2 independent Higgs terms that are
pairwise commuting. In the absence of any symmetry, this is
typically possible. However, in the next section, we will see
that symmetry can forbid some Higgs terms leading to SPT
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phases with nontrivial edge structure. Now let us first consider
a chiral state of bosons without topological order.

C. A chiral bosonic phase without topological order:
The E8 state

A phase without topological order is characterized by a
symmetric K matrix with |det K| = 1. A chiral state in 2 + 1-
D requires the signature (n+,n−) of its K matrix to satisfy
that n+ �= n−. Such a state has gapless edge excitations and
a nonzero quantized thermal Hall conductance.72 There are
many such examples for a fermionic system, e.g., an integer
quantum Hall state whose K matrix is the unit matrix of size
N . On the other hand, in a bosonic system without topological
order, the existence of such states is less obvious.

We therefore seek a K matrix with the following properties
(i) |det K| = 1 (ii) the diagonal elements KI,I are all even
integers and (iii) a maximally chiral phases, where all the edge
states propagate in a single direction. Then, all eigenvalues of
K must have the same sign (say positive), so K is a positive
definite symmetric unimodular matrix.

It is helpful to map the problem of finding such a K to
the following crystallographic problem. Diagonalizing K and
multiplying each normalized eigenvector by the square root of
its eigenvalue one obtains a set of primitive lattice vectors eI

such that KIJ = eI · eJ . The inner product of a pair of vectors
lI eI and l′I eI are given by l′IKIJ lJ , while the volume of the unit
cell is given by [Det K]1/2. The latter can be seen by writing the
components of the vectors as a square matrix: [k]aI = [eI ]a .
Then Det k is the volume of the unit cell. However, KIJ =∑

a kaI kaJ = (kTk)IJ . Thus Det K = [Det k]2.
Thus, for a phase without topological order, we require

the volume of the lattice unit cell to be unity [Det k] = 1
(unimodular lattice). Furthermore, for a bosonic state, we need
that all lattice vectors have even length lIKIJ lJ = eveninteger,
since the K matrix has even diagonal entries (even lattice). It
is known that the minimum dimension this can occur in is
eight.73 In fact, the root lattice of the exceptional Lie group E8

is the smallest dimensional unimodular, even lattice.74 Such
lattices only occur in dimensions that are a multiple of eight.

A specific form of the K matrix is

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 −1
0 0 0 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 −1 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

This matrix has unit determinant and all eigenvalues are
positive. It defines a topological phase of bosons without
topological order, with eight chiral bosons at the edge. Note
K−1 can be related to K by a GL(8,Z) transformation STK−1S

if we take S = K , and so they are physically identical. Thus,
even without computing the inverse, all particles are seen to
have trivial statistics (πl′T K−1l = 2πm). This K is the Cartan
matrix for E8, hence the name of the state.

This result was previously pointed out by Kitaev,51,75

utilizing the fact that the central charge of the edge states

(c− = c − c̄) of a chiral topological phase are determined
by the statistics of emergent excitations only modulo 8.
Thus phases with trivial statistics are allowed whenever
c− = 0 mod 8. Combining these phases leads to an integer
classification of chiral topological states, which are char-
acterized by a quantized thermal hall conductivity,72 which
are integer multiples of the universal thermal conductivity:

limT →0
κxy

T
= 8π2k2

B

3h
[see Fig. 1(a)].

III. INCORPORATING SYMMETRIES
IN K MATRIX FORMULATION

In this section, we will be interested in incorporating global
symmetries into the K matrix + Higgs formulation. This
will lead to new symmetry protected topological phases. We
only consider internal symmetries, spatial symmetries like
inversion, translation, etc., will not be discussed.

Now let us restrict ourselves to 2 + 1-D nonchiral phases
with equal numbers of counterpropagating modes n+ = n− for
signature (n+,n−) of matrix K. In the absence of symmetry,
any edge Higgs term that satisfies (13) can be added. In such a
phase, there will be no gapless edge excitations in the absence
of any symmetry, i.e., all edge modes will be gapped out by
the Higgs terms S1

edge.
However, this is not true any more when there are

symmetries in the system. In the presence of symmetry, only
those bosonic quasiparticles, which transform trivially under
the symmetry operation, can condense. This means certain
Higgs terms, which transform nontrivially under the symmetry
operation, are not allowed and cannot be added to effective
theory (14) or (15).

How do quasiparticles transform under a symmetry
operation? In general, the Lagrangians (2) and (14) should be
invariant under the symmetry transformation on quasiparticle
currents {jμ

I }. Notice that when a K matrix is acted on
by a GL(N,Z) transformation (8), it describes the same
physical state. Only the labels of different quasiparticles are
changed. Given a state described by a certain K matrix,
the allowed GL(N,Z) transformations W which transform
the quasiparticles under symmetry must leave the K matrix
invariant, i.e., K = WT KW. Besides any global U (1) phase
transformation on the quasiparticle annihilation operator bI →
e i δφI bI also keeps the Lagrangian (2) invariant. Notice that
such a phase shift δφI is defined modulo 2π due to the
quantization of quasiparticle number in a compact theory.

Therefore a generic realization of unitary symmetry g on the
{φI } fields at the edge (we will not require the transformation
law in the bulk in the following) is given by

φI →
∑

J

W
g

I,J φI + δφ
g

I , (22)

where δφ
g

I ∈ [0,2π ) are constants and matrix Wg ∈ GL(N,Z)
satisfies

K = (Wg)T KWg. (23)

For an antiunitary symmetry h (such as time reversal
symmetry ZT

2 ), in general, it is realized in the following way:

φI → −
∑

J

Wh
I,J φJ + δφh

I , (24)
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where δφh
I ∈ [0,2π ) are constants and matrix Wh ∈ GL(N,Z)

satisfies

K = −(Wh)T KWh. (25)

The antiunitary symmetry operation h is realized by the
above transformations followed by complex conjugation C.
Notice that K matrix changes sign under the above GL(N,Z)
transformation since a Chern-Simons term εμνλaI

μ∂νa
J
λ always

changes sign under time reversal.

1. Group compatibility conditions

It may appear we have wide latitude in determining how
the generators of a symmetry group act on the quasiparticles
in our theory. However, there is an important constraint. For
an arbitrary symmetry group G, the multiplication rule of its
group elements is completely determined by certain algebraic
relations of the group generators {g1,g2, . . .}:

A{na} ≡
∏
a

gna

a = e, (26)

where e is the identity element of group G and {na} are all
integers. A bosonic quasiparticle [which satisfied Eq. (11)] is
a physical excitation and must transform trivially under the
identity element. Thus all boson insertion operators satisfy-
ing (11) and (12) should be invariant under the symmetry
operation A{na}:

A{na} :
∑

I

lI φI →
∑

I

lI φI mod 2π,

(27)
∀ l satisfying lT K−1l = 0 mod 2.

These algebraic requirements serve as constraints to the
possible GL(N,Z) transformations Wga and U (1) phase
rotations {δφga

I } and we shall call them group compatibility
conditions for the edge states described by effective theory
(15) and their associated bulk topological phases. In the case
of bosonic phases without topological order, K is a symmetric
unimodular matrix whose diagonal elements are all even
integers. Then, any integer vector l satisfies the conditions
(11) and (12), i.e., all quasiparticles of a bosonic SRE phase
are bosons. Therefore the group compatibility conditions (27)
for symmetry transformations are simplified as

Under A{na} = e : φI → φI mod 2π,
(28)

I = 1,2, . . . ,N.

By solving these algebraic equations we can find out all
sets of inequivalent symmetry transformations {Wga ,δφ

ga

I } for
generators {ga} of group G.

As an aside we note that for phases with topological order,
or in the presence of fermionic quasiparticles, symmetries are
realized projectively.76 Then, even the identity elements (26)
can induce a nontrivial transformation on quasiparticles.

2. Gauge equivalence

A question naturally arises: do different symmetry trans-
formations represent different SPT phases? We answer this
question in two parts. First, we comment on the equivalency or
inequivalency between two sets of symmetry transformations
{Wga ,δφ

ga

I }. Notice that one can always change the label of

quasiparticles by a GL(N,Z) transformation X (as long as
XT KX = K), or perform a global U (1) gauge transformation
φI → φI + �φI that keeps Lagrangian (2) invariant. Under
such a “gauge” transformation the symmetry operations
{Wga ,δφ

ga

I } will transform as

Wg → X−1WgX,

δφ
g

I → X−1

[
δφ

g

I − �φI + η
∑

J

W
g

I,J �φJ

]
, (29)

if X ∈ GL(N,Z), XT KX = K,

where η = ±1 if g is a unitary (antiunitary) symmetry.
If two sets of symmetry operations {Wga ,δφ

ga

I } associated
with group G generated by {ga} are related by the above
gauge transformation (29), then these two sets of symmetry
operations are essentially identical.

3. Edge stability and criteria for SPT phases

With a set of symmetry transformations {Wga ,δφ
ga

I } one
can determine what Higgs terms in Eqs. (14) and (15) that are
allowed in the presence of the symmetry group G = {g}. In
general, only those Higgs terms that transform trivially under
the symmetry transformations {Wga ,δφ

ga

I } are allowed, which
induce certain allowed set of edge perturbations. To determine
the fate of possible gapless modes at the edge, one considers
terms that commute with each other and with themselves, i.e.,
terms involving variables

∑
I lI φI that satisfy conditions (19)

and (20). Then one can simultaneously minimize these terms
like classical variables. If no commuting operator remains,
then the field minima exhaust the independent degrees of free-
dom, which implies a gapped edge. Note, scaling dimensions
of these edge terms are immaterial to this discussion.

Criterion for Trivial Phase: If there is a set of independent
Higgs terms {Ca cos(lTa φ + αa)} allowed by symmetry, so
that any other variables lT φ on the edge is either a linear
combination of these bosonic variables {lTa φ} or doesn’t
commute with every condensed bosonic quasparticles in {lTa φ},
then the edge of the system will be completely gapped in
the presence of independent Higgs terms {Ca cos(lTa φ + αa)}.
When the independent Higgs terms {Ca cos(lTa φ + αa)} are
simultaneously minimized on the edge, the elementary bosonic
variables {vT

a φ}
va = (va,1, . . . ,va,N ) ≡ la

gcd(la,1,la,2, . . . ,la,N )
, ∀ a, (30)

will all condense and be localized at various classical values
〈vT

a φ〉 = Ba (gcd is short for greatest common divisor). Notice
that if the set of independent elementary bosonic variables
{vT

a φ} are invariant under any symmetry transformation, i.e.,

Under ∀g ∈ G :

{∑
I

va,I φI

}
→
{∑

I

va,I φI

}
, (31)

then the edge states can be all gapped out without breaking
the symmetry G at all. We call such a nonchiral SRE phase
a trivial phase since, in general, it doesn’t support gapless
edge states in the presence of symmetry G. These principles
will be illustrated by examples in detail in the following
section. In comparison to the aforementioned trivial phase,
a nontrivial SPT phase has a gapless edge structure which
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cannot be gapped without breaking the symmetry G. The only
two possible situations for the edge structure of such a phase
are (i) gapless: the maximal set of independent Higgs terms
{Ca cos(lTa φ + αa)} allowed by symmetry cannot gap out all
the edge states. In other words, on the edge there exist at least
one variable lφ that commutes with all the condensed bosonic
variables {lTa φ}. Hence this degree of freedom lφ remains
gapless even in the presence of all the symmetry-allowed
independent Higgs terms {Ca cos(lTa φ + αa)}. An example
is the bosonic SPT phases protected by U (1) symmetry in
2 + 1-D, as will be discussed in detail later.

(ii) Spontaneous symmetry breaking on the edge: although
all the edge states will be gapped in the presence of independent
Higgs terms {Ca cos(lTa φ + αa)} allowed by symmetry, not
all of the associated elementary bosonic variables {vT

a φ}
in Eq. (30) are invariant under symmetry transformations
{ηgW

g,δφg},∀g ∈ G, where G is the symmetry group. This
means at least one elementary bosonic variable vT

a φ in
Eq. (30) would transform nontrivially under symmetry group
G. Therefore in order to gap out the edge by condensing all
the independent elementary bosons, one has to spontaneously
break the symmetry on the edge. An example is the bosonic
SPT phase protected by U (1) � ZT

2 symmetry (or by Z2

symmetry) in 2 + 1-D, as will be shown later.

4. Group structure of phases protected by symmetry group G

In general, the set of different phases that appear in a
topological classification are expected to form an Abelian
group, as proved for noninteracting fermions19,77 and con-
jectured for interacting bosonic systems47 (since group co-
homology classification leads to an Abelian group). How
does this group structure appear within our K matrix for-
mulation? Let {�G[K,{Wga ,δφga }]} to denote the set of
trivial and SPT phases in the presence of symmetry G. Here
�G[K,{Wga ,δφga }] represents a phase with matrix K in action
(15) and transformation rules {Wga ,δφga } for symmetry group
G = {ga}. We would like to attach to this set a group product.

A natural Abelian product rule ⊕ of two phases
�G[K,{Wga ,δφga }] and �G[K̃,{W̃ ga , ˜δφ

ga }] is to take their
matrix direct sum:

�G[K,{Wga ,δφga }] ⊕ �G[K̃,{W̃ ga , ˜δφ
ga }]

= �G[K ⊕ K̃,{Wga ⊕ W̃ ga ,δφga ⊕ ˜δφ
ga }]. (32)

This seems to suggest that one cannot obtain a full classifica-
tion of all different SPT phases when restricted to a K matrix
with a fixed dimension. However, notice that two phases �1

G

and �2
G can be identified as the same one if �1

G ⊕ eG = �2
G,

i.e., adding a trivial phase (denoted by eG) to �1
G yields the

phase �2
G. We can use this fact to reduce the dimensions of K

matrix by throwing away the “trivial” parts of the edge struc-
ture, which can be gapped without breaking any symmetry.

The identity element in the group {�G} corresponds to the
trivial phase eG ≡ �G[K0,W

ga ≡ IN×N,δφga ≡ 0], where K0

can be any N × N unimodular symmetric matrix correspond-
ing to a nonchiral SRE phase in 2 + 1-D, its edge states can
be gapped out without breaking the symmetry of group G.

We can also define the “inverse” of a phase
�G[K,{Wga ,δφga }] in the group to be

�G[K,{Wga ,δφga }]−1 = �G[−K,{Wga ,δφga }], (33)

i.e., by changing the sign of its K matrix we obtain the inverse
of a phase. This is simply because we can always gap out the
edge of

�G[K,{Wga ,δφga }]−1 ⊕ �G[−K,{Wga ,δφga }] = eG

without breaking the symmetry. Consider the variables
{φI } of phase �−1

G [K,{Wga ,δφga }] and {φ̃I } of phase
�G[−K,{Wga ,δφga }] on the edge. Then edge perturbations
such as {Ca cos[lTa (φ − φ̃) + αa]} will not be affected by the
phase factors δφga . We can then condense a set of independent
elementary bosonic variables {lTa (φ − φ̃)} satisfying Eqs. (19)
and (20). This can be readily shown when either W = I (arbi-
trary K) or when K is a 2 × 2 matrix (arbitrary W ). This is sim-
ply because {φI } and {φ̃I } satisfy the Kac-Moody algebra with
opposite K matrices. No symmetry will be broken by condens-
ing these bosons, when a proper set of vectors {la} are chosen.
To check if two putative SPT states are the same phase or are
different phases, we use the above group multiplication rules
to combine one state with the inverse of the other and check if
a trivial phase results. If so, these two are the same SPT phase.

Now that the identity element, the inverse of an element
and the multiplication rules are defined, we can identify the
group structure. We will perform this analysis below to clarify
the connection between phases generated by our formalism.

5. Miscellaneous considerations

We focus on the cases where {Wga ,δφ
ga

I } form a faithful
representation of symmetry group G, where G is the symmetry
group of the system’s Hamiltonian. The case when it forms
an unfaithful representation, i.e., when more than one group
element acts like the identity on all quasiparticles (this set
of group elements form an invariant subgroup H ), actually
corresponds to the faithful representation of the quotient group
(G/H ). Thus studying faithful representations suffices. This
is discussed in more detail in Appendix D. In some cases, we
will find that a solution for symmetry transformation may not
be realizable in a theory with local fields (for example, one
that exchanges a pair of fields that are canonical conjugate of
each other in a c = 1 edge), which will then not be included in
the minimal set of SPT phases. For phases that are reported in
Table I, we have checked that they have symmetries that can be
realized starting from microscopic degrees of freedom (such
as from the coupled wire construction). In the following, we
illustrate the above principles, first by classifying bosonic SPT
phases in 2 + 1-D, whose topology is protected by a certain
symmetry group G.

IV. K -MATRIX CLASSIFICATION
OF BOSONIC SPT PHASES

In this section, we will focus on bosonic nonchiral SRE
states in the presence of certain symmetry, i.e., bosonic nonchi-
ral SPT phases in 2 + 1 dimensions. They are described by a
symmetric, unimodular K matrix, whose diagonal elements
are even integers and with the same number of positive
eigenvalues and negative eigenvalues (n+ = n−). Therefore
the dimension of matrix K must be even and

det K = (−1)dim(K)/2 for a nonchiral SRE phase.
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In this section, we restrict ourselves to a 2 × 2 K matrix. SPT
phases that are necessarily described by K matrices of a larger
size, may be missed by this restriction. However, our results are
internally consistent and also capture at least all the topological
states of the group cohomology classification of bosonic SPT
phases in Ref. 47. It appears that a K matrix of dimension
2 is sufficient to represent and classify SPT phases in 2 + 1
dimensions in many cases. The reason behind this unexpected
success is the following: although we focus on SPT phases
described by a K matrix of size 2 × 2, when analyzing the
group structure formed by SPT phases with symmetry G we
need to multiply two phases together by a direct sum of their K

matrices. Consequently, we are in fact considering K matrices
of size 2n × 2n obtained from direct sums of original 2 × 2 K

matrices. Therefore it is actually not surprising that many of
the bosonic SPT phases in 2 + 1 dimensions can be described
and classified by a 2 × 2 K matrix and associated symmetry
transformations.

As proved in Appendix B, a 2 × 2K matrix with
determinant −1 for a bosonic system [see n = 1 in theorem
(B3)] is always equivalent to the standard form σx = ( 0 1

1 0 )
by certain GL(N,Z) transformations (σα,α = x,y,z are Pauli
matrices). In the following, we always choose the 2 × 2 matrix
K = σx to represent a generic bosonic nonchiral SRE state. In
the following, we use general principles discussed earlier in
Sec. III to study nonchiral bosonic SPT phases with different
symmetries. Note that the GL(2,Z) transformations X that
keeps K = σx invariant under (8) are X = ±I2×2, ±σx . For
such a nonchiral bosonic SRE phase, the unperturbed edge
theory is

S0
edge = 1

4π

∫
dtdx

(
∂tφ1∂xφ2 + ∂tφ2∂xφ1

−
∑
I,J

VI,J ∂xφI ∂xφJ

)
, (34)

where VI,J is a positive definite constant matrix, as discussed
in Sec. II B. This implies the following commutation relations
(Kac-Moody algebra) for the edge fields {φ1,φ2}:

[∂xφ1(x),∂yφ1(y)] = [∂xφ2(x),∂yφ2(y)] = 0,
(35)

[∂xφ1(x),∂yφ2(y)] = 2π i∂xδ(x − y).

In the absence of any symmetry, the edge states in Eq. (34)
can always be gapped, since a set of independent Higgs terms
satisfying Eqs. (19) and (20) on the edge can be choose as either
{Cl cos(lφ1 + αl),l ∈ Z} or {Cl cos(lφ2 + αl),l ∈ Z}. These
added terms destroy the edge states. All degrees of freedom
on the edge are gapped when variable φ1 (or φ2) is localized
at a classical value. Now, let us consider various symmetries.

A. ZT
2 symmetry: Z1 class

ZT
2 symmetry (time reversal) is generated by T . The algebra

(26), which defines ZT
2 symmetry group, is

T 2 = e, (36)

where e is the identity operation. Time-reversal symmetry
T is implemented [following rules (24)] by a matrix W T ∈

GL(2,Z) and a vector of U (1) phase changes δφT (defined
modulo 2π ) satisfying the constraints (25) and (28) for a
bosonic SRE system:

(W T )2 = I2×2, (W T )T KW T = −K; (37)

δφT
I −

∑
J

W T
I,J δφT

J = 0 mod 2π, I = 1,2. (38)

The only GL(2,Z) matrix solutions to Eq. (37) are W T =
±σz. Notice that W T = σz and W T = −σz are related a gauge
transformation (29) X = σx . Therefore one can always choose

W T = +σz

by a proper gauge fixing. Then the constraint (38) becomes
(I2×2 − σz)δφT = 0 mod 2π and it leads to

δφT
2 = n2π mod 2π, n2 = 0,1.

Under a gauge transformation �φI in Eq. (29) the compact
U (1) phase shift δφT transforms to δφT − (I2×2 + σz)�φ. As
a result, we can always choose a gauge so that

δφT
1 = 0 mod 2π.

So a generic bosonic nonchiral SPT phase in the presence of
time reversal symmetry T has symmetry transformation

{W T ,δφT } =
{
σz,

(
0

n2π

)}
n2 = 0,1. (39)

Since each bulk Higgs term has a one-to-one correspondence
with that on the edge, hereafter, we will only write down those
Higgs terms C̃l cos(

∑
I lI φI + αl) on the edge. In the case of

ZT
2 symmetry, the allowed Higgs terms are

S1
edge =

∑
l1�0,l2

Cl

∫
dxdt[cos(l1φ1 + l2φ2 + αl)

+ cos(−l1φ1 + l2φ2 + n2l2π + αl)].

For n2 = 0,1, the allowed Higgs terms are different, e.g.,
cos(φ2) terms are allowed for n2 = 0 but not allowed for
n2 = 1. Thus there is a distinction between these states.
However, this is not a topological distinction as argued below.
For both n2 = 0 and n2 = 1 cases, we can write the same
set of symmetry-allowed independent Higgs terms formed by
mutually commuting operators (35): i.e.,

S1
edge =

∑
l1

Cl1,0

∫
dxdt cos[l1φ1(x,t)]. (40)

Thus, in both cases, the edge can be gapped, therefore they
belong to the same trivial phase. If the variable φ1 is localized
at expectation value, e.g., 〈φ1〉 = 0 by the Higgs terms, all
excitations on the edge would be gapped but the time reversal
symmetry (φ1 → −φ1) is not broken by this expectation value.

B. U(1) symmetry: Z classes

The elements of U (1) group can be labeled as Uθ , where
θ ∈ [0,2π ) and the identity element is U0. The multiplication
rule is given by

Uθ1Uθ2 = U(θ1+θ2 mod 2π) (41)
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and, therefore, A generic form of symmetry transformations
{Wga ,δφ

ga

I } satisfying constraint (28) for U (1) group is{
WUθ = I2×2,δφ

Uθ = θ t = θ

(
t1
t2

)}
, (t1,t2) = 1,

where (t1,t2) denotes the greatest common divisor of integers t1
and t2. Notice that only when (t1,t2) = 1 the above symmetry
transformations {WUθ ,φUθ } form a faithful representation of
symmetry group U (1), which is what we assume here.78

Here, t′ ≡ Kt = ( t2
t1

) is nothing but the charge vector

defined in the context of K matrix formulation of a FQH
state (see Sec. II A). As proved in Appendix C for a bosonic
SRE phase with K = σx , an arbitrary charge vector t with
(t1,t2) = 1 is equivalent to the standard form

t =
(

t1
t2

)
�
(

q

1

)
�
(

1
q

)
, q ∈ Z,

by certain GL(N,Z) gauge transformations. Therefore the
inequivalent symmetry transformations under constraint (28)
for a bosonic nonchiral SRE phase with U (1) symmetry are{

WUθ = I2×2,δφ
Uθ = θ

(
1
q

)}
, q ∈ Z.

The associated symmetry-allowed Higgs terms are

S1
edge =

∑
l∈Z

Cl

∫
dxdt cos[l(qφ1 − φ2)]. (42)

Due to Kac-Moody algebra (35), they do not form a set of
independent Higgs terms satisfying Eqs. (19) and (20) unless
q = 0! When q = 0 the Higgs term can localize the variables
φ2 to expectation value 〈φ2〉 = const., which gaps the edge
excitations without breaking U (1) symmetry (φ1 → φ1 + θ ).

Now we will determine the group structure formed by these
phases. Let us label a phase by

[q] ≡ �U (1)

[
K = σx,

{
WUθ = I2×2,δφ

Uθ = θ

(
1
q

)}]
,

where eU (1) = [0] is the trivial phase. Consider two states
[q1] with edge variables {φ1,φ2} and [q2] with edge variables
{φ′

1,φ
′
2}. When they are put together the following independent

edge terms are symmetry allowed:
∑

l∈Z
Cl cos[l(φ1 − φ′

1) +
αl] and their associated elementary bosonic variable is φ1 −
φ′

1. If q2 = −q1, independent Higgs terms
∑

l∈Z
C ′

l cos[l(φ2 +
φ′

2) + α′
l] are also allowed by U (1) symmetry. Therefore

the edge states will be fully gapped without breaking the
G = U (1) symmetry, by condensing elementary independent
bosons {φ1 − φ′

1,φ2 + φ′
2}. Therefore we have

[q]−1 = [−q], ∀ q ∈ Z. (43)

On the other hand, if q1 �= q2, the bosonic variable ≡ φ2 + φ′
2}

cannot be gapped since cos[l(φ2 + φ′
2) + α′

l] terms are not
allowed by symmetry. Now the new variables describing the
gapless edge structure can be chosen as {φ̃1 = φ1,φ̃2 ≡ φ2 +
φ′

2} satisfying Kac-Moody algebra (35). Notice that under U (1)
they transform as W̃Uθ = I2×2 and(

δφ̃
Uθ

1

δφ̃
Uθ

2

)
= θ

(
1

q1 + q2

)
.

Therefore we have the multiplication rule of the group formed
by phases [q] with U (1) symmetry:

[q1] ⊕ [q2] = [q1 + q2]. (44)

This means phases [q] labeled by different integer q’s are
different phases in the presence of U (1) symmetry, and they
form nothing but the integer group Z! Any phase [q] with
q �= 0 corresponds to a nontrivial SPT phase, whose gapless
edge states cannot be gapped without breaking U (1) symmetry.

There is a simple physical reason underlying these observa-
tions [see Fig. 1(b) for an illustration]. The Hall conductance
is a physical invariant that distinguishes these different phases:

σxy = (t′)T K−1t′ =
(

1
q

)T

K
(

1
q

)
= 2q. (45)

C. U(1) � ZT
2 symmetry: Z2 classes

In the presence of both “charge” U (1) (group elements
Uθ ) and time reversal ZT

2 symmetry (generator T ), the extra
algebraic relation in addition to Eqs. (36) and (41) is given by

U−θ T = TUθ

since the charge U (1) symmetry doesn’t commute with time
reversal symmetry. The algebraic relations for U (1) � ZT

2 are

T 2 = TUθ TUθ = e (46)

in addition to Eq. (41). The corresponding constraints
(28) for symmetry transformations {W T ,δφT } and {WUθ =
I2×2,δφ

Uθ = θ t} are

(I2×2 − W T )(δφT + θ t) =
(

0
0

)
mod 2π, ∀ θ, (47)

and Eqs. (37) and (38). Just like in the case of ZT
2 symmetry,

again using gauge transformation X = σx in Eq. (29) one
can fix W T = σz to satisfy Eq. (37). Solving Eqs. (38) and
(47), we have t2 = 0 and δφT

2 = nπ, n = 0,1. Using gauge
transformation �φ in Eq. (29) one can fix δφT

1 = 0. Hence
the inequivalent symmetry transformations for U (1) � ZT

2
symmetry is

WUθ = I2×2, δφUθ = θ

(
1
0

)
, (48)

W T = σz, δφT =
(

0
nπ

)
, n = 0,1. (49)

The symmetry-allowed independent Higgs terms are

S1
edge =

∑
l∈Z

Cl

∫
dxdt[cos(lφ2) + cos(lφ2 + nlπ )]. (50)

Apparently, they consist of only the φ2 variable and hence
are independent of each other. When n = 0 all cos(lφ2), l ∈
Z terms are allowed in Eq. (50) and it corresponds to the
trivial phase. Variable φ2 can be localized at value 〈φ2〉 = 0
and the edge excitations will be gapped without breaking any
symmetry. On the other hand, when n = 1, only cos(lφ2), l =
even are allowed in Eq. (50) and it corresponds to the nontrivial
SPT phase. If φ2 is localized at any value, the edge becomes
gapped. However, time reversal symmetry T will be broken,
since under T we have φ2 → φ2 + π .
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Now let us analyze the group structure formed by these
phases. We denote the two phases with K = σx and symmetry
transformations (49) where n = 0,1 as [0] and [1]. [0] =
eU (1)�ZT

2
is the trivial phase. Consider two copies of nontrivial

SPT phases [1] put together: they have edge variables {φ1,φ2}
and {φ′

1,φ
′
2}. Apparently one can always condense the pair

of elementary independent bosons {φ1 − φ′
1,φ2 + φ′

2} on the
edge, and the edge states will be fully gapped without breaking
any symmetry. Therefore we have

[1] ⊕ [1] = [0]. (51)

Clearly, [0] and [1] form a Z2 group. As a result, n = 0 and
n = 1 label the Z2 classes of bosonic nonchiral SPT phases
for U (1) � ZT

2 symmetry.
Note, the generator of charge U (1) Uθ = ein̂θ does not

commute with time reversal which involves complex conju-
gation which sends i → −i in the exponential. Thus U−θ T =
TUθ , which implies time reversal and charge conjugation
are combined via the semidirect product U (1) � ZT

2 [see
Fig. 1(c)]. However, if the U (1) was associated with spin
rotation about Sz, for example, of an integer spin system, the
relation with time reversal would be that of a direct product
U (1) × ZT

2 , since now Uθ T = TUθ . This completely changes
the topological classification and leads to no nontrivial phases
as shown in Appendix E1.

D. ZN symmetry: ZN classes

Denoting the generator of ZN group as g, the algebraic
structure (26) of ZN group is given by

gN = e. (52)

The corresponding constraints (28) for symmetry transforma-
tions {W g,δφ g} are

(W g)N = I2×2, (W g)T σxW
g = σx, (53)

N∑
a=1

(W g)a−1δφ g =
(

0
0

)
mod 2π. (54)

In the following, we discuss the cases of N being an odd and
even integers, respectively.

1. N = odd integer: ZN classes

It is straightforward to check that the only solution to
Eq. (53) is W g = I2×2. So the solutions to Eq. (54) have

the general form of δφ g = 2πk
N

t, where t = ( t1
t2

) and (t1,t2) =
(k,N ) = 1 for k,t1,t2 = 0,1, . . . ,N − 1. Here, we require
(t1,t2) = (k,N ) = 1 so that the transformations (55) form a
faithful representation of symmetry group G = ZN . Making
use of theorem (C1), we can always reduce an arbitrary
“charge vector” t with (t1,t2) = 1 to its standard form ( 1

q ) and
hence the inequivalent symmetry transformations {W g,δφ g}
for ZN,N = odd symmetry are

W g = I2×2, δφ g = 2πk

N

(
1
q

)
,

(55)
(k,N ) = 1, q = 0,1, . . . ,N − 1.

It is easy to show that the Higgs terms allowed by symmetry
do not depend on k and they are

S1
edge =

∑
l1+ql2=0 mod N

Cl

∫
dxdt cos(lT φ + αl). (56)

Notice that a Higgs term labeled by vector l is allowed only
if l1 + ql2 = 0 mod N . Apparently, when q = 0, this is a
trivial phase with a set of independent Higgs terms being∑

l∈Z
Cl

∫
dxdt cos(lφ2 + αl), and the variable φ2 can be

localized at any value without breaking the ZN symmetry.
Since for different k values in transformations (55), the
symmetry-allowed Higgs terms are exactly the same, we
believe different k values correspond to the same phase and
we will assume a representative k = 1 in Eq. (55) hereafter.

To analyze the group structure of these states, let us denote
the various phases with symmetry transformations (55) under
ZN symmetry by

[q] ≡ �ZN

[
σx,

{
W g = I2×2,δφ

g = 2π

N

(
1
q

)}]
, (57)

where [0] = [N ] = eZN
is the trivial phase. Again, consider

two states [q1] with edge variables {φ1,φ2} and [q2] with edge
variables {φ′

1,φ
′
2}. Completely in parallel with the discussions

for U (1) symmetry, it is straightforward to show that

[q]−1 = [N − q], [q1] ⊕ [q2] = [q1 + q2 mod N ]. (58)

Therefore different phases [q] with q = 0,1, . . . ,N − 1 form
a ZN group. There are ZN classes of different phases labeled
by q = 0,1, . . . ,N − 1 in the presence of ZN symmetry, when
N = odd.

2. N = even integer: ZN classes

Now the inequivalent solutions to Eq. (53) are W g =
±I2×2, ±σx . (i) For W g = I2×2, we have exactly the same
solutions as Eq. (55) in N = odd case, and hence ZN different
classes of bosonic nonchiral SPT phases. All these ZN phases
can be realized by coupled wire construction, as will be
discussed in Sec. VI. (ii) For W g = −I2×2, one can always
choose a gauge �φ so that δφ g = 0. The symmetry-allowed
Higgs terms are

∑
∀ l cos(lT φ) and this describes nothing but

the trivial phase as [q = 0] in Eq. (55). Its edge states can be
gapped out without breaking any symmetry.

3. N = even integer: Other solutions

We discuss below additional representations of the sym-
metry group that appear for this particular case, which we
believe are unphysical for a SRE phase with no ground state
degeneracy on a torus.79 These require interchanging the two
edge fields φ1,φ2, which have very different character when
they describe fundamental bosons (one is like the phase field,
and is compact, while the other is related to the integrated
density). Therefore we believe it is unphysical to exchange
them. Also, unlike for the other symmetry transformations,
a microscopic model with this realization of symmetries was
not found. Finally, these additional phases are not naturally
accommodated into a group structure. These points taken
together lead us to drop them from the final list of topological
phases with this symmetry.
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(iii) For W g = σx , the gauge inequivalent solutions to
(54) are δφ g = 2πk

N
( 1

1 ) with k = 0,1, . . . ,N − 1. We require
(k,N/2) = 1 so that these transformations {W g,δφ g} form a
faithful representation of symmetry group ZN,N = even. The
symmetry-allowed Higgs terms are

S1
edge =

∑
2k(l1+l2)=0 mod N

Cl

∫
dxdt

×
[

cos(lT φ + αl) + cos

(
l1φ2 + l2φ1

+ 2πk(l1 + l2)

N
+ αl

)]
. (59)

One can verify that they all corresponds to nontrivial SPT
phases, whose edge states cannot be gapped without breaking
the symmetry. More precisely, variables φ1 and φ2 cannot be
localized simultaneously since they do not commute, and if
only one variable (say φ1) is localized the symmetry g will be
broken since φ1 ↔ φ2 + 2πk

N
. Their symmetry transformations

are summarized as

W g = σx, δφ g = 2πk

N

(
1
1

)
,

(
k,

N

2

)
= 1. (60)

But it is not clear how to realize these phases in a microscopic
model or what group structure they form. We label these phases
as [σx,k] ≡ �ZN

[σx,{W g = σx,δφ
g = 2πk

N
( 1

1 )}].
(iv) For W g = −σx , the gauge inequivalent “faithful”

solutions to (54) are δφ g = 2πk
N

( 1
−1 ) with k = 0,1, . . . ,N − 1

and (k,N/2) = 1. The symmetry-allowed Higgs terms are

S1
edge =

∑
2k(l1−l2)=0 mod N

Cl

∫
dxdt

×
[

cos(lT φ + αl) + cos

(
−l1φ2 − l2φ1

+ 2πk(l1 − l2)

N
+ αl

)]
. (61)

If we label these phases as [−σx,k] ≡ �ZN
[σx,{W g =

−σx,δφ
g = 2πk

N
( 1

−1 )}], it is easy to see that

[σx,k]−1 = [−σx,k]. (62)

This is because once a [σx,k] state with edge variable {φ1,φ2}
and a [−σx,k] state with edge variable {φ′

1,φ
′
2} are put together,

one can always condense bosons {φ1 + φ′
1,φ2 − φ′

2}, and the
edge will be gapped without breaking ZN symmetry.

To summarize, no matter N = odd or N = even, there
are ZN different bosonic nonchiral phases in the presence of
ZN symmetry. They are characterized by different symmetry
operations (55) associated with ZN generator g and symmetry-
allowed Higgs terms (56). All these ZN phases can be realized
in a coupled-wire construction as will be shown in Sec. VI.
Besides, when N = even, there are extra solutions (60) to
constraint (54) for symmetry transformations associated with
ZN symmetry. However, the physical realization of these states
and their group structure are not clear.

E. ZN � ZT
2 symmetry

The generators of ZN � ZT
2 symmetry group are g for ZN

and T for ZT
2 satisfying the following algebra:

gN = T 2 = T gT g = e. (63)

The associated constraints on symmetry operations are

W gW T W gW T = I2×2,
(64)

(I2×2 − W gW T )(δφ g + W gδφT ) =
(

0
0

)
mod 2π,

in addition to Eqs. (37), (38), (53), and (54).

1. N = odd integer: Z1 class

The gauge inequivalent solutions to these constraint equa-
tions are Eq. (39) and

W g = I2×2,
2πk

N

(
1
0

)
, (k,N ) = 1. (65)

Let us label these phases by [n2,k], where n2 is defined in
Eq. (39). Notice that when n2 = 0 in Eq. (39) one can always
destroy the gapless edge excitations by the localizing variable
φ2 without breaking any symmetry (under T we have φ2 →
φ2 + n2π ). Similarly, when k = 0 in Eq. (65), the edge can be
gapped out by the localizing bosonic variable φ1. So n2 = 0 or
k = 0 both correspond to the trivial phase. On the other hand,
when n2 = 1, the symmetry-allowed Higgs terms are

S1
edge =

∑
l

Cl

∫
dxdt[cos(Nl1φ1 + l2φ2 + αl)

+ cos(−Nl1φ1 + l2φ2 + αl + l2n2π )]. (66)

At first sight, it seems the edge states cannot be gapped without
breaking the symmetry, i.e., neither φ1 nor φ2 can be localized
due to symmetry. However, when a state [n2 = 1,k �= 0] with
edge variable {φ1,φ2} is put together with a trivial state
[1,0] = eZN �ZT

2
with edge variable {φ′

1,φ
′
2}, the edge can be

fully gapped by condensing bosons {Nφ1 + φ′
1,φ2 − Nφ′

2}
without breaking the ZN symmetry (N = odd). Therefore
[1,k] ⊕ [1,0] = eZN �ZT

2
and [1,k] are all trivial phases, which,

in general, does not have gapless edge states. As a result,
there is no nontrivial SPT phases in the presence of symmetry
ZN � ZT

2 ,N = odd.

2. N = even integer: Minimal set, Z
2
2 classes

When N = even, we always have W g = ±I2×2. (i) For
W g = I2×2, the gauge inequivalent faithful solutions to the
constraint equations are Eq. (39) and

δφ g = π

(
2k/N

n

)
, (k,N/2) = 1, n = 0,1. (67)

Let us label various phases with symmetry transformations
(39) and (67) as [k,n2,n] where n2 = 0,1 is defined in Eq. (39).
When k = 0, variable φ1 can be localized without breaking any
symmetry and it is the trivial SPT phase. When n2 = n = 0,
the variable φ2 can be localized and it is the trivial phase again.
Therefore

eZN �ZT
2

= [0,n2,n] = [k,0,0] (68)
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for N = even. In the following, we analyze the group structure
formed by these states.

Following discussions in Sec. III, we can obtain the inverse
of a phase by merely changing the sign of its K matrix. Now let
us put together a state [k,n2,n] with edge variable {φ1,φ2} is put
together with a state [k′,n′

2,n
′]−1 with edge variable {φ′

1,φ
′
2},

we can condense the following independent bosonic variables
{k′φ1 − kφ′

1,kφ2 − k′φ′
2} and destroy the gapless edge states

if (k,k′) = 1. The associated Higgs terms will not break the
ZN � ZT

2 symmetry if k′n − kn′ = 0 mod 2 and kn2 − k′n′
2 =

0 mod 2. As a result, [k,n2,n] ⊕ [k′,n′
2,n

′]−1 = eZN �ZT
2

for (k,k′) = 1 : [k,n2,n] = [k′,n′
2,n

′],
if k′n − kn′ = 0 mod 2, kn2 − k′n′

2 = 0 mod 2.

Therefore we have [2k + 1,n2,n] = [1,n2,n]. For k = even
on the other hand, we know that N/2 must be odd since
(k,N/2) = 1 for a faithful representation. Then we can choose
k′ = 0 and condense independent bosons {N

2 φ1 − φ′
1,φ2 −

N
2 φ′

2} to destroy all edge state. No symmetry will be broken by
doing so. Hence we showed [2k,n2,n] = [0,n2,n] = eZN �ZT

2
.

Consequently, the only three nontrivial SPT phases are [1,1,0],
[1,0,1] and [1,1,1].

Similarly, by putting together a state [1,n2,n] with edge
variable, {φ1,φ2} is put together with a state [1,n′

2,n
′] with

edge variable {φ′
1,φ

′
2}, we can always localize bosonic variable

φ1 − φ′
1 and gap out part of the edge. What is left on the edge

is described by variables {φ̃1 = φ1,φ̃2 = φ2 + φ′
2}. They obey

Kac-Moody algebra (35) and transform as a [1,n2 + n′
2,n + n′]

state. Hence we have shown that

[1,n2,n] ⊕ [1,n′
2,n

′] = [1,n2 + n′
2,n + n′]. (69)

Since n,n2 = 0,1 are both Z2 integers, so clearly all different
4 states [1,n2,n] form a Z

2
2 group. Consequently, there are

three nontrivial SPT phases labeled by k = 1 and [n2,n] =
[0,1],[1,0] or [1,1] in Eqs. (39) and (67).

(ii) For W g = −I2×2 we can always choose a gauge in
Eq. (29) so that δφ g = ( 0

0 ). From constraint equations, one

can derive W T = σz and (I2×2 ± W T )δφT = ( 0
0 ) and we have

δφT =
(

n1

n2

)
π, n1,n2 = 0,1. (70)

Apparently, if n1 = 0, variable φ1 can be localized without
breaking any symmetry, and similarly, if n2 = 0, variable φ2

can be localized without breaking the symmetry. For the non-
trivial SPT phase with n1 = n2 = 1, the edge states cannot be
destroyed without breaking any symmetry. If we label this SPT
phase by [n1 = 1,n2 = 1], one can show that the group struc-
ture formed by states with symmetry transformations W g =
−I is the integer group Z, i.e., {[1,1]n,n ∈ Z}. However, the
above symmetry transformations {W g = −I2×2,δφ

g = ( 0
0 )}

do not correspond to a faithful representation of ZN � ZT
2

group for N = even unless N = 2. And it is not clear whether
the states with symmetry transformations W g = −I can be
realized in a physical bosonic system. Therefore we will not
include the states with symmetry transformations W g = −I

in the minimal set of topological phases with ZN � ZT
2

symmetry.

To summarize, there are Z
2
2 classes of different nonchiral

bosonic SRE phases (including one trivial phase and three
SPT phases) with ZN � ZT

2 symmetry when N = even. To
compare, the classification and analysis of bosonic SPT phases
with ZN × ZT

2 symmetry (the direct product of ZN and ZT
2 in

contrast to the semidirect product discussed here) is shown in
Appendix E2.

V. K -MATRIX CLASSIFICATION
OF FERMIONIC SPT PHASES

According to theorem (B3) in Appendix B, a 2 × 2K

matrix with determinant −1 for a fermionic system is always
equivalent to the standard form ( 0 1

1 1 ) � σz by certain GL(2,Z)
transformations. In the following, we always choose the 2 × 2
matrix K = σz to represent a generic fermionic nonchiral SRE
state. In the following, we use general principles discussed in
Sec. III to study nonchiral fermionic SPT phases with different
symmetries. Note that the only GL(2,Z) transformations X
that keeps K = σz invariant under Eq. (8) are X = ±I2×2, ±σz.
For such a nonchiral fermionic SRE phase, its “bare” Chern-
Simons effective theory with no Higgs terms added is

LK = 1

4π
εμνλ

(
a1

μ∂νa
1
λ − a2

μ∂νa
2
λ

)−
2∑

I=1

aI
μj

μ

I (71)

in the bulk and

S0
edge = 1

4π

∫
dtdx

(
∂tφ1∂xφ1 − ∂tφ2∂xφ2

−
∑
I,J

VI,J ∂xφI ∂xφJ

)
(72)

on the edge where VI,J is a positive definite constant matrix,
as discussed in Sec. II B. The Kac-Moody algebra satisfied by
fields {φ1,φ2} on the edge is

[∂xφ1(x),∂yφ1(y)] = −[∂xφ2(x),∂yφ2(y)] = 2π i∂xδ(x − y),

[∂xφ1(x),∂yφ2(y)] = 0. (73)

In the absence of any symmetry, a set of independent Higgs
terms satisfying Eqs. (19) and (20) on the edge can be chosen as
either {Cl cos(lφ1 + lφ2 + αl),l ∈ Z} or {Cl cos(lφ1 − lφ2 +
αl),l ∈ Z}. All degrees of freedom on the edge will be gapped
once the “bosonic” variable φ1 + φ2 (or φ2 − φ1) is localized
at a classical value by the Higgs terms. Again, the two
bosonic variables φ1 + φ2 and φ1 − φ2 cannot be localized
simultaneously, according to Heisenberg uncertainty relation
implied by Kac-Moody algebra (73).

There is an intrinsic difference between fermions and
bosons: i.e., only bosonic quasiparticles can “condense” in
a bosonic/fermionic system described by a local Hamiltonian.
This means in a bosonic system, all quasiparticles are bosons
and should transform trivially under identity element e =∏

a gna
a of group G as shown in Eq. (28). In a fermionic

system, on the other hand, any bosonic quasiparticle consists
of an even number of fermions and is always invariant if
every fermion creation (annihilation) operator obtains a minus
sign. Therefore under symmetry transformation {W e,δφe}
corresponding to identity element e of the same symmetry
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group G in any local fermionic system, only those Higgs
terms satisfying condition (11) and (12) should transform
trivially. This can be generalized to a more universal situation
where anyonic quasiparticles are present (|det K| > 1): under
identity element of group G only local operators (i.e.,
Higgs terms cos(lT φ + αl) satisfying (11) and (12) which
condense bosonic quasiparticles) should transform trivially.
This means with the same symmetry group G = {ga}, the
symmetry transformations {Wga

b ,δφ
ga

b } of a bosonic SRE state
form a faithful representation of group G, while symmetry
transformations {Wga

f ,δφ
ga

f } of a fermionic SRE state (or more
generally a gapped Abelian phase containing fermionic and
anyonic quasiparticles) form a projective representation77 of
group G = {ga}. And for these systems the identity element
e in group compatibility conditions (26) and (27) does not
always correspond to a trivial transformation on the fermionic
(anyonic) quasiparticles.

In a fermionic nonchiral SRE phase with K = σz here, it is
easy to verify that such a bosonic quasiparticle is labeled by
any vector l = ( l1

l2
) satisfying

l1 = l2 mod 2. (74)

Locality requires that only Higgs terms cos(lT φ + αl) satis-
fying Eq. (74) can be added to bare action (71) and (72),
i.e., fermions are not allowed to condense. Hence in the
absence of any symmetry, all these Higgs terms cos(lT φ + αl)
satisfying Eq. (74) are allowed and should be added to a
fermionic nonchiral SRE state. As a result, the identity element
e (no symmetry)in a fermionic system is implemented by the
following generic form of symmetry transformations:

W e = I2×2, δφe = ηf π

(
1
1

)
, (75)

where ηf = 0,1. Notice that the above symmetry transforma-
tions are invariant under any gauge transformation (29). When
ηf = 1, the fermionic operators ∼exp[iφα], α = 1,2 obtains
a minus sign, corresponding to the fermion number parity
operation Pf = (−1)N̂f . When ηf = 0, on the other hand,
every fermion remains invariant and it corresponds to the actual
identity element ef of the symmetry group Gf (including Pf )
for the underlying fermions. If we incorporate the fermion
number parity Pf into the symmetry group Gf , one easily
notices that Z

f

2 = {ef ,Pf } is always a normal subgroup of
fermion symmetry group Gf , which means Pf is involutory
(Pf

2 = ef ) and central in Gf .44

If we always incorporate fermion number parity Pf into
fermion symmetry group Gf , then a fermionic system with
symmetry Gf is naturally related to a bosonic system with
symmetry G = Gf /Z

f

2 (since Z
f

2 is a normal subgroup of
Gf the quotient group Gf /Z

f

2 can be defined). Physically,
this means if fermions with symmetry Gf pair up to form
Cooper pairs (which are bosons), these bosonic Cooper pairs
have symmetry G = Gf /Z

f

2 . Different SPT phases of bosonic
Cooper pairs (where fermions are confined) with symmetry
G = Gf /Z

f

2 are necessarily different fermionic SRE phases
with symmetry Gf . Hence the different classes of fermionic
SRE phases with symmetry Gf must contain all different
bosonic SRE phases with symmetry G = Gf /Z

f

2 as a subset.25

To be more precise, the group Hb(Gf /Z
f

2 ) formed by different
bosonic (nonchiral) SRE phases with symmetry G = Gf /Z

f

2
is always a subgroup of Hf (Gf ), the group formed by different
fermionic (nonchiral) SRE phases with symmetry Gf .

Before discussing specific examples of nonchiral topolog-
ical phases, we point out that SRE chiral phases of fermions
are readily obtained (e.g., integer quantum Hall states) so
we skip their discussion. It should also be noted that our
formalism currently is restricted to topological phases in
which the gapless edge, when present, has integer central
charge (e.g., c = 1 in many cases). So chiral and nonchiral
Majorana modes (e.g., of a px + ipy superconductor, or the
D = 2 + 1 class DIII topological superconductor,18,19 with a
pair of counter-propagating Majorana modes) are not captured
in our formulation.

A. Gf /Z f
2 = {e} ⇒ Gf = Z f

2 symmetry: Z1 class

If we choose G = Gf /Z
f

2 = {e} to be the trivial group,
then the fermion symmetry group is Gf = Z

f

2 . The generator
of Z

f

2 , i.e., fermion number parity operator, is

Pf ≡ (−1)N̂f , (76)

where N̂f denotes the total fermion number. The existence
of Z

f

2 symmetry is a basic requirement for any fermionic
system described by a local Hamiltonian. Simply speaking,
Pf guarantees that one single fermion cannot condense
like the bosons: only a bosonic conglomerate containing
an even number of fermions can condense and obtain a
nonvanishing expectation value. A general form for such
a bosonic quasiparticle in a fermionic system is labeled by
a integer vector l satisfying condition (11).

This means Z
f

2 is more like a constraint for a fermionic
system due to locality, rather than a true “symmetry.” As
discussed earlier, it is implemented by nothing but the
nontrivial (nf = 1) realization for e in G = Gf /Z

f

2 :

W Pf = I2×2, δφ Pf = π

(
1
1

)
. (77)

It guarantees that in the absence of any symmetry, all Higgs
terms cos(lT φ + αl) satisfying Eq. (74) can be added to a
fermionic nonchiral SRE state and these are the only terms
that can be added. Notice that Eq. (77) is invariant under
any gauge transformations (29) for fermions with K = σz.
Apparently, we have Pf

2 = ef , i.e., the fermion number parity
acting twice would yield the identity operation for fermions.

The Z
f

2 symmetry-allowed Higgs terms are all terms
associated with bosonic quasiparticles (74):

S1
edge =

∑
{l1=l2 mod 2}

Cl

∫
dxdt cos(lT φ + αl). (78)

Apparently the bosonic variable φ1 + φ2 (or φ1 − φ2) can be
localized at a classical value and the edge will be gapped.
Physically, φ1 + φ2 corresponds to the pairing between right
mover and left mover, while φ1 − φ2 is backscattering between
right and left movers. They are both allowed in the absence of
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any symmetry. This describes the (trivial) Z1 class of nonchiral
fermionic phase with Z

f

2 symmetry.
Since fermion number parity Pf is always realized by

Eq. (75), in the following, we will not specifically mention
this symmetry but only requires Z

f

2 to be a normal subgroup
of the full symmetry group Gf of fermions. And we use e to
denote the identity element in the “bosonic” symmetry group
G = Gf /Z

f

2 . Therefore in the fermion system e can be either
ef (all fermion operators keep invariant) or Pf (all fermion
operators change sign).

B. Gf /Z f
2 = ZT

2 ⇒ Gf = ZT
2 × Z f

2 symmetry: Z1 class

In the presence of time-reversal ZT
2 symmetry with gen-

erator T , the algebraic structure of full symmetry group
Gf /ZT

2 = ZT
2 is given by

T 2 = e. (79)

Here, in our notation, e can be either ef , the identity element
for fermions or Pf , the fermion number parity operation. From
Eq. (27), this leads to the following constraint on symmetry
transformations {W T ,δφT }:

(W T )2 = I2×2, (W T )T KW T = −K; (80)

(I2×2 − W T )δφT = ηT π

(
1
1

)
mod 2π, (81)

(I2×2 − W T )(δφT + δφ Pf ) = ηT Pf
π

(
1
1

)
mod 2π, (82)

where ηT ,ηT Pf
= 0,1. Notice that fermion number parity

symmetry Pf is always implemented by Eq. (77), independent
of the gauge choice. Here, with K = σz the gauge inequivalent
solutions to Eq. (80) is W T = σx . Then solving Eqs. (81)
and (82), we get ηT = ηT Pf

and δφT = ( 0
ηT π ). Therefore the

inequivalent symmetry transformations for ZT
2 × Z

f

2 group is
Eq. (77):

W T = σx, δφT = ηT

(
0
π

)
, ηT = 0,1. (83)

And the symmetry-allowed Higgs terms are

S1
edge =

∑
{l1=l2 mod 2}

Cl

∫
dxdt[cos(lT φ + αl)

+ cos(−lT σxφ + l2ηT π + αl)], (84)

where ηT = 0,1. It turns out the above Higgs term always
describes the same trivial SPT phase no matter ηT = 0
or 1, e.g., variable φ1 + φ2 can be always localized at an
expectation value 〈φ1 + φ2〉 = η2π/2 by the Higgs terms, and
the gapless edge states will be destroyed without breaking
any symmetry. Therefore Eq. (72) together with Eq. (84)
describes the (trivial) Z1 class of fermionic nonchiral SPT
with ZT

2 × Z
f

2 symmetry, no matter T 2 = ef (ηT = ηT Pf
= 0)

or T 2 = Pf (ηT = ηT Pf
= 1). Note, the Z2 classification of

free fermions in class DIII with these symmetries is missed
by this classification. The reason of course is that we are not
able to describe Majorana modes (the class DIII topological
superconductor has a counter-propagating pair of Majorana

modes with central charge c = 1/2) within the K-matrix
formulation.

C. Gf /Z f
2 = U(1) � ZT

2 symmetry

By labeling the U (1) group elements as Uθ , the algebraic
structure of G = U (1) � ZT

2 group is given by

T 2 = TUθ TUθ = U(θ=0 mod 2π) = e (85)

in addition to Eq. (41). Again, here in our notation, e can
be either identity element ef for fermions or fermion number
parity Pf . Again, a general form of symmetry transformation
for Uθ is given by

WUθ = I2×2, δφUθ = θ t, (86)

and the we have the following constraints for the symmetry
transformations:

2π t = ηU (1)π

(
1
1

)
mod 2π, (87)

(I2×2 − W T )(θ t + δφT ) = ηπ

(
1
1

)
mod 2π, (88)

in addition to Eqs. (80) and (81). The last line in Eq. (85)
is automatically satisfied. The gauge inequivalent solutions to
these constraint equations are

t =
[
t + ηU (1)

2

](
1
1

)
, t ∈ Z; (89)

W T = σx, δφT =
(

0
ηπ

)
mod 2π, (90)

where ηU (1),η = 0,1. Notice that the fermion parity generator
Pf is always a subgroup of U (1) since t + ηU (1)/2 �= 0. Hence
Z

f

2 is always a subgroup of U (1) group associated with fermion
number conservation. If η = 1, we have T 2 = Pf , while η = 0
corresponds to T 2 = 1.

1. Gf = U(1) � ZT
2 with T 2 = 1: Z2 classes

When η = 0, the algebra of symmetry group Gf = U (1) �

ZT
2 is

T 2 = TUθ TUθ = U(θ=0 mod 2π) = ef , (91)

where ef is the identity element of symmetry group Gf for
fermions. The symmetry-allowed Higgs terms associated with
symmetry transformations (86) and (89) are

S1
edge =

∑
l∈Z

Cl

∫
dxdt cos[l(φ1 − φ2) + αl]

for η = 0. Hence in η = 0 case, there is only one trivial
phase, since the independent bosonic variable φ1 − φ2 can be
localized at a classical value by the Higgs terms and the edge
will be gapped without breaking any symmetry (under T we
have φ1 − φ2 → φ1 − φ2 − ηπ ). Meanwhile, notice that for
a bosonic system with G = U (1) � ZT

2 symmetry (T 2 = 1),
there are Z2 classes of different phases. Hence the nontrivial
bosonic SPT phase of Cooper pairs (fermions are confined)
protected by U (1) � ZT

2 symmetry form a nontrivial SPT
phase of fermions with Gf = U (1) � ZT

2 symmetry. As a
result, there are Z2 classes of different fermionic (nonchiral)
SRE phases in the presence of U (1) � ZT

2 symmetry with
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T 2 = 1. The Z2 classification comes purely from the bosonic
SPT phases (bosonic QSH insulator) of Cooper pairs in the
molecule limit where fermions are confined.

2. Gf = U(1) � ZT
2 with T 2 = Pf : Z

2
2 classes

When η = 1, the algebra of symmetry group Gf = U (1) �

ZT
2 is

T 2 = TUθ TUθ = U(θ=0 mod 2π) = Pf . (92)

And the symmetry-allowed Higgs terms on the edge are

S1
edge =

∑
l∈Z

Cl

∫
dxdt cos[2l(φ1 − φ2) + αl]

for η = 1. This corresponds to the nontrivial SPT phase, whose
edge cannot be gapped without breaking the symmetry. We use
[η] with η = 1 and η = 1 to label these two phases. Now let us
examine the group structure {�

U (1)�ZT
2 ×Z

f

2
} formed by these

states.
The trivial state is labeled by identity element eU (1)�ZT

2
. If

we put two [η = 1] states together, we can gap out the edge
states without breaking the symmetry so [1] ⊕ [1] = eU (1)�ZT

2
.

They form a Z2 group. As a result, [η = 1] and [1] ⊕ [1]
label the Z2 classes of fermionic nonchiral SRE phases in
the presence of U (1) � ZT

2 symmetry with T 2 = Pf . When
U (1) symmetry corresponds to fermion charge conservation,
these two different phases are nothing but the trivial band
insulator and Z2 topological band insulator (quantum spin
Hall insulator) of fermions in 2 + 1 dimensions.55,80,81 Again,
the bosonic SPT phases of Cooper pairs (where fermions
are confined) with G = U (1) � ZT

2 symmetry gives rise to
another Z2 classification. Hence, in total, there are Z

2
2 classes

of different SPT phases with U (1) � ZT
2 symmetry (T 2 = Pf ).

D. Gf /Z f
2 = U(1) × ZT

2 symmetry: Z1 class

The algebraic structure of G = Gf /Z
f

2 = U (1) × ZT
2

group is given by

T 2 = TU−θ TUθ = U(θ=0 mod 2π) = e (93)

in addition to Eq. (41). The associated constraints (27) for
symmetry transformations (86) and {W T ,δφT } are Eqs. (80),
(81), (87), and

(I2×2 − W T )δφT + θ (I2×2 + W T )t = ηπ

(
1
1

)
mod 2π.

Again, the last line of Eq. (93) is automatically satisfied. The
gauge inequivalent solutions to these constraint equations are

t =
[
t + ηU (1)

2

]( 1
−1

)
, t ∈ Z; (94)

W T = σx, δφT =
(

0
ηπ

)
mod 2π. (95)

The associated symmetry-allowed Higgs terms are

S1
edge =

∑
l∈Z

Cl

∫
dxdt cos[l(φ1 + φ2) + αl]

for η = 0 and

S1
edge =

∑
l∈Z

∫
dxdt{Cl sin[(2l + 1)(φ1 + φ2)]

+Dl cos[2l(φ1 + φ2)]}
for η = 1. In both cases, variable φ1 + φ2 can be localized at
a classical value by the Higgs term, so the gapless edge states
will be destroyed without breaking any symmetry (under T
we have φ1 + φ2 → ηπ − φ1 − φ2). So there is a (trivial) Z1

class of fermionic nonchiral SRE phase in the presence of
U (1) × ZT

2 × Z
f

2 symmetry. Note that T 2 = ef if η = 0 and
T 2 = Pf if η = 1. Since there is no bosonic SPT phases with
U (1) � ZT

2 = Gf /ZT
2 symmetry, there are no new fermionic

SPT phases coming from bosonic SPT phases of Cooper pairs.

E. Gf /Z f
2 = Z2 symmetry

The generator g of Z2 symmetry satisfies the following
algebra:

g2 = e. (96)

Here, e stands for either identity element ef for fermions or
fermion number parity Pf . This algebraic constraints (27) for
symmetry transformations {W g,δφ g} are

(W g)2 = I2×2, (W g)T KW g = K, (97)

(I2×2 + W g)δφ g = ηπ

(
1
1

)
mod 2π, (98)

where η = 0,1. The gauge inequivalent solutions of Eq. (97)
are W g = ±I2×2, ± σz. In the following, we analyze those
cases with W g = ±I2×2 and the discussions about cases
with W g = ±σz is put in Appendix F. It is not clear to us
now whether the transformation laws with W g = ±σz can be
realized in a microscopic model, therefore, we did not include
these cases in the minimal set of different fermion SRE phases
with Gf symmetry.

(i) For W g = −I2×2, the gauge inequivalent solution to
Eq. (98) is δφ g = ( 0

0 ) and η = 0. A set of independent
symmetry-allowed Higgs terms can be either Eq. (101) or (102)
with αl ≡ 0,∀ l ∈ Z. Hence it corresponds to the trivial phase,
whose edge can be gapped without breaking any symmetry.

(ii) For W g = I2×2, the inequivalent solutions to Eq. (98)
are

δφ g = π

(
t1
t2

)
+ π

2
η

(
1
1

)
, t1,t2,η = 0,1. (99)

The symmetry allowed Higgs terms are those cos(lT φ + αl)
terms satisfying

l1t1 + l2t2 + l1 + l2

2
η = 0 mod 2 (100)

and the condition (74) for local operators. It is straightforward
to verify that when t1 + t2 + η = 0 mod 2 a set of independent
symmetry-allowed Higgs terms satisfying Eq. (19) is

S1
edge =

∑
l∈Z

Cl

∫
dxdt cos[l(φ1 + φ2) + αl], (101)
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and the edge states can be gapped without breaking the
Z2 symmetry [under g we have φ1 + φ2 → φ1 + φ2 + (t1 +
t2 + η)π ], if variable φ1 + φ2 is localized at any classical
value. Similarly, when t1 − t2 = 0 mod 2, a set of independent
symmetry-allowed Higgs terms satisfying Eq. (19) is

S1
edge =

∑
l∈Z

Dl

∫
dxdt cos[l(φ1 − φ2) + βl], (102)

and the edge states will be gapped without breaking the
Z2 symmetry [under g we have φ1 − φ2 → φ1 − φ2 + (t1 −
t2)π ], if variable φ1 − φ2 is localized at any value. They all
correspond to the trivial phase. Notice that when η = 0 we
have g2 = ef while g2 = Pf if η = 1. This corresponds to the
following two different symmetry groups.

1. Gf = Z2 × Z f
2 symmetry: Z4 classes

(a) Intrinsic fermion phases. This means η = 0 and t1 −
t2 = 1 mod 2. The algebra of symmetry group Gf is

g2 = ef . (103)

When [η,t1,t2] = [0,0,1] or [0,1,0], a set of independent
symmetry-allowed Higgs terms satisfying (19) can be chosen
to be either

S1
edge =

∑
l∈Z

Cl

∫
dxdt cos[2l(φ1 + φ2) + αl] (104)

or

S1
edge =

∑
l∈Z

Dl

∫
dxdt cos[2l(φ1 − φ2) + βl]. (105)

They correspond to two nontrivial SPT phases, where the
edge cannot be gapped without spontaneously breaking the Z2

symmetry. Let us label these two states as [η,t1,t2] = [0,0,1]
and [0,1,0]. Notice that when we put a [0,0,1] edge with
variables {φ1,φ2} together with a [0,1,0] edge with variables
{φ′

1,φ
′
2}, the edge can always be gapped by condensing,

e.g., independent bosonic variables {φ1 + φ′
2,φ

′
1 − φ2} and no

symmetry will be broken. Hence [0,0,1] ⊕ [0,1,0] = e
Z2×Z

f

2

and we have [0,0,1] = [0,1,0]−1. On the other hand, if we put
four [0,1,0] states with edge variables {φa

R,φa
L,a = 1,2,3,4}

together, the edge can be gapped without breaking the
symmetry, by localizing the following independent bosonic
variables:

φ1
R + φ2

R + φ3
L + φ4

L, φ3
R + φ4

R + φ1
L + φ2

L,

φ1
R + φ3

R + φ1
L + φ4

L, φ1
R + φ4

R + φ1
L + φ3

L.

As a results, we have [0,1,0]4 = e
Z2×Z

f

2
and hence [0,1,0]3 =

[0,0,1]. Therefore all different fermionic phases form a Z4

group.
To summarize, with Z2 symmetry transformation W g =

±I2×2, there are Z4 classes of different fermionic nonchiral
SRE phases in the presence of Z2 × Z

f

2 symmetry. The
nontrivial SPT phases such as [0,1,0] can be realized by
noninteracting fermions, as shown by the coupled wire
construction in Sec. VI.

(b) Interacting fermionic SPT phases from the bosonic SPT
phase with Z2 symmetry. In the previous discussion of bosonic
SPT phases, a Z2 classification was found for bosons with

Z2 symmetry. Here, in a fermionic system with Z2 × Z
f

2
symmetry, we can always let the fermions combine to form
bosonic Cooper pairs that can serve as the fundamental bosons,
which then form the nontrivial bosonic SPT phase discussed
in Sec. IV. Notice that the fermion parity Z

f

2 symmetry can
never be broken and have no effect on the Cooper pairs at
all. Do these interacting bosonic SPT phases lead to an extra
Z2 classification for fermions with Z2 × ZT

2 symmetry in the
presence of deconfined fermions in the low-energy sector?
If so, these nontrivial SPT phases cannot be obtained from
perturbing noninteracting fermions. However, we show now
that the bosonic SPT phase with Z2 symmetry is contained
within the fermion classification discussed previously when
there are gapless fermions on the edge. And it is a Z2

subgroup of the Z4 classes that were found. Thus they can be
obtained from adding perturbation to a noninteracting fermion
Hamiltonian.

Consider one bosonic Z2-symmetric SPT state with edge
variables {φ1,φ2}, whose symmetry transformations are φa →
φa + π,a = 1,2 under Z2 generator g. When this state is put
together with two fermion Z2 × Z

f

2 -symmetric SPT states
[0,1,0] ⊕ [0,1,0] with edge variables {φR,φL} and {φ′

R,φ′
L},

its edge can be gapped out by simultaneously localizing the
following bosonic fields on the edge:

φR + φL + φ1, − φ′
R + φL + φ2, φR − φ′

L − φ2. (106)

Notice that under Z2 generator g the edge variables {φR,φL}
transform as φR → φR + π , φL → φL and the same for
{φ′

R,φ′
L}. Notices that the inverse of the above bosonic

SPT phase is itself, hence we have shown that [0,1,0]2 ≡
[0,1,0] ⊕ [0,1,0], i.e., the state obtained by putting two
fermion SPT phases [0,1,0] together is nothing but the bosonic
Z2-symmetric SPT phase. Therefore we conclude that bosonic
SPT phase with Z2 symmetry is contained within the fermionic
classification Z4.

2. Gf = Z4 symmetry: Z2 classes

Also note that when η = 1, we have the algebra

g2 = Pf (107)

for symmetry group Gf = Z4. Note that Z
f

2 is a normal
subgroup of Z4. Since all phases with η = 1 are trivial, they
do not give rise to nontrivial (intrinsic) fermionic SPT phases
with Z4 symmetry. However, as discussed before, the bosonic
SPT phase of Cooper pairs with symmetry Gf /Z

f

2 = Z2

(when fermions are confined) always automatically lead to one
interacting fermionic SPT phase protected by symmetry Gf =
Z4. Hence all different SRE fermionic phases with symmetry
group Gf = Z4 have at least a Z2 classification. These
are physically related to charge-4e superconductors in two
dimensions protected by electron charge conservation modulo
4. The nontrivial fermionic SPT phase protected by Gf = Z4

symmetry cannot be obtained by perturbing noninteracting
fermions, and therefore they are intrinsic interaction-driven
fermion SPT phases (charge-4e superconductors in this case)
with Z4 symmetry.

In summary, there are at least Z4 classes of different
fermionic nonchiral SRE phases in the presence of Z2 × Z

f

2
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symmetry. Bosonic SPT phases with symmetry Z2 do not add
any new phases. On the other hand, in a fermion system with Z4

symmetry (g2 = Pf or η = 1) there are Z2 classes of different
fermionic SRE phases. This corresponds to two different
classes of charge-4e superconductors in 2 + 1 dimensions.

(a) Discussion of results. The fermionic topological phases
protected by Z2 × Z

f

2 symmetry form a Z4 group. In com-
parison, supercohomology theory25 obtains the same number
of phases but with group structure Z

2
2. An advantage of the

present formalism is that we can see how these phases connect
to the bosonic SPT phases with the same symmetry and verify
they do not add any new phases.

F. Gf /Z f
2 = Z2 × ZT

2 symmetry

The algebraic structure of Z2 × ZT
2 × Z

f

2 group is

g2 = T 2 = gT gT = e, (108)

where g is the Z2 generator and time reversal operation T
is the ZT

2 generator. In our notation e can be either identity
element ef for fermions or fermion number parity Pf . The
associate constraints (27) are given by

(W g)2 = (W T )2 = (W gW T )2 = I2×2,
(109)

(W g)T KW g = −(W T )T KW T = K,

(1 + W g)δφ g = ηgπ

(
1
1

)
,

(1 − W T )δφT = ηT π

(
1
1

)
, (110)

(1 − W T W g)(δφT − W T δφ g) = ηπ

(
1
1

)
,

where η,ηT ,ηg = 0,1. We can always choose a gauge so that
W T = σx and from Eq. (109) W g = ±I2×2. We have not found
a microscopic realization of symmetry transformation W g =
−I2×2 so far, therefore we put the discussions of W g = −I2×2

case to Appendix G. Here, we will focus on the symmetry
transformation W

g
2×2 case.

For W g = I2×2, the inequivalent solutions to Eq. (110) are

δφ g =
(

α + ηg

2

)
π

(
1
1

)
+ π

(
η − ηT

0

)
,

(111)

δφT = ηT π

(
0
1

)
, α,η,ηT ,ηg = 0,1.

If ηg + η − ηT = 0, the variable φ1 + φ2 can be localized
without breaking any symmetry. If η = ηT = 0, the variable
φ1 − φ2 can be localized without breaking any symmetry.

Note that when ηg = 0, we have g2 = ef and hence the
symmetry group is Gf = Z2 × ZT

2 × Z
f

2 with T 2 = ef if ηT =
0 or T 2 = Pf if ηT = 1. When ηg = 1, on the other hand, we
have g2 = Pf , and symmetry group for fermions is Gf =
Z4 � ZT

2 or Gf = Z4 × ZT
2 .

1. Gf = Z2 × ZT
2 × Z f

2 symmetry: Z4 × Z2 classes

There are four nontrivial SPT phases with ηg = 0: they
have η − ηT = 1 mod 2 and α = 0,1. Let us label a state
with symmetry transformations (111) as [ηg,ηT ,η,α]. We

already showed [1,0,0,α] = [1,η + 1,η,α] = [0,η,η,α] =
e
Z2×ZT

2 ×Z
f

2
. When a [0,η + 1,η,α] state with edge variables

{φ1,φ2} is put together with a [0,η′ + 1,η′,α]−1 state with
edge variables {φ′

1,φ
′
2}, its edge cannot be gapped without

breaking the symmetry by localizing independent bosonic
fields {φ1 + φ′

1,φ2 + φ′
2}. Therefore we know that [0,1,0,α] =

[0,0,1,α] is the same nontrivial SPT phase. In the case
ηg = 0 = ηT and η = 1, the algebra of Z2 × ZT

2 × Z
f

2 group
is

g2 = T 2 = ef , gT gT = Pf . (112)

As discussed in Ref. 21, this is the same as ηg = 0 = η

and ηT = 1, since one can always redefine the antiunitary
time reversal as T ′ ≡ gT . Just as discussed earlier for
fermionic SPT phases with Z2 × ZT

2 symmetry, it is easy to
verify that [0,1,0,0] = [0,1,0,1]−1 and when four [0,1,0,0]
states are put together, their edges can be gapped without
breaking any symmetry, i.e., [0,1,0,0]4 = e

Z2×ZT
2 ×Z

f

2
. As a

result [0,1,0,0]n,n = 1,2,3 are the only three nontrivial SPT
phases, whose edge cannot be gapped without breaking the
symmetry. Hence all different phases with W g = I2×2 form a
Z4 group for Z2 × ZT

2 × Z
f

2 symmetry (ηg = 0).
For the same reason mentioned earlier for fermions with

Z2 × Z
f

2 symmetry, here in the presence of Z2 × ZT
2 × Z

f

2
symmetry, we can obtain interacting SPT phases from bosonic
SPT phases of fermion pairs with Z2 × ZT

2 symmetry. Note
that there are Z

2
2 classes of bosonic nonchiral SRE phases

with Z2 × ZT
2 symmetry. Do these lead to an extra Z

2
2

group structure for fermions with this symmetry? As before,
we now show that this is not the case. These phases are
already accounted for within the fermionic classification when
fermions are present on the edge. While one of these Z2

classes is contained within the Z4 classification, the other is
connected to the trivial class, in the presence of fermions.
Hence it brings in an extra Z2 structure due to the bosonic
SPT phase of strongly bound Cooper pairs where fermions
are absent (confined) on the edge. Such a Z2 index cannot be
obtained from perturbing free fermions.

Again let us consider a bosonic Z2 × ZT
2 -symmetric

SPT state [1,n2,n]b with edge variables {φ1,φ2}, which
transforms as

g :

(
φ1

φ2

)
→
(

φ1 + π

φ2 + nπ

)
, T :

(
φ1

φ2

)
→
( −φ1

φ2 + n2π

)

under Z2 generator g and time reversal T . When this state
is put together with two fermion Z2 × Z

f

2 -symmetric SPT
states [0,1,0,0]f ⊕ [0,1,0,0]f with edge variables {φR,φL}
and {φ′

R,φ′
L}, its edge can be gapped out by simultaneously

localizing the bosonic fields (106) on the edge if n = 1. This
means

[1,n2,1]b ⊕ [0,1,0,0]f ⊕ [0,1,0,0]f = e
Z2×ZT

2 ×Z
f

2
.

Similarly, one can show that

[1,n2,0]b ⊕ [0,1,0,0]f ⊕ [0,1,0,1]f
= e

Z2×ZT
2 ×Z

f

2
= [0,1,0,0]f ⊕ [0,1,0,1]f ,

again by localizing the same bosonic variables (106).
Hence we have shown that [1,n2,1]b = [0,1,0,0]f ⊕
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[0,1,0,0]f and [1,n2,0]b = [0,1,0,0]f ⊕ [0,1,0,1]f . So in
the presence of fermions, all the bosonic SPT phases protected
by Z2 × ZT

2 × Z
f

2 can be obtained by perturbing noninteract-
ing fermions (constructed by putting several noninteracting
[0,1,0,0]f together and add interactions). Therefore we
conclude that bosonic SPT phases with Z2 × ZT

2 symmetry
can all be obtained from perturbing noninteracting fermions in
the presence of Z2 × ZT

2 symmetry. However, when fermions
are confined in the low-energy sector (on the edge), the bosonic
SPT phase [1,1,0]b of strongly-bound Cooper pairs indeed
brings in new fermionic SPT phases for fermions. Hence,
in total, there are Z4 × Z2 classes of different fermionic
(nonchiral) SRE phases with Z2 × ZT

2 × Z
f

2 symmetry: Z4

can be obtained from perturbing free fermions, and the other Z2

is from bosonic [1,n2,0]b phases of molecule-like Cooper pairs
protected by Z2 × ZT

2 symmetry where fermions are confined
in the low-energy limit. The last Z2 cannot be obtained from
perturbing free fermions.

(a) Discussion of results. While this particular symmetry
class cannot be discussed within group supercohomology
theory,25 recent work21–23 has approached this problem from
another angle, by starting with noninteracting fermions (which
have a Z classification with this symmetry) and then turning
on interactions. They find a Z8 classification that survives
interactions. Odd integer members of this series have an odd
number of pair of Majorana modes at the edge, that move
in opposite directions. Although apparently quire different,
these results are consistent with ours due to the following.
Since we are unable to deal with unpaired Majorana modes,
only the even members of the series are captured (hence Z4

in our Z4 × Z2 classes here). An advantage though is that
this classification of topological phases, which are stable to
interaction, emerges directly from the formalism, without the
need to begin from free fermions. And our formulation also
includes a Z2 classes that cannot be obtained by perturbing
free fermions.

2. Gf = Z4 × ZT
2 symmetry: Z

3
2 classes

On the other hand, when ηg = 1, we have g2 = Pf =
(−1)N̂f and hence the corresponding symmetry group is
actually Z4 × ZT

2 , where Z
f

2 is a subgroup of Z4. In this
case, the nontrivial SPT phases have ηg = 1 and η = ηT = 1,
α = 0,1. The algebraic structure of the symmetry group Gf is
given by

g2 = T 2 = gT gT = Pf . (113)

It is easy to check that T g = g−1T and hence the symmetry
group is actually Z4 � ZT

2 with T 2 = Pf . We still label the
phases with symmetry transformations (111) as [ηg,ηT ,η,α].
When a [1,1,1,0] state with edge variables {φ1,φ2} is put
together with a [1,1,1,1]−1 state with edge variables {φ′

1,φ
′
2},

its edge cannot be gapped without breaking the symmetry
by localizing independent bosonic fields {φ1 + φ′

1,φ2 + φ′
2}.

Therefore [1,1,1,0] = [1,1,1,1] is the same nontrivial SPT
phase. Now let us put two [1,1,1,0] states together with edge
variables {φL,φR} and {φ′

L,φ′
R}, it is easy to see that the edge

states will be all gapped out by simultaneously localizing
the following bosonic variables: {φR − φ′

L,φ′
R − φL}. Hence

we have [1,1,1,0]2 = eZ4×ZT
2

and these different intrinsic

fermionic SRE phases with Z4 × ZT
2 form a Z2 group. The

nontrivial fermionic SPT phase can be obtained from free-
fermion band structures, just like the Gf = Z2 × ZT

2 × Z
f

2
case.

In the case of a fermion system with Z4 × ZT
2 symmetry,

the corresponding bosonic system of Cooper pairs have
Z2 × ZT

2 symmetry and has a Z
2
2 topological classification. For

fermions in the presence of Z4 × ZT
2 symmetry, these bosonic

SPT phases of strongly bound Cooper pairs (with Z2 × ZT
2

symmetry and a Z
2
2 classification) will bring in new phases, in

addition to the the nontrivial fermionic SPT phase [1,1,1,0]
(with a Z2 group structure). In these new phases, the fermions
can be either confined in the low-energy sector (associated
with [1,1,1,0]2 state) or deconfined (associated with [1,1,1,0]
state). Hence all different fermionic SRE phases with Z4 × ZT

2
symmetry have a Z

3
2 classification, where one Z

2
2 structure

comes from bosonic SPT phases [1,n2,n]b of Cooper pairs,
and the other Z2 associated with fermion state [1,1,1,0] are
intrinsic properties of fermionic systems.

3. Gf = Z4 � ZT
2 symmetry: Z

2
2 classes

In this case, we have ηg = 1 and η = 0, and therefore

g2 = Pf , gT gT = ef , T 2 = ef or Pf . (114)

In this case, there are no intrinsic fermionic SPT phases
with Gf = Z4 � ZT

2 symmetry. However, bosonic SPT phases
of Cooper pairs with Gf /Z

f

2 = Z2 × ZT
2 symmetry leads to

Z
2
2 classes of different fermion SRE phases. Hence there are

at least Z
2
2 classes of different fermion nonchiral SRE phases

with Gf = Z4 � ZT
2 symmetry. These Z

2
2 classes of phases

physically correspond to different charge-4e superconductors
with time reversal symmetry T 2 = ef or T 2 = Pf . Recently,
the possibility of realizing charge-4e superconductivity (four
fermion condensates), in imbalanced cold atomic gases84

(which break time-reversal symmetry) and also in certain
cuprate superconductors85 (which preserve time reversal) has
been discussed. While these phases were nontopological,
the prospects for realizing topological phases with these
symmetries remains to be seen.

VI. COUPLED-WIRE CONSTRUCTION OF BOSONIC
AND FERMIONIC SPT PHASES

In the previous sections, we showed how to classify
different SPT phases in the K matrix + Higgs formulation.
The edge structure of SPT phases is explicit in this formulation,
e.g., the edge of a bosonic SPT phase is characterized by bare
action (34), Kac-Moody algebra (35) as well as symmetry
transformation rules (22) for unitary symmetry g and (24) for
antiunitary symmetry h on the bosonic variable {φa,a = 1,2}.
However, a more microscopic construction of these 2 + 1-D
SPT phases is still lacking in this formulation. In this section,
we present a microscopic construction of these SPT phases
in the anisotropic (quasi-1D) limit, from an array of coupled
one-dimensional quantum wires. This approach has been used
to construct Abelian52 and non-Abelian FQH states.53 We first
give a short introduction to the coupled wire construction,
and then use the this method to explicitly construct bosonic
SPT phases in the presence of symmetry group G = U (1)
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and G = U (1) � ZT
2 as well as fermionic SPT phases with

symmetry group Z2 × ZF
2 . Generalizations to other symmetry

groups are straightforward.

A. Coupled wire construction in a nutshell

Consider an array of uncoupled identical one-dimensional
quantum wires, each wire being described by a nonchiral
Luttinger liquid. The bosonic fields associated with the
Luttinger liquid in the lth wire (1 � l � Nw, Nw being the
total number of quantum wires) are {θl(x),ϕl(x)} satisfying
the following commutation relation:

[θm(x),ϕl(y)] = i
π

2
Sign(x − y)δm,l, (115)

where ϕ(x) is a bosonic phase field, while θ (x) describes
the density fluctuations in the Luttinger liquid. The long-
wavelength density fluctuations on lth wire is given by

ρl(x) − ρ̄l = ∂xθl(x)/π, (116)

where ρ̄l is the average particle (boson or fermion) density
in the lth wire. In terms of these two variables, the Luttinger
liquid Hamiltonian for decoupled quantum wires is given by

HLL =
∑

l

vl

2π

∫
dx

[
1

gl

(∂xθl)
2 + gl(∂ϕl)

2

]
, (117)

where gl > 0 is the Luttinger parameter for the lth wire.
The idea of coupled wire construction is to add interwire and

intrawire interactions between electrons as well as tunneling
between wires. For example, the forward scattering terms
between different wires is written as

HFC =
∑
k �=l

∫
dx(∂ϕk,∂θk)Mk,l

(
∂ϕl

∂θl

)
, (118)

where Mj,k are all 2 × 2 matrices describing the forward
scattering interactions between the j th and kth wires. Other
interchannel scattering terms in general have the following
form:

O{ml,nl}(x) ∼ cos

{
i
∑

l

[mlθl(x) + nlϕl(x)] + α{ml,nl}

}
,

(119)

where α{ml,nl} are real constants and {ml,nl} all take integer val-
ues. For a bosonic system in the absence of any symmetry (or
associated conservation laws), the above interwire scattering
term must satisfy the following condition:

ml = 0 mod 2, ∀ 1 � l � Nw. (120)

This is because the boson density fluctuations are mainly
contributed by density waves at vector qn ∼ 2πρ̄ln, n ∈ Z and
the density fluctuations at qn is given by

ρl
n(x) ∝ e in[2πρ̄lx+2θl (x)], n ∈ Z, 1 � l � Nw,

for the lth quantum wire. For a fermionic system on the
other hand, in the absence of any symmetry, the constraint
on interwire scattering term (119) is

ml = nl mod 2, ∀ 1 � l � Nw. (121)

This is because interchannel scattering terms must be com-
posed of single-fermion operators, i.e., left mover ψR

l ∼
exp[i(ϕl − θl − πρ̄lx)] and right mover ψR

l ∼ exp[i(ϕl +
θl + πρ̄lx)]. The presence of symmetry group G will lead
to further constraints on interwire coupling terms (119) and
forward scattering terms (118): symmetry-allowed scattering
terms must transform trivially under any symmetry opera-
tion. The bare Luttinger liquid Hamiltonian together with
symmetry-allowed forward scattering (118) and interchannel
scattering (119) forms the generic Hamiltonian for a coupled
wire construction:

H = HLL + HFC +
∑

{ml,nl}

∫
dxC{ml,nl}O{ml,nl}(x). (122)

In the coupled-wire construction (122), one can properly
choose a set of symmetry-allowed interwire scattering terms
{O{ml,nl}(x)} in Eq. (122), so that∑

l

mlnl =
∑

l

(mln
′
l + m′

lnl) =
∑

l

m′
ln

′
l = 0, (123)

for any two terms O{ml,nl}(x) and O{m′
l ,n

′
l}(x) in Hamiltonian

(122). Therefore the set of bosonic variables {∑l(mlθl +
nlϕl)} can be simultaneously localized at classical values
by minimizing the interwire scattering terms {O{ml,nl}(x)}.
When chosen properly, all degree of freedom in the bulk will
be gapped by these interwire scattering terms, and the only
low-energy degrees of freedom left free are on the edge. To be
specific, the variable p1θ1 + q1ϕ1 on the left edge l = 1 will
remain gapless if

p1n1 + q1m1 = 0, ∀ {ml,nl} in Eq. (123). (124)

Note that one can always tune the forward scattering terms
(118) so that interwire coupling terms {O{ml,nl}(x)} are relevant
in the renormalization group sense. Then one expects the
coupled wire system will be driven into strong coupling phase
of interwire scattering {O{ml,nl}(x)}, and hence all bosonic
variables {∑l(mlθl + nlϕl)} will be localized simultaneously
at classical values.

One of the simplest examples is the Laughlin state82

of spinless fermions, i.e., FQH state at filling fraction ν =
1/m,m = odd integer. The interwire scattering terms whose
strong coupling phase corresponding to the Laughlin state
are52

H1/m =
Nw−1∑
l=1

∫
dxCl cos[ϕl − ϕl+1 − m(θl + θl+1)].

Its gapless variable on the left edge is φL
1/m = ϕ1 + mθ1, which

satisfies the following Kac-Moody algebra:83[
∂xφ

L
1/m(x),∂yφ

L
1/m(y)

] = 2πm i∂xδ(x − y).

It is easy to verify that φL
1/m satisfies condition (124) and is the

only gapless degree of freedom on the edge.

B. Bosonic SPT phases with U(1) symmetry

As discussed in Sec. IV, in the presence of U (1) symmetry
there are Z (integer group) different classes of bosonic
nonchiral SRE states, which are labeled by their U (1) charge
vector t = (1,q)T . The bosonic variables {φ1,φ2} on its edge
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satisfies Kac-Moody algebra (35). Under group element U�φ

of symmetry group U (1) they transform as

U�φ :

(
φ1

φ2

)
→
(

φ1

φ2

)
+ �φ

(
1
q

)
, �φ ∈ [0,2π ). (125)

The nontrivial SPT phases correspond to different integers
q �= 0, whose edge cannot be gapped out without breaking the
U (1) symmetry. Here, we present an explicit construction of
these SPT phases with U (1) symmetry in the coupled wire
approach.

We start from an array of quantum wires (1 � l � Nw)
where each wire is composed of two chains: a chain of
charged bosons [each boson carries a unit of U (1) electric
charge] and a spin chain. Each chain forms a c = 1 Luttinger
liquid described by bosonic fields: {ϕs

l (x),θ s
l (x)} for the spin

chain and {ϕc
l (x),θc

l (x)} for the chain of charged bosons in
the lth wire. These bosonic fields satisfy the commutation
relation (115):[

θα
m(x),ϕβ

l (y)
] = i

π

2
Sign(x − y)δm,lδα,β, (126)

where α,β = c/s denotes charge/spin degree of freedom
and 1 � m,l � Nw are the wire index. ϕc

l are phase fields
of charged bosons, while 2∂xθ

c
l describes charged boson

density fluctuations. For the spin chain, ∂xθ
s
l (x) ∼ Sz

l (x) and
exp[iϕs

l (x)] ∼ S+
l (x). Without interwire scattering terms, the

bare Hamiltonian density of the system takes the form (117)
of Luttinger liquids:

HLL =
Nw∑
l=1

∑
α=c/s

vα
l

2π

[
1

gα
l

(
∂xθ

α
l

)2 + gα
l

(
∂ϕα

l

)2]
. (127)

The U (1) symmetry associated with {ϕc
l (x),θc

l (x)} boson
charge conservation leads to the following symmetry trans-
formations for the bosonic fields:

ϕc
l (x) → Û�φϕc

l (x)Û−1
�φ = ϕc

l (x) + �φ,
(128)

Û�φ ≡ e i�φ
∫

dx
∑

l 2∂xθ
c
l (x), 0 � �φ < 2π.

The other fields θc
l ,ϕ

s
l ,θ

s
l are invariant under the above U (1)

charge rotation Û�φ .
In the presence of the above U (1) symmetry associated

with boson charge conservation, the different phases labeled
by charge vector t = (1,q)T are stabilized by the following
interwire coupling terms:

H1
(1,q) =

Nw−1∑
l=1

[
Cl cos

(
ϕc

l − ϕc
l+1 − 2θs

l + λl

)
+Dl cos

(
ϕs

l − ϕs
l+1 + q

(
ϕc

l − ϕc
l+1

)
− 2
(
θc
l+1 − qθs

l+1

)+ λ′
l

)]
, (129)

where Cl,Dl,λl,λ
′
l are real constants. A pictorial illustration of

the above interwire scattering terms is given in Fig. 2. Clearly,
the above interwire scattering terms all satisfy constraint (120)
for bosonic systems, and they are also invariant under U (1)
rotation (128).

As argued in Refs. 52 and 53, one can always choose proper
forward scattering terms (118) to make the above interwire
coupling terms become relevant and drive the system into their
strong-coupling phase. Notice that the arguments of the above

FIG. 2. (Color online) Schematic illustration of interwire cou-
pling terms which stabilize the bosonic SPT phases protected by
U (1) symmetry, with Hall conductance σxy = 2q. Solid horizontal
lines stand for quantum wires of charged bosons [each carries unit
U (1) charge], while dashed horizontal lines represent quantum wires
composed of neutral (say spin) degrees of freedom. Dashed and solid
arrows illustrate the two interwire coupling terms in Eq. (130) that
gap the bulk, but leave behind nontrivial edge states.

cosine terms commute with each other, so they can be localized
at certain classical values simultaneously. It is straightforward
to show that all bosonic fields in the bulk with 2 � l � Nw − 1
are gapped, while the gapless edge states on the left edge l = 1
are described by variables {φ1

1(x),φ2
1(x)} defined as

φ1
l ≡ ϕc

l , φ2
l ≡ ϕs

l + qϕc
l + 2

(
θc
l − qθs

l

)
. (130)

They transform exactly like {φ1,φ2} in Eq. (125) under
charge U (1) symmetry (128). Besides, they also obtain the
Kac-Moody algebra (35) for a bosonic nonchiral SRE system.
As a result, the strong-coupling phase of interwire couplings
(130) is nothing but the bosonic SPT phases labeled by charge
vector t = (1,q)T with charge U (1) symmetry.

Now let us elaborate on why the interwire coupling (130)
can gap out everything in the bulk and leave variables (130) on
the edge. In addition to variables {φ1

l (x),φ2
l (x)} in Eq. (130),

one can define another pair of variables {φ̃1
l (x),φ̃2

l (x)} as

φ̃1
l ≡ ϕc

l − 2θs
l , φ̃2

l ≡ ϕs
l + qϕc

l . (131)

They also satisfy Kac-Moody algebra (35) except for an extra
minus sign for all commutators. Notice that the two pairs of
variables {φ̃1

l (x),φ̃2
l (x)} and {φ̃1

l (x),φ̃2
l (x)} commute with each

other. They are just a linear combination of the original charge
and spin variables {ϕc

l ,θ
c
l ,ϕs

l ,θ
s
l }. The interwire scattering

terms (130) can be written as

H1
(1,q) =

Nw−1∑
l=1

[
Cl cos

(
φ̃1

l − φ1
l+1 + λl

)
+Dl cos

(
φ̃2

l − φ2
l+1 + λ′

l

)]
.

125119-21



YUAN-MING LU AND ASHVIN VISHWANATH PHYSICAL REVIEW B 86, 125119 (2012)

Hence everything in the bulk, i.e., {φ̃1,2
l (x),φ1,2

l (x),2 � l �
Nw − 1}, are all gapped since they don’t commute with at least
one of interwire scattering terms in Eq. (130). For the l = 1
wire on the left edge, variables {φ̃1

1(x),φ̃2
1(x)} are gapped for

the same reason while variables {φ1
l (x),φ2

l (x)} are left gapless.
For the l = Nw wire on the right edge, things happen in the
opposite way: variables {φ1

Nw
(x),φ2

Nw
(x)} are gapped, while

variables {φ̃1
Nw

(x),φ̃2
Nw

(x)} remain gapless.

C. Bosonic SPT phase with U(1) � ZT
2 symmetry

As discussed in Sec. IV, in the presence of U (1) � ZT
2

symmetry, there are Z2 different classes of nonchiral bosonic
SRE phases in 2 + 1 dimensions. Among them there is only
one nontrivial SPT phase, whose edge cannot be gapped
without breaking the U (1) � ZT

2 symmetry. Its gapless edge
is described by bosonic fields {φ1,φ2}, which satisfies the
Kac-Moody algebra (35). Under charge U (1) rotation, the two
bosonic variables transform as Eq. (125), while under time
reversal T they transform as

T :

(
φ1

φ2

)
→
( −φ1

φ2 + π

)
(132)

for the nontrivial SPT phase.
Such a SPT phase is nothing but the strong coupling phase

of interwire scattering terms (130) with q = 0. Its gapless
bosonic fields on the left edge l = 1 are

φ1
l ≡ ϕc

1, φ2
1 ≡ ϕs

1 + 2θc
l , (133)

while on the right edge l = Nw the gapless boson fields are

φ̃1
Nw

≡ ϕc
Nw

− 2θs
Nw

, φ̃2
Nw

≡ ϕs
Nw

. (134)

Under time reversal T , the original boson fields {ϕc
l ,θ

c
l ,ϕs

l ,θ
s
l }

naturally transform as

Tϕc
l T−1 = −ϕc

l , Tθc
l T−1 = θc

l ,

Tϕs
l T−1 = ϕs

l + π, Tθs
l T−1 = −θs

l ,

since all components of the spin Sz ∼ ∂xθ
s,S+ ∼ exp(iϕs)

change sign under time reversal. It’s easy to verify that
interwire scattering terms (130) with q = 0 is invariant under
time reversal as long as we choose λl = 0. Hence these
interwire couplings are allowed by symmetry. It is also
straightforward to show that the pair of bosonic fields, i.e., both
{φ1

l (x),φ2
l (x),l = 1} and {φ̃1

l (x),φ̃2
l (x),l = Nw} transform in

the same way as Eqs. (125) and (132) under U (1) � ZT
2

symmetry. Hence the strong coupling phase of interwire
couplings (130) with q = 0, indeed, corresponds to the
nontrivial bosonic SPT phase in the presence of U (1) � ZT

2
symmetry.

D. Fermionic SPT phases with Z2 × Z f
2 symmetry

Here, we show that fermionic SPT phase [η = 0,t1 =
1,t2 = 0] with W g = I2×2 discussed in Sec. V can be
constructed in the coupled wire approach. Its coupled-wire
construction also indicates this SPT phase responsible for
the Z4 group structure can be obtained from noninteracting
fermion band structures. The edge variables {φ1,φ2} satisfy
Kac-Moody algebra (73) and transform in the following way

under Z2 symmetry g:

g :

(
φ1

φ2

)
→
(

φ1 + π

φ2

)
(135)

and under fermion parity Z
f

2 = {e,Pf }:

Pf :

(
φ1

φ2

)
→
(

φ1 + π

φ2 + π

)
. (136)

Consider that right now each quantum wire contains
electrons of both spins, i.e., two left movers ψL

↑/↓ and two
right movers ψR

↑/↓:

ψR
l,↑/↓ ∼ exp[i(ϕl,↑/↓ + θl,↑/↓ + k↑/↓x)],

ψL
l,↑/↓ ∼ exp[i(ϕl,↑/↓ − θl,↑/↓ − k↑/↓x)],

where bosonic fields ϕl,σ and θl,σ satisfy commutation relation
(115). Let us assume here Z2 symmetry g is the fermion num-
ber parity of spin-↑ fermions, which is naturally realized by

g : ϕl,↑(x) → ϕl,↑(x) + π, (137)

while θl,↑,ϕl,↓,θl,↓ remain invariant under g. On the other
hand, under total fermion parity Pf , we have

Pf : ϕl,↑/↓(x) → ϕl,↑/↓(x) + π, (138)

where θl,↑,θl,↓ remain invariant under Pf .

By defining the following variables:

φR
l = ϕl,↑ + θl,↑, φL

l = ϕl,↓ − θl,↓, (139)

and

φ̃L
l = ϕl,↑ − θl,↑, φ̃R

l = ϕl,↓ + θl,↓, (140)

it is easy to verify that both {φR
l ,φL

l } and {φ̃R
l ,φ̃L

l } satisfy
Kac-Moody algebra (73) and the symmetry transformations
(135) and (136). The two pairs of variables commute with
each other. The two variables {φR

l ,φL
l } are nothing but the

right mover for spin-↑ and left mover for spin-↓. Clearly, the
following single-fermion tunneling terms

H1
Z2×Z

f

2
=

Nw−1∑
l=1

Alψ
L
l,↑

†
ψR

l+1,↓ + Blψ
R
l,↓

†
ψL

l+1,↑ + H.c.

=
Nw−1∑
l=1

Cl cos
(
φ̃L

l − φR
l+1 + λl

)
+Dl cos

(
φ̃R

l − φL
l+1 + λ̃l

)
will gap out everything in the bulk in its strong coupling phase.
The gapless variables are {φR

1 ,φL
1 } on the left edge l = 1: they

do transform as Eqs. (135) and (136). On the right edge l =
Nw, the gapless variables are {φ̃L

Nw
,φ̃R

Nw
}. Since the interwire

scattering term that stabilizes this SPT phase is just a single-
electron tunneling term, we expect such a fermionic SPT phase
should be realized in a noninteracting band structure with
symmetry Z2 × Z

f

2 .

VII. CONCLUDING REMARKS

We have discussed an algebraic method to systematically
classify interacting topological phases in two dimensions in the
absence of topological order. The key development is a general
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formalism for incorporating symmetry transformations into
the K matrix formalism. Various examples of interacting boson
and fermion topological phases that are well defined in the
presence of disorder were presented. The method provides both
long-wavelength information of these phases (bulk effective
field theory and edge theory) as well as suggests microscopic
realizations in model systems (such as quasi 1D realizations
presented here). It also opens the door to study various
transitions out of these phases, e.g., topology or symmetry
changing transitions driven by disorder and interactions.
Future work will focus on extending these results to symmetry
protected distinctions between topologically ordered states and
extending this formalism to d = 1 and 3. It remains to be seen
if a more general formalism that subsumes the present one can
be devised, which, for example, can handle unpaired Majorana
edge modes. A deeper understanding of the remarkable
connection between this formalism and the Borel group co-
homology/supercohomology is also needed. Perhaps the most
important question is to determine how topological phases of
the interacting variety can be obtained in an experimentally
realistic setting. We leave these questions for future work.

While completing this manuscript, Ref. 60 appeared, which
studies the specific case of G = U (1) � ZT

2 (topological
insulators) using a K matrix approach. Our results agree in
the areas where they overlap.
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APPENDIX A: A SHORT NOTE ON GL(N,Z)

GL(N,Z) is the group of all N × N unimodular matrices.
All GL(N,Z) matrices can be generated by the following basic
transformations (i �= j ):

T
(i,j )
a,b = δa,b + δa,iδb,j ,

S
(i,j )
a,b = δa,b(1 − δa,i)(1 − δa,j ) + δa,j δb,i − δa,iδb,j , (A1)

Da,b = δa,b − 2δa,Nδb,N .

T (i,j )K will add the j th row of matrix K to the ith row of K,
while S(i,j )K will exchange the ith and j th rows of K with a
factor of −1 multiplied on the ith row. DK will just multiply
the N th row of K by a factor of −1. KT (i,j ), KS(i,j ), and
KD correspond to similar operations to columns (instead of
rows). A subgroup of GL(N,Z) with determinant +1 is called
SL(N,Z) and it’s generated by {T (i,j ),S(i,j )}.

As a simple example when N = 2, group GL(2,Z) is
generated by the following basic transformations:

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
, D =

(
1 0
0 −1

)
. (A2)

The following results will be useful:

T n =
(

1 n

0 1

)
, (−ST S)n =

(
1 0

−n 1

)
, n ∈ Z.

APPENDIX B: A THEOREM ON 2 × 2K MATRICES
WITH DET K = −n2

In general, a gauge transformation, which relabels the
quasiparticles in the K matrix formulation (2), is implemented
by a GL(N,Z) matrix W as shown in Eqs. (7) and (8).
Therefore in the absence of any symmetry, any two K matrices
related by Eq. (8) are equivalent to each other, i.e.,

K � MT KM, ∀ M ∈ GL(n,Z). (B1)

We use � to denote the equivalency. In the presence of U (1)
symmetry with a charge vector t, the equivalency requires

{K,t} � {MT KM,MT t}, ∀ M ∈ GL(n,Z). (B2)

In the absence of any symmetry, here we prove the following
theorem: any 2 × 2K matrix with determinant det K = −n2

can be transformed into the standard form(
0 n

n a

)
, 0 � a � 2n − 1.

In the special case of SRE phases with n = 1,(
0 n

n 2a

)
, 0 � a � n − 1 for bosons,

(B3)(
0 n

n 2a + 1

)
, 0 � a � n − 1 for fermions.

A generic 2 × 2K matrix with determinant −n2 can be
written as

K2×2 =
(

a n + k

n + k b

)
, ab = k(2n + k), a,b,k ∈ Z.

(B4)

Apparently, for a bosonic system, a and b are both even
integers and k is also an even integer. For a fermionic system
there are two possibilities: a,b,k are all odd integers, k = 0
or −2n and one of a,b equals zero while the other is an odd
integer.

Notice that under GL(2,Z) transformations σx and iσy

(σα,α = x,y,z are Pauli matrices), we have(
a b

b c

)
�
(

c b

b a

)
�
(

c −b

−b a

)
. (B5)

If a = 0 or b = 0, we have k = 0 or k = −2n, i.e., n + k = ±n

in Eq. (B4). Using relations (B5) and generator T in Eq. (A2),
one can show that

K �
(

0 n

n x

)
� T

(
0 n

n x

)
T T =

(
0 n

n x + 2n

)
,

and Eq. (B3) can be easily verified.
If ab �= 0, without loss of generality, we can as-

sume that |a| � |b| and therefore |a| � max(|k|,|2n + k|) =
max(|K1,2 − n|,|K1,2 + n|). We use the following strategy: if

|k| � |2n + k|, choose M = [ 1 −sign(a(2n + k))
0 1 ] in Eq. (B1) so

that |K1,2 + n| → |K1,2 + n| − |a|; if |k| > |2n + k|, choose

M = [ 1 −sign(ak)
0 1 ] in Eq. (B1) so that |K1,2 − n| → |K1,2 −

n| − |a|. The value of max(|K1,2 − n|,|K1,2 + n|) will de-
crease monotonically when this procedure is repeated and

125119-23



YUAN-MING LU AND ASHVIN VISHWANATH PHYSICAL REVIEW B 86, 125119 (2012)

finally one will end up with a 2 × 2K matrix whose off-
diagonal elements are ±n. This means ab = 0 in Eq. (B4).
Therefore theorem (B3) is proved.

APPENDIX C: A THEOREM ON BOSONIC 2 × 2K
MATRICES WITH DET K = −1 AND CHARGE VECTOR T

In this section, we prove the following theorem [we
use (a,b) to denote the greatest common divisor of two
integers a and b]: for a 2 + 1-D bosonic system, any K with
det K = −1 and a charge vector t = ( t1

t2
) with (t1,t2) = 1 is

equivalent to K = ( 0 1
1 0 ) and t = ( 1

−l ), l ∈ Z by a GL(2,Z)
gauge transformation, i.e.,{

K,t =
(

t1
t2

)}
�
{(

0 1
1 2l

)
,

(
1
0

)}
�
{(

0 1
1 0

)
,

(
1
−l

)}
,

if (t1,t2) = 1, l ∈ Z. (C1)

First, we notice that according to the Euclidean division
algorithm on integers Z, for any pairs of integers, e.g., t1 and
t2 here, there is always a list of arrays [q1,q2, . . . ,qn+1] and
[r1,r2, . . . ,rn] such that (let’s assume |t1| � |t2| without loss
of generality)

t1 = q1t2 + r1, t2 = q2r1 + r2,

r1 = q3r2 + r3, . . . , rn−2 = qnrn−1 + rn, rn−1 = qn+1rn,

where rn = (t1,t2) is the greatest common divisor of t1 and
t2, and 1 � |rm+1| � |rm|,∀ m. Therefore one can always find
two integers u1 and u2 such that

(t1,t2) = rn = rn−2 − qnrn−1 = · · · = t1u2 − t2u1. (C2)

As a result for (t1,t2) = 1, we have

(
t1
t2

)
= M0

T

(
1
0

)
, M0

T ≡
(

t1 u1

t2 u2

)
∈ GL(2,Z), (C3)

and hence

{K,t} �
{

K′ ≡ (M0
−1
)T

KM0
−1,

(
1
0

)}
(C4)

as long as (t1,t2) = 1. In the following, we prove that an
arbitrary 2 × 2K matrix with det K = −1 for a bosonic
system is equivalent to the standard form ( 0 1

1 2l ) by a gauge

transformation that keeps the charge vector ( 1
0 ) invariant. To

prove this, we need to enlarge the Hilbert space by introducing
a 4 × 4 matrix K̃ = K2×2 ⊕ σx and associated charge vector
t̃ ≡ (1,0,0,0)T . This describes a direct product of the original
2 × 2 bosonic K matrix with a U (1) charge conservation and
another trivial 2 × 2 bosonic K matrix without any symmetry.
A generic form for K is ( 2a 2k + 1

2k + 1 2b ) satisfying ab = k(k + 1)
(det K = −1). One can prove that

⎧⎪⎨
⎪⎩K̃ =

⎛
⎜⎝

2a 2k + 1 0 0
2k + 1 2b 0 0

0 0 0 1
0 0 1 0

⎞
⎟⎠,

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠
⎫⎪⎬
⎪⎭ �

⎧⎪⎨
⎪⎩
⎛
⎜⎝

0 1 0 0
1 2l 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠,

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠
⎫⎪⎬
⎪⎭ (C5)

by the following GL(4,Z) transformations:

M1
T

⎛
⎜⎝

2a 2k + 1 0 0
2k + 1 2b 0 0

0 0 0 1
0 0 1 0

⎞
⎟⎠M1 =

⎛
⎜⎝

0 1 0 0
1 2b 2(ab − k) −2b

0 2(ab − k) 2a(ab − 2k) 2(k − ab) + 1
0 −2b 2(k − ab) + 1 2b

⎞
⎟⎠

�

⎛
⎜⎝

0 1 0 0
1 2b a′ b′
0 a′ 0 1
0 b′ 1 0

⎞
⎟⎠ = (M2

T
)−1

⎛
⎜⎝

0 1 0 0
1 2(b − a′b′) 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠M2

−1, a,b,k,a′,b′ ∈ Z,

where we defined

M1 ≡

⎛
⎜⎝

1 0 0 0
0 1 a −1
1 0 1 0

−a −2k −2ka 2k + 1

⎞
⎟⎠, M2 ≡

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 −b′ 1 0
0 −a′ 0 1

⎞
⎟⎠.

We have used the theorem (B3) for a n = 1 bosonic system
since one can easily verify that det [ 2a(ab − 2k) 2(k − ab) + 1

2(k − ab) + 1 2b ] =
−1. Notice that the charge vector t = (1,0,0,0)T remains
invariant under these GL(4,Z) transformations. Combing
relations (C4) and (C5), we have proved theorem (C1).

APPENDIX D: FAITHFUL VERSUS UNFAITHFUL
REPRESENTATIONS OF THE SYMMETRY GROUP

Transformations {Wga ,δφ
ga

I } form a faithful or unfaithful
representation of symmetry group G. By solving the constraint
equations (26) and choosing a proper gauge in Eq. (29), one
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can obtain a set of transformation rules {Wga ,δφ
ga

I } as the
solution. Apparently, the transformations {Wga ,δφ

ga

I } always
form a representation of the symmetry group G of the system
(or the Hamiltonian of the system) in the sense that

∀ g1,g2 ∈ G : Wg1·g2 = η1η2W
g2Wg1 ,

(D1)
δφg1·g2 = δφg2 + η2W

g2δφg1 ,

where η1 = ±1 if g1 is a unitary (antiunitary) symmetry and
η2 is associated with g2. This representation of group G is
faithful if and only if the identity element e is the only symmetry
element under which all bosonic quasiparticle fields {∑I lI φI }
on the edge (or {∏I b

lI
I } in the bulk) transform trivially. In

other words, under any element g �= e of symmetry group G,
at least one bosonic quasiparticles lT φ satisfying Eq. (11) will
transform nontrivially.

In contrast to faithful representations, an unfaithful repre-
sentation {Wga ,δφ

ga

I } of symmetry group G means there exists
a nontrivial subgroup Gψ of G, so that under any symmetry
element g ∈ Gψ , all bosonic quasiparticle fields {∑I lI φI } on
the edge (or {∏I b

lI
I } in the bulk) transform trivially. This

means for a phase described by K matrix and symmetry
transformations {Wga ,δφ

ga

I }, its edge states can be gapped
by condensing the bosonic quasiparticles without breaking
the subgroup Gψ of symmetry group G since under any
symmetry g ∈ Gψ all bosonic quasiparticles are left invariant.
As a result, when the edge is gapped, the symmetry group G

of the Hamiltonian breaks down to its subgroup, the ground
state symmetry group Gψ . As a result, the symmetry breaking
phases can be naturally incorporated in the K matrix + Higgs
formulation.

APPENDIX E: OTHER BOSONIC SPT PHASES

1. U(1) × ZT
2 symmetry: Z1 class

In contrast to the U (1) � ZT
2 symmetry discussed in the

previous section, here, we study a direct product of U (1)
and time reversal ZT

2 symmetry. This can be realized by time
reversal and U (1) spin rotational symmetry in an integer spin
system. The algebraic relations for the U (1) × ZT

2 group are

T 2 = TU−θ TUθ = e. (E1)

The corresponding constraints (28) for symmetry transforma-
tions {W T ,δφT } and {WUθ = I2×2,δφ

Uθ = θ t} are

(I2×2 − W T )δφT + (I2×2 + W T )θ t =
(

0
0

)
mod 2π, ∀ θ,

(E2)

and Eqs. (37) and (38). The gauge inequivalent solutions to
these constraint equations lead to

WUθ = I2×2, δφUθ = θ

(
0
1

)
, (E3)

W T = σz, δφT =
(

0
nπ

)
, n = 0,1. (E4)

For both n = 0,1, the corresponding symmetry-allowed Higgs
terms are

S1
edge =

∑
l∈Z

Cl

∫
dxdt cos(lφ1). (E5)

Apparently, there is only one (Z1 class) trivial phase eU (1)×ZT
2

with U (1) × ZT
2 symmetry, whose edge states can be gapped

without breaking the symmetry.

2. ZN × ZT
2 symmetry

The algebraic structure for ZN × ZT
2 group is given by

gN = T 2 = T g−1T g = e, (E6)

where g is the ZN symmetry generator and T is time
reversal. The associated constraint equations for symmetry
transformations are

W gW T (W g)−1W T = I2×2, (E7)

[I2×2 + W gW T (W g)−1]δφ g + W g[1 − W T (W g)−1]δφT

=
(

0
0

)
mod 2π, (E8)

in addition to Eqs. (37), (38), (53), and (54).

a. N = odd integer: Z1 classes

The gauge inequivalent solutions to the above constraint
equations are Eq. (39) and

W g = I2×2, δφ g = 2πk

N

(
0
1

)
, k ∈ Z. (E9)

It is easy to verify that a set of independent Higgs terms are∫
dxdt

∑
l Cl cos(lφ1). Hence the variable φ1 can be localized

at value 〈φ1〉 = 0 without breaking any symmetry. So they all
correspond to the trivial phase. There is only one trivial phase
with ZN × ZT

2 symmetry for N = odd.

b. N = even integer: Minimal set, Z
2
2 classes

Solving Eqs. (53) and (E7), we have W T = σz and W g =
±I2×2. (i) For W g = I2×2, the gauge inequivalent solutions
are

δφT = n2π

(
0
1

)
, δφ g = π

(
n1

2k/N

)
,

(E10)
0 � k � N − 1, n1,n2 = 0,1.

If n1 = 0, the variable φ1 can be localized at 〈φ1〉 = 0 by
Higgs term −cos φ1 without breaking the symmetry and
it corresponds to the trivial phase. If n1 = 1, n2 = k = 0
corresponds to the trivial phase again since φ2 can be
localized. Notice that when n1 = 1 we require (k,N/2) = 1
so that transformations (E10) form a faithful representation
of symmetry group G = ZN × ZT

2 ,N = even. Let us label a
state with the above transformations (E10) as [k,n1,n2] and
we have [0,1,0] = [k,0,n2] = eZN×ZT

2
. In the following, we

analyze the group structure formed by states [k,n1,n2].
Now let us put together a state [k,n1,n2] with edge variable

{φ1,φ2} with a state [k′,n′
1,n

′
2]−1 with edge variable {φ′

1,φ
′
2},

we can choose the following independent bosonic variables
{k′φ2 − kφ′

2,kφ1 − k′φ′
1} and gap all the edge states if (k,k′) =

1. The associated Higgs terms will preserve the ZN × ZT
2 sym-

metry if kn1 − k′n′
1 = 0 mod 2 and k′n2 − kn′

2 = 0 mod 2. As
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a result, [k,n1,n2] ⊕ [k′,n′
1,n

′
2]−1 = eZN �ZT

2
or, equivalently,

for (k,k′) = 1 : [k,n1,n2] = [k′,n′
1,n

′
2],

if kn1 − k′n′
1 = 0 mod 2, k′n2 − kn′

2 = 0 mod 2.

Therefore we have [2k + 1,n1,n2] = [1,n1,n2] by choosing
k′ = 1. On the other hand, if k = even, we again have
N/2 = odd since (k,N/2) = 1 for a faithful representation of
symmetry group ZN × ZT

2 . We can localize the bosonic vari-
able {N

2 φ2 − φ′
2,

N
2 φ′

1 − φ1} without breaking any symmetry if
we choose k′ = 0. Hence we also have [2k,n1,n2] = [0,n1,n2].
These relations result in only three nontrivial SPT phases:
[1,1,0], [1,1,1] and [0,1,1].

Similarly, by putting together a state [k,1,n2] with edge
variable {φ1,φ2} with a state [k′,1,n′

2] with edge variable
{φ′

1,φ
′
2}, we can always localize the bosonic variable φ1 − φ′

1
and gap out part of the edge. What is left on the edge is
described by variables {φ̃1 = φ1,φ̃2 = φ2 + φ′

2}. They obey
Kac-Moody algebra (35) and transform as a [k + k′,1,n2 + n′

2]
state. Hence, we have shown that

[k,1,n2] ⊕ [k′,1,n′
2] = [k + k′ mod 2,1,n2 + n′

2 mod 2].

(E11)

Since k,n2 are both Z2 integers, so clearly all different four
states [k,1,n2] form a Z

2
2 group. Consequently, there are

3 nontrivial SPT phases labeled by n1 = 1 and [k,n2] =
[0,1],[1,0] or [1,1] in Eqs. (39) and (E10).

(ii) For W g = −I2×2, we can always choose a gauge so that
inequivalent solutions to constraints are

δφ g =
(

0
0

)
, δφT = π

(
n1

n2

)
n1,n2 = 0,1. (E12)

However, the above symmetry transformations {W g =
−I2×2,δφ

g = ( 0
0 )} do not correspond to a faithful represen-

tation of ZN × ZT
2 group for N = even, unless N = 2. And it

is not clear how the states with symmetry transformations
W g = −I can be realized in a physical bosonic system.
Therefore we will not include the states with symmetry
transformations W g = −I in the minimal set of topological
phases with ZN × ZT

2 symmetry, as discussed earlier for
W g = −I phases with ZN � ZT

2 symmetry.
In summary, there are Z

2
2 classes of different bosonic

nonchiral SRE phase in the presence of symmetry group
ZN × ZT

2 ,N = even. When N = odd, there are no nontrivial
SPT phases.

3. U(1) × Z2 symmetry: Z × Z
2
2 classes

Denoting the group elements of U (1) by Uθ, 0 � θ < 2π

and generator of Z2 by g, the group U (1) × Z2 has the
following algebraic structure:

g2 = Uθ gU−θ g = e (E13)

and Eq. (41). The associated constraints for symmetry trans-
formations are

(W g)2 = I2×2, (I2×2 + W g)δφ g =
(

0
0

)
, (E14)

(I2×2 + W g)δφ g + θ (I2×2 − W g)t =
(

0
0

)
, (E15)

where we have WUθ = I2×2 δφUθ = θ t with t1,t2 ∈ Z and
(t1,t2) = 1 for U (1) symmetry. Solving Eq. (E14), we have
W g = ±I2×2 or ±σx .

a. Z × Z
2
2 classes with W g = ±I2×2

(i) For W g = I2×2, as guaranteed by theorem (C1), we
can always transform the “charge vector” t into a standard
form t = ( 1

q ),q ∈ Z. And the inequivalent “faithful” symmetry
transformations satisfying constraints (E14) and (E15) are

δφ g =
(

n1

n2

)
π, δφUθ = θ

(
1
q

)
, n1,n2 = 0,1, q ∈ Z.

(E16)

Let us label a state with the above transformation rules as
[q,n1,n2]. Similar as earlier discussions for other symmetries,
by putting two states [q,n1,n2] and [q ′,n′

1,n
′
2] together, one

can show the following multiplication rule:

[q,n1,n2] ⊕ [q ′,n′
1,n

′
2]

= [q + q ′,n1 + n′
1 mod 2,n2 + n′

2 mod 2]. (E17)

Hence there are Z × (Z2)2 classes of different phases labeled
by integer q and Z2 integers n1,n2. The trivial phase corre-
sponds to q = n1 = n2 = 0.

(ii) For W g = −I2×2, one can always choose a gauge so
that δφ g = ( 0

0 ) and by solving Eq. (E15), we get t = ( 0
0 ). It is

easy to verify that this corresponds to the trivial phase.

b. Other solutions to Eqs. (E14) and (E15) with W g = ±σx

(iii) For W g = σx , the inequivalent solutions to constraint
equations are

δφ g = nπ

(
1
1

)
, δφUθ = θ

(
1
1

)
, n = 0,1. (E18)

These two nontrivial SPT phases are labeled as [σx,n] with
n = 0,1. Their physical realization and group structure are not
clear.

(iv) For W g = −σx , the inequivalent solutions to constraint
equations are

δφ g = nπ

(
1

−1

)
, δφUθ = θ

(
1

−1

)
, n = 0,1. (E19)

These two nontrivial SPT phases are labeled as [−σx,n] with
n = 0,1. It is easy to show that

[σx,n]−1 = [−σx,n], n = 0,1. (E20)

Their physical realization and group structure are not clear
either as with the discussion in Sec. IV D3 and therefore we
do not include these phases.

To summarize, there are Z × (Z2)2 classes of different
phases with W T = ±I2×2 for symmetry group U (1) × Z2.
Besides, there are four extra possible nontrivial SPT phases
with W g = ±σx for U (1) × Z2 symmetry in a bosonic
nonchiral SRE system.
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APPENDIX F: OTHER SOLUTIONS TO EQ. (98) FOR
FERMION SPT PHASES WITH Gf /Z f

2 = Z2 SYMMETRY

a. W g = ±σz: Z
2 classes

(i) For W g = σz, the inequivalent solutions to Eq. (98) are
η = 0 and δφ g = ( nπ

0 ), where n = 0,1. Since under symmetry
g we have φ1 ± φ2 → φ1 ∓ φ2 + nπ , the variables cannot
be localized without breaking the Z2 symmetry. These two
different nontrivial SPT phases are labeled as [σz,n], where
n = 0,1. In the following, we identify their group structure.

First, notice that when a [σz,0] state with edge variables
{φ1,φ2} is put together with a [σz,1]−1 state with edge
variables {φ′

1,φ
′
2}, its edge cannot be gapped without break-

ing the symmetry, suggesting [σz,0] �= [σz,1]. Then let us
consider N copies of [σz,n] states put together and their
edge variables are {φa

1 ,φa
2 ,1 � a � N}. A generic bosonic

variable that can be localized on the edge is written as∑N
a=1(Aaφ

a
1 + Baφ

a
2 ),Aa,Ba ∈ Z satisfying

∑
a A2

a − B2
a =

0 due to condition Eq. (19). Under Z2 symmetry generator
g, this bosonic variable becomes

∑N
a=1(Aaφ

a
1 − Baφ

a
2 ). In

order for the two bosonic variables to be localized simul-
taneously (i.e., they are independent bosons), they have to
satisfy Eq. (20) and hence

∑
a A2

a + B2
a = 0. This leads to

Aa = Ba = 0 and hence no bosonic variable on the edge
can be localized without breaking the symmetry. Hence,
whenever we add an extra [σz,0] state into the system, there
is one more c = 1 gapless state on the edge. Hence all the
different states {[σz,0]M ⊕ [σ,1]N,M,N ∈ Z} form the Z

2

group.
(ii) For W g = −σz, the inequivalent solutions to (98) are

η = 0 and δφ g = ( 0
nπ ) where n = 0,1. We label these states

by [−σz,n] and it is straightforward to show that [σz,n]−1 =
[−σz,n].

To summarize, with Z2 symmetry transformation W g =
±σz, there are Z

2 classes of different fermionic nonchiral SRE

phases in the presence of Z2 × Z
f

2 symmetry. It is presently
unclear to us if these transformation laws can be realized in a
physical system of fermions. We have not found a microscopic
realization, hence we do not include it in the minimal set of
topological phases with this symmetry.

APPENDIX G: OTHER SOLUTIONS TO (110) FOR
FERMION SPT PHASES WITH Gf /Z f

2 = Z2 × ZT
2

SYMMETRY

a. W g = −I2×2: Z2 classes

(i) If W g = −I2×2, the gauge inequivalent solutions to
Eq. (110) are ηg = 0 and

δφ g =
(

0
0

)
, δφT =

(
η

2
+ n

)
π

(
1
1

)
+ ηT π

2

(
1

−1

)
,

n,η,ηT = 0,1. (G1)

If ηT = 0, we can destroy the gapless edge states without
breaking the symmetry, by localizing the bosonic variable φ1 −
φ2 at a classical value. If η = 0, we can destroy the gapless
edge states without breaking the symmetry, by localizing a
differnt bosonic variable φ1 + φ2 at a classical value. Hence
only η = ηT = 1 and n = 0,1 correspond to nontrivial SPT
phases, with δφT = (π,0)T or (0,π )T (n = 0 or 1). Let’s label
the states with symmetry transformations (G1) by [η,ηT ,n]. It
is easy to verify that [1,1,0] ⊕ [1,1,0] = [1,1,0] ⊕ [1,1,1] =
e
Z2×ZT

2 ×Z
f

2
, since the edge from two phases put together can be

gapped by condensing independent bosons {φ1 + φ′
2,φ2 + φ′

1}.
Since [0,0,n] = [0,1,n] = [1,0,n] = e

Z2×ZT
2 ×Z

f

2
we see that

different phases form a Z2 group. The only nontrivial SPT
phase is [1,1,0] = [1,1,1]. The microscopic realization of this
particular SPT phase is not clear, (we have not found a realiza-
tion in the coupled wire approach) and as discussed previously,
we omit it from the minimal set of topological phases.
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