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Diffusive high-temperature transport in the one-dimensional Hubbard model
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We consider charge and spin transport in the one-dimensional Hubbard model at infinite temperature, half-
filling, and zero magnetization. Implementing matrix-product-operator simulations of the nonequilibrium steady
states of boundary-driven open Hubbard chains for up to 100 sites we find clear numerical evidence of diffusive
transport for weak driving and any (nonzero and finite) value of the interaction U . In addition, nonequilibrium
steady states are characterized by nonzero spin-up spin-down density-density correlations. For maximal driving,
on the other hand, we find an insulating behavior and cosine-shaped density profiles.

DOI: 10.1103/PhysRevB.86.125118 PACS number(s): 71.27.+a, 03.65.Yz, 05.70.Ln, 72.10.−d

I. INTRODUCTION

The one-dimensional (1D) Hubbard model is the simplest
model of strongly interacting dynamics of spinful fermions on
a lattice within a single-band approximation. Its Hamiltonian
reads

H = −t

L−1∑

i=1

∑

s∈{↑,↓}
(c†i,sci+1,s + H.c.) + U

L∑

i=1

ni↑ni↓, (1)

where the operators ci,s , c
†
i,s , for spin s ∈ {↑,↓} and site

i ∈ {1, . . . ,L} are standard fermionic annihilation and creation
operators and ni,s := c

†
i,sci,s are the density operators. The

model is solvable by a coordinate Bethe ansatz1 and possesses
an infinite number of conservation laws.2 While stationary
properties of the 1D Hubbard model are well understood, see
Ref. 3, much less is known about its dynamics, for instance,
about the transport behavior. In thermodynamically the most
interesting regime, at half-filled band and zero magnetization∑L

i=1〈ni,s〉 = L/2, studied in the present paper, the model is
gapped for charge excitations and gapless for spin excitations,
for any U �= 0. At zero temperature, it is, therefore, an
example of a Mott (charge) insulator and ballistic (ideal)
spin conductor. Transport can be qualitatively characterized
by a Drude weight—a linear response indicator of ballistic
transport, defined as the weight of zero-frequency singular
term δ(ω) in the real part of conductivity σ (ω). Spin and
charge Drude weights at zero temperature have been calculated
in Ref. 4, with finite-size corrections given in Ref. 5, while
a regular part of σ (ω) is studied in Ref. 6. At nonzero
temperature, on the other hand, no rigorous result is known
and there is no consensus between numerical and Bethe ansatz
based results. Thermodynamic Bethe ansatz suggests7 that,
even at half-filling, the charge Drude weight is finite, so
the model was predicted to exhibit ideal charge transport;
for a similar conclusion, see also quantum Monte Carlo
calculation in Ref. 8. Analytical calculations at large U on
the other hand support vanishing charge Drude weight;9 for
a study of low-energy excitations, see also Ref. 10. Exact
numerical simulations of small systems, again at half-filling
and at high/infinite temperature, suggest11 ∼1/L scaling of the
charge Drude weight. For temperatures much smaller than the
gap, semiclassical arguments together with field-theoretical
scattering rates predict diffusive transport.12 Vanishing finite-

temperature Drude weight in thermodynamic limit (TL) L →
∞ offers the possibility of an insulating or diffusive behavior.

However, at high or infinite temperatures, nonequilibrium
transport properties of 1D Hubbard model in either charge or
spin sector are not known as there has been up to date no
analytical or numerical method capable of reliably treating
this regime. In this paper, we employ nonequilibrium steady
state simulations13 using an efficient matrix product ansatz14

for the time-dependent density matrix and provide a clear
evidence of diffusive transport for both attractive U < 0 and
repulsive U > 0 cases at infinite temperature and weak driving
(corresponding to the regime of linear response). Namely, we
show 1/L scaling of charge as well as of spin current and clear
linear density profiles. We also briefly discuss density-density
correlations, exotic transport behavior in the regime of strong
driving, and ballistic transport away from half-filling.

II. BOUNDARY DRIVEN HUBBARD CHAIN

Using the Jordan-Wigner transformation, we can map the
1D Hubbard model (1) to a spin-1/2 ladder system. Namely,
writing ci↑ = P

(σ )
i−1σ

−
i , where P

(σ )
i = σ z

1 · · · σ z
i for spin-up

fermions, and ci↓ = P
(σ )
L P

(τ )
i−1τ

−
i , where P

(τ )
i = τ z

1 · · · τ z
i for

spin-down fermions, one can verify that fermionic operators
ci,s ,c

†
i,s satisfy canonical anticommutation relations provided

σα
i and τα

i are two sets of Pauli matrices [and σ±
j := (σ x

j ±
iσ y

j )/2, τ±
j := (τ x

j ± iτ y
j )/2]. Writing the Hubbard Hamilto-

nian (1) in spin-ladder form, one obtains

H = − t

2

L−1∑

i=1

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + τ x

i τ x
i+1 + τ

y
i τ

y
i+1

)

+ U

4

L∑

i=1

(
σ z

i + 1
)(

τ z
i + 1

)
. (2)

The spin-1/2 ladder system consists of two XX chains in two
legs and a Z-Z type interchain coupling along the rungs. For
numerical simulations of the Hubbard model, we shall use this
ladder formulation (2).

To induce a nonequilibrium situation, two legs are coupled
to independent reservoirs. Their action is decribed in an
effective way via the Lindblad equation15 for the density matrix
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ρ of the ladder system:

d

dt
ρ = i[ρ,H ] + Ldis(ρ), (3)

where the dissipative term is expressed in terms of Lindblad
operators Lk , as

Ldis(ρ) =
∑

k

([Lkρ,L
†
k] + [Lk,ρL

†
k]). (4)

We use eight Lindblad operators acting locally on the first and
last sites of each leg, injecting or absorbing fermions (spinons)
with certain probability:

L1,2 =
√

�(1 ∓ μ) σ±
1 , L3,4 =

√
�(1 ± μ) σ±

L (5)

for the first and

L5,6 =
√

�(1 ∓ μ) τ±
1 , L7,8 =

√
�(1 ± μ) τ±

L (6)

for the second leg. � is the strength of the coupling to the
baths, while μ is a driving strength playing the role of a
chemical potential bias. As demonstrated in previous studies of
1D spin chains13 the precise form of Lindblad operators does
not influence the bulk properties. Because of dissipative terms
the time-dependent solution ρ(t) of the Lindblad equation
converges after a long time to a time-independent state called
a nonequilibrium steady state (NESS), ρ∞ = limt→∞ ρ(t),
which is unique.16 Once the steady state is reached, expressed
in terms of a matrix product operator of a given bond
dimension (following the method described in detail in Ref. 13
straightforwardly adapted for the spin ladder), expectation
values of arbitrary observables in the NESS can be efficiently
evaluated. All expectation values considered in this paper are
taken with respect to the NESS, that is 〈A〉 = tr (ρ∞A), which
we will—when it is clear from the context, and to simplify
notation—denote just by A. In each NESS calculation, we
have carefully checked that the convergence is reached, i.e.,
we evolve the Lindblad equation (3) until a time-independent
state is obtained, and that the results are stable with respect
to increasing bond dimension.18 For μ = 0, i.e., no driving,
one has an equilibrium setting, resulting in a trivial NESS
ρ∞ ∝ 1. This means that for small driving μ we are studying
nonequilibrium behavior at an infinite temperature. Note
that such an infinite temperature state is separable in the
operator space. Since the efficiency of the numerical method
crucially depends on the entanglement infinite-temperature
nonequilibrium states are the easiest ones to calculate because
the entanglement is expected to be smaller than at finite
temperatures.

Expectation values of fermionic observables are obtained
from the corresponding ones in the ladder formulation, for
instance, particle densities are ni↑ = (σ z

i + 1)/2 and ni↓ =
(τ z

i + 1)/2. Magnetization currents of the two spin species,
defined through the continuity equations d(σ z

i /2)/dt = j
(σ )
i −

j
(σ )
i−1, d(τ z

i /2)/dt = j
(τ )
i − j

(τ )
i−1, are j

(σ )
i = − t

2 (σ x
i σ

y
i+1 −

σ
y
i σ x

i+1), j
(τ )
i = − t

2 (τ x
i τ

y
i+1 − τ

y
i τ x

i+1). In fermionic picture,

the particle (charge) current is j
(c)
i = j

(σ )
i + j

(τ )
i , while the

spin current is j
(S)
i = (j (σ )

i − j
(τ )
i )/2. Particle density is ni =

ni↑ + ni↓, while spin density is si = (ni↑ − ni↓)/2. Because
of the same driving at both ladder legs the currents j (σ ) and
j (τ ) are the same. Therefore NESS is such that it has a nonzero

charge current and zero spin current. We have also performed
simulations with Lindblad operators on the τ -chain driving the
transport in the opposite direction, that is with

L5,6 =
√

�(1 ± μ) τ±
1 , L7,8 =

√
�(1 ∓ μ) τ±

L . (7)

In such a case of spin driving, the NESS has a nonzero
spin current and zero charge current because j (τ ) = −j (σ )

holds. Furthermore, we stress that spin and charge transports
are interchanged under the particle-hole transformation for
the down spin fermions only and simultaneously changing
the sign of U . Namely, taking R := ∏L

i=1 τ x
i = R†, one

finds Rj
(S)
i R† = j

(c)
i /2 and RH (U )R† = H (−U ), provided

one takes a symmetric interaction term (ni↑ − 1
2 )(ni↓ − 1

2 )
in Eq. (1) or, equivalently, adds a chemical term −UN/2
to H with N = ∑

i,s ni,s . Even though our master equation
evolution (3) does not strictly conserve N , we have checked
explicitly that the results based on Hamiltonians H and
H − UN/2 are identical.

III. RESULTS

A. Evidence of diffusion: density profiles and scaling of currents

We set t = 1, � = 1 and μ = 0.2, except in Fig. 7 where
μ = 1. Driving μ = 0.2 corresponds to equilibrium density in
the reservoirs of nL,s = 0.4 at the left end and nR,s = 0.6 at
the right end. The average filling ratio is therefore n = 1/2,∑L

i=1 ni↑ = ∑L
i=1 ni↓ = L/2. The value μ = 0.2 is at the

upper end of a linear response regime. For large drivings
μ � 0.6, one gets a negative differential conductance effect,19

where the current decreases with increasing driving. The main
goal of this paper is to classify spin and charge transport,
whether it is ballistic, diffusive, or anomalous. For NESS,
different transport regimes are reflected in the scaling of the
current on the system size. Fixing the driving strength μ, in
a ballistic conductor the current is independent of the system
length, j ∼ L0, for a diffusive conductor it scales as j ∼ 1/L,
whereas in the anomalous case the current is proportional to
a fractional power of L. We therefore calculated NESSs for
different sizes L. Typical density profile is shown in Fig. 1. One
can see that the densities of spin-up and spin-down fermions
are linear in the bulk. Jumps in the density at the boundaries
are due to over-simplified Lindblad operators that are not

 0.4

 0.45

 0.5

 0.55

 0.6

 0  20  40  60  80  100

ni,s

i

FIG. 1. (Color online) Density profile ni,s along the chain for
L = 100, U = 1. Apart from jumps at the boundary, density is linear,
which is typical for diffusive conductors. Solid black line, overlapping
with the numerical points, is a best-fitting linear function.
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FIG. 2. (Color online) Scaling of charge current j (c) divided by
the extrapolated density drop L∇n with the system size L for different
interactions U . Thick full (red) line, overlapping with U = 1.0 data,
is ∼30.4/L, indicating a diffusive transport. Two dashed lines also
suggest ∼1/L scaling.

“matched” to the bulk dynamics, i.e., there are boundary
resistances. Because these jumps are rather large, we have
fitted a linear function to the density profile in the bulk,
thereby obtaining the density gradient ∇ni↑ = ∇ni↓ = ∇ni/2.
In Fig. 2, we then plot the scaling of the charge current (which
is in the NESS independent of the site) with the gradient of
the charge density. At interaction strength U = 1, one can
see a nice scaling j (c) ∼ 1/L. Together with a linear density
profiles this is a clear indication of diffusive charge transport.
As mentioned, for spin transport virtually the same behavior
is obtained (data not shown). For U = 2, the scaling is not
quite as good. It seems that for shorter chains j (c) decreases
with L slower than 1/L, however, for two largest sizes that we
managed to calculate, a crossover to ∼1/L scaling is clearly
suggested. For smaller interaction U = 0.5, the convergence
seems better, but contrary to the U = 2 case, the current
approaches the asymptotic scaling (∼1/L) from above, i.e.,
it decays a bit faster for short chains. It is not clear whether
U = 1 corresponds to a crossover point between the two
behaviors since details of convergence in the thermodynamic
limit might depend on a particular choice of boundary Lindblad
operators. In Fig. 4(a), we show density profiles for U = 0.5
which, apart from considerable boundary jumps, again look
linear.

Looking at the density profiles at U = 0.5,1, and 2 which
are linear in the bulk already for rather small sizes L, it
seems natural to conjecture that the transport is diffusive in TL
L → ∞ for all nonzero finite values of U . Different transient
scaling of the current with L for shorter chains is likely due
to rather strong boundary effects. That the boundary effects
are notable can also be seen in the inset of Fig. 3(a), where
we show the jump in the density between the reservoir and
the first site n1↑ − nL↑, as well as between the first two sites
in the system n2↑ − n1↑. While the boundary effects show
a tendency to disappear in TL, at U = 2 and largest length
L = 64 they are still non negligible. One can try to optimize the
coupling constant � in order to minimize the boundary effects,
however, we found that � ≈ 1 is usually close to the optimal
value which does not seem to depend on L. For U = 0.5, the

 0
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 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

<ni↑ni↓>c

(i-0.5)/L

(b)

L=16,32,64

 0.4
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 10  100

 0.01

 0.1
Δ n

L

n2↑-n1↑

n1↑-nL↑

FIG. 3. (Color online) (a) Density profiles ni,s at U = 2 and
(b) the corresponding connected density-density correlation function
〈ni↑ni↓〉c. Data are shown for L = 16 (blue squares), L = 32 (green
circles), and L = 64 (red triangles), all for charge driving. Inset in
(a): scaling of the jump between the reservoir and the 1st particle and
between the 1st and 2nd particles, with size L. Black dashed lines
indicate ∼1/L and ∼1/L0.7. Note that at L = 64 boundary jumps
still account for around 25% of the total density difference between
the chain ends.

boundary effects are larger than for larger U cases studied,
U = 1 and U = 2, see Fig. 4(a). This is probably due to a
smaller bulk resistivity that makes the effects of the contacts
(contact resistivity) relatively larger.

Our finite size simulations of course cannot exclude
existence, in thermodynamic limit L → ∞, of a very small
ballistic contribution j∞ = limL→∞ j (L) to the current char-
acterized by a small nonvanishing value of the Drude weight.
Nonvanishing value of j∞ would be visible, for sufficiently
larger L, as a plateau in j (L). This means that one should see
a departure from a linear scaling for large values of L as shown
in Fig. 2. Assuming the scaling j (L) = const/L + j∞, we can
estimate j∞ � δ[j (Lmax)] where δ[j (Lmax)] is the absolute
error of data point at the largest size Lmax. From the data of
Fig. 2, we estimate that j∞ � 0.01 (for the case of U = 1 and
Lmax = 100).

B. Density-density correlations

In Figs. 3(b), 4(b), and also 5(b), we show the con-
nected spin-up/spin-down correlation function 〈ni↑ni↓〉c =
〈ni↑ni↓〉 − 〈ni↑〉〈ni↓〉, that gives on-site correlations between
two fermion species. If we extrapolate our finite-L data to TL,
we find

〈ni↑ni↓〉c ∝ [μ2 − (2〈ni↑〉 − 1)(2〈ni↓〉 − 1)], (8)
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FIG. 4. (Color online) Density profiles (a) and connected cor-
relations (b) for U = 0.5. Other parameters are the same as in
Fig. 3.

with a proportionality prefactor depending on U only, yielding
a parabolic correlation profile for our linear density profiles.
Interestingly, in the middle of the chain the connected
correlations become independent of the system size, while they
are going to zero at the boundaries.21 In Fig. 5, we in addition
show also, for U = 1 case, the nonconnected correlations
〈ni↑ni↓〉 [top frame (a), red squares], or centered nonconnected
correlations 〈(ni↑ − 1/2)(ni↓ − 1/2)〉 [bottom frame (b), red
dotted line]. We can see that the nonconnected correlations
have similar shapes as density profiles.

Considering spin driving (7), we find numerically the
same diffusion constant as for charge driving (6), while the
connected correlations 〈ni↑ni↓〉c change sign [see Fig. 5(b),
blue circles]. Note that this implies that conductivities at
infinite temperature do not depend on the sign of interaction
U . We have also checked explicitly, by comparing data
for U = −1 with U = 1, that density profiles, currents and
correlations are insensitive to the sign of U . One can see
that in the presence of spin current without charge current,
nonconnected correlations, shown in Fig. 5(a) with blue
circles, are practically independent of the site and are slightly
smaller than 1/4.

Note that in both cases of charge and spin driving the
connected correlations scale as ∼μ2 and are of purely
nonequilibrium origin, i.e., they vanish in the equilibrium limit
(μ = 0).

C. Large interaction U

In the limit U → ∞, the low-energy excitations of the
half-filled Hubbard model can be effectively described by
the 1D isotropic Heisenberg model. In our open system
formulation, this mapping cannot be strictly implemented, due

-0.004
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 0.004

 0  5  10  15  20  25  30  35

<
n i

↑n
i↓

>
c

i

<(ni↑-1/2)(ni↓-1/2)>

(b)
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 0.18

 0.2
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 0.24

 0.26
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 0.3

 0.32

 0.34

 0.36

<
n i

↑n
i↓

>

(a)

charge driving
spin driving

FIG. 5. (Color online) Density-density correlation functions for
the case of charge driving (red squares) and for spin driving (blue
circles). (b) shows the connected correlations (symbols) and (a) the
nonconnected ones. In (b), we also show 〈(ni↑ − 1

2 )(ni↓ − 1
2 )〉 (dashed

curves). All is for U = 1 and L = 32.

to the presence of high-temperature baths that drive the system
locally away from half-filling. It is therefore an interesting
question whether the transport properties of the Hubbard
model in the limit of large U are qualitatively the same as
for the Heisenberg model.

In Fig. 6, we plot density profiles in our open Hubbard
model for increasing values of U , keeping L fixed, and
find increasingly arcsin like shape, similar as in the isotropic
Heisenberg model that displays an anomalous transport22 with
the magnetization current scaling as ∼1/

√
L. This perhaps

explains slower decay of the current with L in the Hubbard
model for small L’s and larger U , seen for instance in Fig. 2
at U = 2. Note that the limits U → ∞ and L → ∞ do not

-1

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

 0  5  10  15  20  25  30

(2
n i

,s
-1

)/
μ

i

U=1.0
U=5.0

FIG. 6. (Color online) As one increases U at fixed length L = 32
the rescaled density profiles (2ni,s − 1)/μ, shown for U = 1 and
U = 5, become similar to 2

π
arcsin [(2i − 1)/L − 1] (full red curve),

found in the isotropic Heisenberg model (see Ref. 22).
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FIG. 7. (Color online) At maximal driving, μ = 1, density pro-
files have a cosine shape (red squares, for L = 50 and U = 1),
while the current scales as ∼1/L2 (data not shown), exactly as in
the Heisenberg model at maximal driving.23 In the inset, we show
convergence of 
n = ni,s − sin2 (πx/2) with L.

commute. In order to recover the Heisenberg behavior in TL,
one has to first let U → ∞ and only then L → ∞.

D. Strong driving, μ = 1

In sections III A, III B, and III C, we have shown that the
weakly driven Hubbard model displays diffusive behavior.
Here we show that for strong driving, where the system is far
away from equilibrium, the behavior of physical observables
can be dramatically different. For example, we briefly discuss
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 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

ji
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(b)

ji
(↑)

ji
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 0.75

 0.8

 0.85

 0.9

 0.95

ni,s

(a)

ni,↑

ni,↓

FIG. 8. (Color online) Density profiles (a) and currents (b) for a
non-half-filled Hubbard system. We show data for L = 16 (squares)
and L = 32 (circles), all for U = 1. Density profiles in the bulk are
flat and currents do not depend on L, indicating ballistic transport. In
both frames, upper two sets of symbols are for one fermion species,
lower two for the other.

the case of maximal driving μ = 1 and find that the current
scales subdiffusively as j c ∝ 1/L2. The corresponding density
profile is shown in Fig. 7. We can see that the profile is in
TL given by a simple cosine shape ni,s = sin2[π (2i − 1)/4L],
exactly the same as has been found analytically in the isotropic
Heisenberg model at strong driving.23 This suggests that
similar exact solution for NESS at maximum driving μ = 1
as for the Heisenberg spin chain is also achievable for the
Hubbard model and points to wider applicability of the
algebraic method proposed in Refs. 23 and 24.

E. Non-half-filled case

So far, all the results shown were for symmetric driving, pro-
ducing on average half-filled bands. However, if the filling of
the two fermion species is not 1/2, we expect the transport to be
ballistic at high temperatures. This follows from an existence
of a nontrivial constant of motion, which in the non-half-filled
case possesses nonvanishing overlap with the spin/charge
currents.20 In order to numerically verify the consistency of
our nonequilibrium setup with this expectation, we choose
a nonsymmetric driving with L1,2 = √

�(1 ∓ μL↑) σ±
1 and

L3,4 = √
�(1 ± μR↑) σ±

L for the first chain, where μL↑ = 0.5
and μR↑ = 0.9, while L5,6 = √

�(1 ∓ μL↓) τ±
1 and L7,8 =√

�(1 ± μR↓) τ±
L with μL↓ = 0.4 and μR↓ = 0.8 for the

second chain. Density profiles can be seen in Fig. 8. One
can see that the gradient is very small (or zero); what is more,
currents are almost independent of system size L. Namely,
in Fig. 8(b) currents are within numerical errors the same for
L = 16 and 32 (small inhomogeneities visible in the figure
are due to truncation errors). If the transport were diffusive,
as is the case for the half-filled system, the current for L = 32
should be half as large as for L = 16. We therefore confirm
that the nonequilibrium transport is clearly ballistic for a
non-half-filled Hubbard model.

IV. CONCLUSION

Summarizing our findings about the transport in half-
filled zero-magnetization 1D Hubbard model at an infinite
temperature, we have shown that at finite interaction U both
charge and spin transport are diffusive. This conclusion is
based on the scaling of the currents with the system size
for up to 100 lattice sites as well as on perfectly linear
density profiles away from the boundaries. This complements
ballistic spin transport at U = 0 and arbitrary temperature
and anomalous transport at high temperature and U = ∞.
Such diffusive nonequilibrium states are in turn characterized
by nonvanishing quantum correlations between spin-up and
spin-down particles at the same sites. For the case of extremal
driving, we find subdiffusive (insulating) transport behavior
with cosine shaped density profiles.
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