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Unitary transformations are an essential tool for the theoretical understanding of many systems by mapping
them to simpler effective models. A systematically controlled variant to perform such a mapping is a perturbative
continuous unitary transformation (pCUT) among others. So far, this approach required an equidistant unperturbed
spectrum. Here, we pursue two goals: First, we extend its applicability to nonequidistant spectra with the
particular focus on an efficient derivation of the differential flow equations, which define the enhanced perturbative
continuous unitary transformation (epCUT). Second, we show that the numerical integration of the flow equations
yields a robust scheme to extract data from the epCUT. The method is illustrated by the perturbation of
the harmonic oscillator with a quartic term and of the two-leg spin ladders in the strong-rung-coupling limit
for uniform and alternating rung couplings. The latter case provides an example of perturbation around a
nonequidistant spectrum.
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I. INTRODUCTION

Quantum many-body systems with correlations are notori-
ously difficult to describe theoretically. Many analytical and
numerical tools have been developed to tackle such problems.
Tools which are employed ubiquitously are unitary transfor-
mations. Famous applications are the fermionic Bogoliubov
transformations in the mean-field theory of superconductivity
by Bardeen, Cooper, and Schrieffer1 (BCS) or the bosonic Bo-
goliubov transformations arising in linear spin-wave theory of
quantum antiferromagnets.2 These are exact transformations
which use the algebraic properties of fermions and bosons,
respectively. They yield diagonal Hamiltonians if they are
applied to bilinear initial Hamiltonians.

Another class of unitary transformations are those which are
not exact but approximate because they rely on an expansion in
a small parameter. A well-known example is the antiferromag-
netic Heisenberg exchange coupling J as it is derived from a
half-filled Hubbard model with hopping t and local repulsion
U implying J = 4t2/U (see for instance Ref. 3). Obviously,
higher contributions O(t3/U 2) are neglected, but they can also
be computed systematically.4–10

Moreover, the Hubbard model is not diagonalized by
the transformation, but mapped to an effective spin model.
This mapping implies a simplification because the relevant
part of the Hilbert space (here, spin degrees of freedom)
has been separated from the remainder (charge degrees of
freedom). The remainder does not need to be considered. It is
said that it has been eliminated or integrated out. Another
famous example in the same line is the derivation of an
attractive interaction between electrons from the exchange
of a phonon. This well-known step precedes the BCS theory
of superconductivity. We discuss it below in the first part of
the next section because it constitutes an excellent example
that different unitary transforms yield different effective
models, even in leading order. In particular, it shows that a
continuous version generically yields effective models with
less singular coefficients as functions of the bare parameters.
A related approach, which is not continuous but iterative, is

the projective renormalization (PRG),11 and it has also been
applied successfully to electron-phonon interactions.12,13

The main goals of this paper are twofold. First, we
show how continuous unitary transformations (CUTs) can be
used to perturbatively derive effective Hamilton operators in
real space. This goal has been realized for an unperturbed
Hamiltonian with equidistant spectrum by perturbative CUT
(pCUT).14–16 The gist of the pCUT is recalled in the following.
The matrix elements of the effective models derived by pCUT
have to be computed by evaluating long products of operators
for various clusters. In this work, we enhance the applicability
of such an approach to unperturbed nonequidistant spectra by
formulating the CUT directly in second quantization, i.e., in the
prefactors of monomials of creation and annihilation operators.
The resulting transformation will be called enhanced perturba-
tive CUT (epCUT) for distinction. The approach is exemplified
for a uniform and for an alternating spin ladder. The latter
has a nonequidistant spectrum if only the rung couplings are
considered.

The second main goal is to establish a robust extrapolation
of the perturbative results of the epCUT. We will show that a
direct evaluation of the perturbatively established flow equa-
tions provides a very robust and reliable way to extrapolate
the perturbative results. This approach will be called directly
evaluated enhanced perturbative CUT (deepCUT).

The article is set up as follows. In the next section, we briefly
exemplify the versatility of continuous unitary transformations
by deriving the BCS electron-electron attraction. We introduce
the perturbative CUT and the self-similar CUT (sCUT) as
predecessors of the epCUT and the deepCUT. In Sec. III, we
introduce the harmonic oscillator with quartic perturbation and
our paradigm model, spin ladders, for which we illustrate the
general approaches. In Sec. IV, we derive the epCUT and
develop the deepCUT from it. Many technical aspects are
discussed; a focus is the definition of simplifying rules which
allow us to compute high orders efficiently. In Sec. V, results
of the epCUT and the deepCUT are presented for the uniform
antiferromagnetic spin ladder with S = 1/2. Results for the
alternating spin ladder, which does not have an equidistant
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unperturbed spectrum, are shown in Sec. VI. The article
terminates by the conclusions in Sec. VII.

II. METHODOLOGICAL BACKGROUND

The focus is here on previous variants of continuous unitary
transformations in order to show from where we start and
in which respect we go beyond presently known methods.
But, there are also related approaches such as projective
renormalization, high-order series expansions on the basis of
the linked-cluster theorem, and the coupled-cluster method.

A. Electron-electron attraction from electron-phonon
interaction

The Fröhlich transformation17 eliminates phononic degrees
of freedom from an electron-phonon system in leading order
of the coupling to derive an electron-electron interaction from
an electron-phonon coupling. Starting from the Hamiltonian

H = HD + Hint, (1a)

HD =
∑
�k,σ

ε�kc
†
�k,σ

c�k,σ
+

∑
�q

ω�qb
†
�qb�q, (1b)

Hint =
∑
�k,�q,σ

M�q(b�q + b
†
−�q)c†�k+�q,σ

c�k,σ
, (1c)

this transformation generates an attractive interaction in the
BCS channel

HBCS = 1

N

∑
�k,�k′,σ,σ ′

V�k,�k′ c
†
�k′,σ ′c

†
−�k′,−σ ′c−�k,−σ

c�k,σ
(2)

with the matrix element

V F
�k,�k′ = |M�q |2 ω�q

�ε2 − ω2
�q
, (3)

where �q := �k′ − �k, �ε = ε�k′ − ε�k . This explains the formation
of Cooper pairs and conventional superconductivity. It is
interesting to note that in standard treatments, the interaction is
usually approximated by a constant, leaving out any discussion
of the resonance singularity in Eq. (3).

It is, however, possible to achieve the elimination of
the phonon degrees of freedom by a different, continuous
unitary transformation. This approach relies on a continuously
parametrized anti-Hermitian generator η(�) = −η†(�) of the
differential unitary transformation

∂�H (�) = [η(�),H (�)] (4)

of the Hamiltonian H (�); the transformation starts at � = 0
and ends18–21 at � = ∞.

One possible choice for the generator leading to a con-
vergent flow18 for � → ∞ is ηW := [HD,H ] where HD is the
diagonal part of the Hamiltonian. Integrating the flow equation
(4) from � = 0 to ∞ yields for the BCS channel21,22 in leading
order in M�q

V W
�k,�k′ = − |M�q |2 ω�q

�ε2 + ω2
�q
. (5)

The eye-catching fact in V W
�k,�k′ is that it does not have a resonant

energy denominator. Hence, this result is much smoother. In
particular, it implies an attractive interaction for all parameters.

The standard BCS interaction is a constant up to some
phononic cutoff energy ωDebye. This result can be derived
rigorously by a modification of the generator. In an eigenbasis
of HD, the matrix elements of ηsgn are chosen14,15,23 to be
η

sgn
ij := sgn(Ei − Ej )Hij . Then, we find

V
sgn
�k,�k′ = −|M�q |2

ω�q
	(ω�q − |�ε|), (6)

where 	(x) is the Heaviside step function. Again, there is only
attractive interaction. In addition, the interaction is only active
in a restricted energy interval and zero outside. A similar result
was obtained by Mielke using a self-similar approach.24,25

It is very remarkable that all three approaches (3), (5), and
(6) are different in their outcome although they do the same:
eliminating the linear electron-phonon coupling. We stress that
this is not a spurious result, but relies on the fact that the
unitary transformations are indeed different even in leading
order. They express virtual processes in a different way. But,
the energy-conserving processes at �ε = 0 are the same in
all three results. This has to be so because such scattering
processes can in principle be measured, which implies that
they have to be independent from the chosen basis.

B. Perturbative continuous unitary transformation

We draw the readers’ attention to the fact that we are dealing
from now on with CUTs with a unique reference state. This
means that the ground-state is mapped by the CUT to the
vacuum of excitations. In the previous section, the mapping to
effective models such as the Heisenberg exchange model or
the BCS model still left a many-body problem to be solved.

High-order series expansions have long been used to
compute reliable ground-state energies26,27 and dispersions in
strongly correlated systems.28–30 No particular assumptions on
the unperturbed spectrum are required. Ground-state energies
and dispersions can be computed straightforwardly because
the states are uniquely determined by their quantum number,
for instance, the momentum, even before the perturbation
is switched on. This means it is sufficient to perform the
perturbation for a one-dimensional subspace of the Hilbert
space. States of two and more particles are more subtle because
their subspaces are extensively large. For instance, binding
energies can not be computed as series unless the binding
occurs already in linear order. Generally, unitary or orthogonal
transformations must be introduced to define the perturbative
approach on large subspaces.14,15,30–32 For static ground-state
properties, the coupled-cluster method33 represents also a
powerful means to learn systematically from clusters of finite
size about the physics of the thermodynamic limit.

The perturbative CUT (pCUT) was the first approach to
systematically address many-particle states.14,15 Its starting
point is a Hamiltonian which can be written in the form

H (0) = H0 + x

N∑
m=−N

Tm, (7)
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where H0 is the unperturbed Hamiltonian with an equidistant
spectrum as additional assumption. For simplicity, we set its
energy spacing to unity. Each energy quantum can be seen as
an elementary excitation, a quasiparticle, so that H0 counts the
number of quasi particles up to an irrelevant constant offset.
The expansion parameter is x and the terms in the perturbation
are split according to their effect on the quasiparticle number
H0: The terms in Tm increase the number of energy quanta by
m. Obviously, T−m = T

†
m holds. Generically, there is an upper

bound N � |m| to the change of energy quanta. In pCUT, the
parametrization

H (�) = H0 +
∞∑

k=1

xk
∑

dim( �m)=k

F (�; �m)T �m (8)

is used as an ansatz for the flowing Hamiltonian with
coefficients F (�; �m). The components of the vector �m take
the values −N, − N + 1, . . . ,N − 1,N ; the vector has the
dimension dim( �m) = k. The notation T ( �m) stands for the
product Tm1Tm2 · · · Tmk−1Tmk

.15 Choosing

ηpc(�) =
∞∑

k=1

xk
∑

dim( �m)=k

sgn[M( �m)]F (�; �m)T ( �m), (9)

the flow equation (4) generates a hierarchy of differential
equations in powers of x for the coefficients F (�; �m). In each
finite order, the differential equations are closed and can be
solved by computer-aided analytics. Eventually, one obtains
the general expansion for an effective Hamiltonian which
conserves the number of elementary excitations:

Heff = H0 +
∞∑

k=1

xk
∑

dim( �m)=k,M( �m)=0

C( �m)T ( �m). (10)

The renormalized coefficients C( �m) = F (∞; �m) are fractions
(without imaginary part) and the conservation of the number
of quasiparticles is implied by the cross sum M( �m) = 0 where
M( �m) = ∑k

j=1 mj .
The result (10) is very general; to put it to practical use, its

irreducible effect on zero, one, two, and more quasiparticles is
computed. In this way, the effective Hamiltonian is obtained
in second-quantized form.16 Remarkable achievements of
this approach are a quantitative understanding of inelastic
scattering in spin ladders,34–39 of spectral densities in spin
chains,40 of excitations in the Kitaev model,41,42 of excitations
in the toric code,43–45 and of the ionic Hubbard model,46

to name a few extended systems where the ground-state is
described as a vacuum of excitations.

Conceptually, the most significant achievement of pCUT is
that whole subspaces are treated perturbatively. The generality
of the pCUT result (10) is surely one of its advantages. The fact
that it can only deal with equidistant spectra is a certain caveat,
not shared by the high-order series expansions described in
Ref. 30. Another caveat is that the approach does not allow for
modifications of the generator.

C. Self-similar continuous unitary transformations

One way to circumvent the above-mentioned restrictions
concerning the unperturbed spectrum and the choice of the

generator is to pass from a perturbative evaluation to a self-
similar one. The approach follows a straightforward strategy.
One chooses a set of operators, which serve as a basis.
The Hamiltonian and the generator are described as linear
combinations of these operators. By commuting Hamiltonian
and generator and reexpanding the result in the same operator
basis, the flow equation (4) induces a differential equation
system (DES) in the coefficients of the basis operators. A
more detailed description follows in Sec. III. We stress that
in the latter step a certain truncation is required.47 Unless the
set of operators is closed under commutation, the commutator
[η,H ] comprises terms which can not be expanded exactly
in the operator basis. Thus, this step generically requires an
approximation. The Hamiltonian is kept in a self-similar form
defined by the selected operator basis.

Depending on the system, the truncating approximation
can be controlled by a small parameter21,24,25 or by the spatial
locality of the selected set of operators.7,48 We stress that in
the sCUT approach, the choice of the operator basis and of
the generator uniquely defines the DES of the flow equation.
Clearly, the advantage of the sCUT over the pCUT is its larger
versatility. Yet, it is less general in the sense that the flow
equation has to be solved for each model and each operator
basis anew.

To derive a systematic perturbative expansion by sCUT is
not an obvious step. It is one of our two main goals to show
how this can be done and how it can be done efficiently. Thus,
the derivations and considerations in Sec. IV are based on the
sCUT approach and combine it with a perturbative expansion
in order to reach the enhanced perturbative CUT.

III. MODELS

We illustrate our approach by applying it to two models
which are introduced below. The first is a zero-dimensional,
perturbed harmonic oscillator and it is chosen for its simplicity.
The second are one-dimensional spin ladders which represent
well-understood extended models.

A. Harmonic oscillator with quartic perturbation

We analyze the perturbed harmonic oscillator

H = ε0 + ωb†b + x · H1 (11a)

with ground-state energy ε0, frequency ω0 > 0, and bosonic
creation and annihilation operators b†,b. It is perturbed by

H1 = b†4 + b4 + ε̃ + ω̃b†b + Ub†b†bb, (11b)

controlled by the expansion parameter x. The perturbation
includes a ground-state shift ε̃, a frequency shift ω̃, and a
density-density repulsion U . In order that H is bounded from
below for x ∈ [0,∞), we require H1 to be positive. Using the
Geršgorin circle theorem49 to the diagonal elements en of H1

in the basis of oscillator eigenstates {|n〉}, all eigenvalues are
positive if

en = 〈n| H1 |n〉 = ε + nω̃ + n(n − 1)U (12a)
!
> |〈n + 4| H1 |n〉| + |〈n − 4| H1 |n〉| (12b)

holds. The second matrix element occurs only for n � 4 and
can be estimated by 〈n + 4| H1 |n〉 > 〈n| H1 |n − 4〉 > 0. The
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FIG. 1. (Color online) Schematic representation of the uniform
(alternating) S = 1

2 Heisenberg ladder in the thermodynamic limit.

resulting final inequality

e2
n > 4(n + 4)(n + 3)(n + 2)(n + 1) (13)

is satisfied for ε̃ = 10, ω̃ = 12, and U = 2.

B. Spin- 1
2 Heisenberg ladder

To illustrate the performance of the (de)epCUT, we con-
sider the S = 1

2 antiferromagnetic two-leg Heisenberg ladder
(uniform spin ladder) and an extension with an alternating
rung coupling (alternating spin ladder) as testing ground (see
Fig. 1). The Hamiltonian reads as

H = J e
⊥H e

⊥ + J o
⊥H o

⊥ + J‖H‖, (14a)

H e
⊥ =

L/2−1∑
r=0

SL
2r · SR

2r , (14b)

H o
⊥ =

L/2−1∑
r=0

SL
2r+1 · SR

2r+1, (14c)

H‖ =
L−1∑
r=0

(
SL

r · SL
r+1 + SR

r · SR
r+1

)
, (14d)

where r ∈ Z. The rung number is denoted by r and the legs
by L and R. We define the ratio between the leg coupling J‖
and the even rung coupling J e

⊥ as relative leg coupling x := J‖
J e

⊥
and the ratio between the odd rung coupling J o

⊥ and the even

rung coupling J e
⊥ as y := J o

⊥
J e

⊥
.

In the limit of J e
⊥ = J o

⊥, i.e., y = 1, the Hamiltonian
describes the uniform spin ladder. This model has been the
subject of intensive studies (see Refs. 37,50, 51 and references
therein). Thus, it constitutes a suitable reference model to
test the epCUT. It has been investigated by several different
methods, such as density matrix renormalization,52,53 exact
diagonalization,54 continuum field theory,55,56 quantum Monte
Carlo,57 high-order series expansions,58,59 including methods
based on CUTs, such as sCUT (Refs. 48,60, and 61) and
pCUT.16,36,37,62 If the results of the epCUT agree with these
data, the efficiency of the epCUT for the expansion around an
unperturbed equidistant spectrum is verified.

To illustrate that the epCUT represents an advancement
compared to pCUT, we will show results for the alternating
spin ladder as well. This system does not have an equidistant
spectrum because the rung couplings are not equal J e

⊥ �= J o
⊥.

Hence, it can not be dealt with by pCUT. Without loss of
generality, we consider J o

⊥ > J e
⊥ implying y > 1.

For the alternating spin ladder, we expect a lowering of
the ground-state energy upon rising y because the expectation

value of 〈SL
r · SR

r 〉 is negative. The unit cell includes two rungs,
which implies two triplon branches in the Brillouin zone (BZ).
For y = 1, the branches meet at the BZ boundary (k = ±π

2 ).
For y > 1, a band gap of the order of |y − 1| opens at k = ±π

2
separating the two bands.

To define a starting point for the CUT, the bond operator
representation63,64 is used. A possible eigenbasis of the local
operators SL

r ,SR
r is given by the singlet state

|s〉 = 1√
2

(|↑↓〉 − |↓↑〉) (15)

and the three triplet states

t†x |s〉 := |tx〉 = −1√
2

(|↑↑〉 − |↓↓〉) , (16a)

t†y |s〉 := ∣∣ty 〉 = i√
2

(|↑↑〉 + |↓↓〉) , (16b)

t†z |s〉 := |tz〉 = 1√
2

(|↑↓〉 + |↓↑〉) . (16c)

For x = 0, the ground-state of the system is given by

|0〉 :=
∏

r

|s〉r . (17)

This vacuum of triplets serves as our reference state. The
local operators t

†
x,r , t

†
y,r , and t

†
z,r (tx,r , ty,r , and tz,r ) create

(annihilate) an excitation on rung r . They satisfy the hard-
core-boson commutation relation

[tα,r ,t
†
β,s] = δr,s

(
δα,β − t

†
β,r tα,r − δα,β

∑
γ

t†γ,r tγ,r

)
. (18)

The elementary magnetic excitations (S = 1), known as
triplons,37,65 can be continuously linked to the local triplets.

Represented in second quantization in terms of the triplon
creation and annihilation operators, the Hamiltonian reads as

H

J e
⊥

= H e
⊥ + yH o

⊥ + xH‖ , (19)

where

H e
⊥ = −3

4

∑
r=2a

1 +
∑
r=2a

t†α,r tα,r , (20a)

H o
⊥ = −3

4

∑
r=2a+1

1 +
∑

r=2a+1

t†α,r tα,r , (20b)

H‖ = 1

2

∑
r,α

(t†α,r tα,r+1 + t
†
α,r+1tα,r ) (20c)

+ 1

2

∑
r,α �=β

t†α,r t
†
β,r+1tβ,r tα,r+1 (20d)

− 1

2

∑
r,α �=β

t†α,r t
†
α,r+1tβ,r tβ,r+1 (20e)

+ 1

2

∑
r,α

(t†α,r t
†
α,r+1 + tα,r tα,r+1), (20f)

where a,r ∈ Z. This form of the Hamiltonian enters all the
calculations described in the following.
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IV. DERIVATION

A. Flow equation in second quantization

Similar to the implementation of previous CUT
methods,7,16,18,48 we formulate the flow equation (4) for the
coefficients of the monomials {Ai} of operators in second
quantization. The Hamiltonian is parametrized by

H (�) =
∑

i

hi(�)Ai (21)

with the �-dependent coefficients hi(�). The generator reads
as

η(�) =
∑

i

ηi(�)Ai :=
∑

i

hi(�)η̂[Ai] (22)

with η̂ being a superoperator denoting the application of a
particular generator scheme such as those discussed in Ref. 48.
Expanded in the operator basis {Ai}, the flow equation (4) reads
as ∑

i

∂�hi(�)Ai =
∑
jk

hj (�)hk(�)[η̂[Aj ],Ak]. (23)

Comparing the coefficients of different monomials, the flow
equation (4) becomes equivalent to a set of ordinary differential
equations for the coefficients hi(�):

∂�hi(�) =
∑
jk

Dijkhj (�)hk(�). (24a)

The commutator relations between the basis operators are
encoded in the coefficients Dijk of the bilinear differential
equation system. These coefficients Dijk are in general
complex numbers. For the spin ladders under study, they are
given by integers or fractional numbers. We call a single Dijk

a “contribution” of the DES. The contributions are obtained
from

[η̂[Aj ],Ak] =
∑

i

DijkAi (24b)

by comparing the coefficients of the expansion of the commu-
tator monomial by monomial.

In this way, the problem of solving the flow equation
is transformed into the algebraic problem of calculating the
coefficients of the DES (24b) and of the subsequent numerical
solution of Eq. (24a).

B. Perturbative expansion of the flow equation

Here, we consider the perturbative solution of the flow
equation which yields the resulting effective Hamiltonian
in the form of a perturbative series. Hence, this solution
generalizes the established pCUT approach.14,15 To this end,
we decompose the initial Hamiltonian

H = H0 + xV (25)

into an unperturbed part H0 and a perturbation V . In contrast
to pCUT,15 we do not require the unperturbed part to have an
equidistant spectrum. The formalism is very general and does
not require further restrictions. In order to be able to guarantee
that a finite order in the expansion parameter requires us only
to deal with a finite number of terms, we assume either that
the local Hilbert space at a given site is finite dimensional or

that H0 is a sum of local terms which are bilinear in bosonic
or fermionic variables. We will see that the method works best
for a (block)diagonal H0. These conditions are sufficient, but
not necessary for epCUT to work. It is beyond the scope of
this work to fully elucidate the marginal cases where epCUT
is impossible.

We aim at the perturbation series up to and including order
n in x. Thus, we expand the flowing Hamiltonian

H (�) =
n∑

m=0

H (m), H (m) ∝ xm (26)

into terms of order xm up to m � n. By expanding the H (m) in
the operator basis {Ai}, we perform the expansion in powers
of x by expanding the coefficient hi(�) of Ai :

hi(�) =
n∑

m=0

xmf
(m)
i (�). (27)

At l = 0, the initial values f
(m)
i (0) are fixed by the initial

Hamiltonian (25) and its representation in terms of the {Ai}.
Applying (27) to Eq. (24a), one obtains

∂�

n∑
m=0

xmf
(m)
i (�) =

∑
j,k

Dijk

n∑
p,q=0

xp+qf
(p)
j (�)f (q)

k (�). (28)

For the prefactors of xm, this implies

∂�f
(m)
i (�) =

∑
j,k

∑
p+q=m

Dijkf
(p)
j (�)f (q)

k (�). (29)

We stress that the contributions Dijk do not depend on the
order m of the coefficients, but only on the algebraic relations
between the corresponding monomials. Hence, they need to be
calculated only once. Moreover, Eq. (29) defines a hierarchy
between the coefficients because f

(m)
i (�) is influenced only

by coefficients of the same order m or lower, but not by
coefficients of higher orders.

C. Motivating example

As simple illustration, we analyze the perturbed harmonic
oscillator in Eq. (11) using the particle-conserving generator
scheme η̂pc. For order zero, we parametrize the prefactors of
the unperturbed parts by the flow parameter � leading to

H (0)(�) = f
(0)
0 (�) 1︸︷︷︸

A0

+f
(0)
1 (�) b†b︸︷︷︸

A1

(30)

with the initial conditions f
(0)
0 (0) = ε0 and f

(0)
1 (0) = ω0.

(The operators Ai are also listed in Table I.) None of these
terms contributes to the generator. Hence, the coefficients stay
constant in order zero.

In linear order, two additional terms A2 and A3 occur:

H (1)(�) = xf
(1)
0 (�) 1︸︷︷︸

A0

+ xf
(1)
1 (�) b†b︸︷︷︸

A1

+ xf
(1)
2 (�) (b†4 + b4)︸ ︷︷ ︸

A2

+ xf
(1)
3 (�) b†b†bb︸ ︷︷ ︸

A3

(31)
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TABLE I. Basis operators Ai (simple combinations of monomials obeying Hermiticity) occuring in a second-order
epCUT for the perturbed harmonic oscillator using the particle-conserving generator scheme η̂pc. The third column shows
the initial coefficients hi(� = 0), the fourth the final renormalized coefficients hi(� = ∞). The minimum order Omin is
the leading order of the considered operator; O0QP

max is the highest relevant order of the coefficient for computing the
ground-state energy, and O1QP

max is the highest relevant order for computing the excitation energy (cf. Sec. IV F3). The
terms marked in light gray are irrelevant for the computation of the ground-state energy in second order; the terms in dark
gray are irrelevant if the excitation energy is computed. If a term can not influence the targeted quantities at all, it has no
maximal order (symbolized by a dash).

i Ai hi(0) hi(∞) Omin O0QP
max O1QP

max

0 1 ε0 ε0 + ε̃x − 6
ω0

x2 0 2 2

1 b†b ω0 + ω̃x ω0 + ω̃x − 24
ω0

x2 0 0 2
2 b†4 + b4 x 0 1 1 1
3 b†b†bb Ux Ux − 18

ω0
x2 1 −1 −1

4 b†3b3 0 − 4
ω0

x2 2 – −
5 b†5b3 + b†3b5 0 0 2 – −

with the initial conditions f
(1)
0 (0) = ε̃, f

(1)
1 (0) = ω̃, f

(1)
2 (0) =

1, and f
(1)
3 (0) = U . The third term contributes to the generator

η(1)(�) = xf
(1)
2 (�)(b†4 − b4). (32)

Because η = O(x), the derivative in linear order reads as

∂�H
(1)(�) = [η(1)(�),H (0)(�)] (33a)

= xf
(1)
2 (�)f (0)

1 (�)[η̂pcA2,A1] (33b)

= −4xf
(1)
2 (�)f (0)

1 (�) (b†4 + b4)︸ ︷︷ ︸
A2

. (33c)

By comparing coefficients, one identifies the contribution D221

to f
(1)
2 :

∂�f
(1)
2 (�) = −4ω0f

(1)
2 (�) (34)

with the initial condition f
(1)
2 (0) = 1 and the solution

f
(1)
2 (�) = e−4ω0�. (35)

All other first-order coefficients retain their initial values.
The initial Hamiltonian does not comprise second-order

terms. Such terms arise due to commutation of terms of lower
order. The two relevant combinations are

∂�H
(2)(�) = [η(1)(�),H (1)(�)] + [η(2)(�),H (0)(�)]. (36)

The first one reads as

[η(1)(�),H (1)(�)] = x2f
(1)
2 (�)f (1)

1 (�)[η̂pcA2,A1]

+ x2f
(1)
2 (�)f (1)

2 (�)[η̂pcA2,A2]

+ x2f
(1)
2 (�)f (1)

3 (�)[η̂pcA2,A3]. (37)

To represent the right-hand side, two additional terms A4 and
A5 are required (see Table I):

[η̂pcA2,A1] = −4A2, (38a)

[η̂pcA2,A2] = −48A0 − 192A1 − 144A3 − 32A4, (38b)

[η̂pcA2,A3] = −12A2 − 8A5 (38c)

with vanishing initial values f
(2)
4,5 (�) = 0.

In Table II, we summarize the explicit results for the con-
tributions to the differential equation system. Here, we focus
on the second-order correction to the identity operator A0,
i.e., on the ground-state energy E

(2)
0 = f

(0)
0 (∞) + xf

(1)
0 (∞) +

x2f
(2)
0 (∞). Because the only second-order contribution to A0

is given by Eq. (38b), its differential equation reads as

∂�f
(2)
0 (�) = −48f

(1)
2 (�)f (1)

2 (�) = −48e−8ω0�. (39)

Using f
(2)
0 (0) = 0, it follows

f
(2)
0 (∞) = −48

∫ ∞

0
e−8ω0�d� = − 6

ω0
. (40)

In this example, we calculated and solved the perturbative
flow equations separately in each order. For higher orders or
more sophisticated systems, it is more advantageous to split the
solution into an algebraic task of deriving the DES and into
a numerical task of solving it. In the following, we discuss
an efficient algorithm to handle the algebraic task for more
general models and discuss its application to the uniform spin
ladder.

TABLE II. Nonvanishing contributions Dijk to the differential equation system (DES) of the perturbed
harmonic oscillator in the particle-conserving generator scheme. Operators and contributions marked in
light gray are irrelevant for the computation of the ground-state energy in second order; those in dark gray
are irrelevant for the first excitation.

i 2 0 1 3 4 2 5 5
j 2 2 2 2 2 2 2 5
k 1 2 2 2 2 3 3 1
Dijk −4 −48 −192 −144 −32 −12 −8 −4
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D. Generic algorithm

A key task in the implementation of epCUT is the design
of an efficient algorithm to identify the monomials and to
calculate exactly the commutators which are relevant for the
transformed Hamiltonian in the order of interest n. Henceforth,
we call the order we are aiming at the “targeted” order.

Based on Eq. (29), we can calculate each order m based
on the results of lower orders. Order zero is trivially given
by the representation (25) if η̂ [H0] = 0, which means that
H0 is block diagonal. The calculation of the commutators
[η(1),H (m−1)], . . . ,[η(m−1),H (1)] can be carried out indepen-
dently (see Fig. 2). According to Eq. (24b), the commutator
[η̂[Aj ],Ak] can be written as linear combination of monomials
Ai of which the prefactors define the contributions Dijk of the
DES. For those monomials not yet present in the Hamiltonian,
an additional monomial has to be included in the operator basis
with a unique index. We call the order in which a monomial
occurs for the first time its minimum order Omin(Ai).

We stress that in the evaluation of [η(p),H (q)], the commu-
tator [η̂[Aj ],Ak] needs to be calculated only if Omin(Ai) = p

and Omin(Aj ) = q. For all monomials with lower Omin(Ai)
and/or lower Omin(Aj ), the commutators have already been
calculated in lower orders.

The calculation of the commutators for [η(m),H (0)] is
special because its result may include additional monomials
of the same minimum order m which were not considered so
far. Since these monomials also enter the commutator via η(m),
the block [η(m),H (0)] has to be iterated until no additional
monomials occur: Then, self-consistency is reached. This

H(0)

η(0)

H(1)

η(1)

∂ �
H
(1
)

H(2)

η(2)

∂ �
H
(2
)

H(3)

η(3)

∂ �
H
(3
)

H(4)

η(4)

∂ �
H
(4
)

∂ �
H
(0
)

∂ �
H
(1
)

∂ �
H
(2
)

∂ �
H
(3
)

∂ �
H
(4
)

FIG. 2. Sketch of the epCUT algorithm to calculate the DES
for the iterative calculation of ∂�H

(4). Due to the commutators
[η(1),H (3)], . . . ,[η(3),H (1)], new terms with Omin = 4 emerge. Thus,
the calculation of the block [η(4),H (0)] has to be carried out at last
and self-consistently because it generates monomials contributing to
the generator in the same order. If H0 is not (block) diagonal, both
[η(4),H (0)] and [η(0),H (4)] have to be calculated simultaneously in a
single self-consistent loop.

should be done once the inner blocks [η(p>0),H (q>0)] are
finished.

If the unperturbed Hamiltonian H0 is local, the commuta-
tion of monomials from η(m) and H0 lead to monomials acting
on the same local cluster or smaller subclusters. Furthermore,
if the local Hilbert space of the cluster is finite, the number
of new monomials which can be generated by iterative com-
mutations with H0 is bounded by the finite number of linearly
independent matrices on this finite-dimensional Hilbert space.
Then, the iterative loop is guaranteed to terminate after a finite
number of cycles.

In the symmetric ladder model [see Eq. (14d)], the local
Hilbert spaces are finite so that a finite number of cycles is
sufficient. Even better, the commutation of the monomials
in terms of triplon creation and annihilation operators with
H0 = J e

⊥H e
⊥ + J o

⊥H o
⊥ does not generate any additional mono-

mials so that no iterations are needed in the calculation of
[η(p>0),H (q>0)]. These facts facilitate to reach high orders in
the expansion parameter.

If the unperturbed Hamiltonian H0 has also non-(block-)
diagonal terms, the generator includes terms of order zero.
Therefore, the blocks [η(0),H (m)] have to be evaluated self-
consistently as well. Since any term of the Hamiltonian
may also appear in the generator, the blocks [η(m),H (0)] and
[η(0),H (m)] have to be calculated simultaneously within a joint
self-consistency loop. Self-consistency can be reached in a
finite number of steps if the local Hilbert space at each site is
finite or if the H0 consists of a sum of local bilinear bosonic
or fermionic terms. Otherwise, it is difficult to see generally
whether self-consistency can be reached.

For the sake of completeness, we note that in the special
case H0 := H , i.e., considering the total Hamiltonian as the
unperturbed one, the whole algorithm constructing the DES
reduces to the calculation of the block [η(0),H (0)]. This has to
be done self-consistently with respect to both the generator
and the Hamiltonian. This approach is the one employed
in the self-similar CUT (sCUT) previously.25,48 Since for
H0 = H “the unperturbed” part H0 includes nonlocal and
non-(block-) diagonal terms and perhaps refers even to an
infinite local Hilbert space, the iteration of commutators will
not terminate for any but the simplest models. Thus, additional
truncation criteria are needed, the validity of which needs to be
justified.

E. Perturbative evaluation of the uniform spin ladder

Here, we discuss the application of the generic algo-
rithm to the uniform spin ladder [cf. Eq. (14d)] for a
second-order calculation using the quasiparticle-conserving
generator.15,48

To evaluate the perturbation series for the ground-state
energy or the dispersion relation of a sophisticated system, the
first step is to write the Hamiltonian in second quantization
and to identify the relevant monomials. This operator basis
{Ai} is given in Table III with A0 and A1 for the terms in H0

(Omin = 0) and A2 to A5 for the terms in V (Omin = 1). We
combined certain monomials, the prefactors of which must be
the same due to symmetry and/or Hermiticity into one element
of the operator basis Ai (cf. Sec. IV F2). The advantage is that
less operators need to be tracked. The algorithm is not affected
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TABLE III. Basis operators Ai (simple combinations of monomials obeying symmetry and/or Hermiticity) occuring in a
second-order epCUT calculation for the uniform spin ladder using the particle-conserving generator scheme η̂pc. The third
column contains the initial coefficients hi(� = 0), the fourth the final renormalized coefficients hi(� = ∞). The minimum order
Omin is given in which the corresponding operator occurs for the first time; O0QP

max is the highest relevant order of the coefficient
for computing the ground-state energy and O1QP

max is the highest relevant order for computing the dispersion (cf. Sec. IV F3). The
terms marked in light gray are irrelevant for the computation of the ground-state energy in second order; the terms in dark gray
are irrelevant if the dispersion is computed. If a term can not influence the targeted quantities at all, it has no maximal order
(symbolized by a dash).

i Ai hi(0) hi(∞) Omin O0QP
max O1QP

max

0
∑
r

1 − 3
4 − 3

4 − 3x2

8 0 2 2

1
∑
r,α

t †α,r tα,r 1 1 + 3x2

4 0 0 2

2
∑

r,α �=β

t †α,r t
†
α,r+1tβ,r tβ,r+1 − x

2 − x

2 + x2

8 1 0 0

3
∑

r,α �=β

t †α,r t
†
β,r+1tβ,r tα,r+1

x

2
x

2 1 – −
4

∑
r,α

t †α,r t
†
α,r+1 + h.c. x

2 0 1 1 1

5
∑
r,α

t †α,r tα,r+1 + h.c. x

2
x

2 1 – 2

6
∑

r,α �=β

t
†
α,r+2tα,r tβ,r+1tβ,r+2 + t †α,r tβ,r tβ,r+1tα,r+2 + h.c. 0 0 2 – −

7
∑

r,α �=β

t
†
β,r+2tα,r tβ,r+1tα,r+2 + t

†
β,r tα,r tβ,r+1tα,r+2 + h.c. 0 0 2 – −

8
∑
r,α

t †α,r tα,r+2 + h.c. 0 − x2

8 2 – 2

9
∑
r,α

t
†
α,r+1t

†
α,r+2tα,r tα,r+1 + h.c. 0 x2

4 2 – −
10

∑
r,α �=β

t
†
β,r+1t

†
α,r+2tα,r tβ,r+1 + h.c. 0 x2

8 2 – −
11

∑
r,α

t †α,r t
†
α,r+1tα,r tα,r+1 0 − x2

4 2 – −
12

∑
r,α �=β

t †α,r t
†
β,r+1tα,r tβ,r+1 0 − 3x2

8 2 – −
13

∑
r,α �=β

t
†
β,r+1t

†
β,r+2tα,r tα,r+1 + h.c. 0 x2

8 2 – −
14

∑
r,α

t
†
α,r+1tα,r tα,r+1tα,r+2 + h.c. 0 0 2 – −

15
∑
r,α

t †α,r t
†
α,r+2 + h.c. 0 0 2 – −

16
∑

r,α �=β

t
†
β,r+1tα,r tβ,r+1tα,r+2 + h.c. 0 0 2 – −

17
∑

r,α �=β

t
†
α,r+1tα,r tβ,r+1tβ,r+2 + t

†
α,r+1tβ,r tβ,r+1tα,r+2 + h.c. 0 0 2 – −

by this step except that the comparison of coefficients is a bit
more complex.

Following the algorithm described above, the commutators
of the block [η(1),H (0)] are calculated to complete the first
order. The contributions to the DES obtained by comparison
of coefficients are given in Table IV. Then, the contributions
in second order are evaluated in the blocks [η(1),H (1)] and
[η(2),H (0)] leading to the new basis operators A6−17 with
Omin = 2.

Next, the perturbative flow equation (29) has to be solved.
We do this numerically using a standard fourth-order Runge-
Kutta method.66 The initial values for the coefficients in
different orders of x are read off the initial Hamiltonian.
They are zero for all basis operators and all orders which
are not present in the initial Hamiltonian. We use a basis
of only normal-ordered operators except for A0 = ∑

r 1 so
that the series expansion of the ground-state energy per rung
E0 is obtained in the limit of � → ∞ from the prefactor

TABLE IV. Nonvanishing contributions Dijk to the differential equation system (DES) of the uniform spin ladder using the particle-
conserving generator scheme. Operators and contributions marked in light gray are irrelevant for the computation of the ground-state energy
in second order; those in dark gray are irrelevant for the dispersion. The contributions are sorted by the commutators [η̂Aj ,Ak] in which they
are calculated.

i 4 4 6 7 0 1 2 8 9 10 11 12 13 14 15 16 17 6 7 14 15 16 17
j 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 7 14 15 16 17
k 1 2 2 3 4 4 4 4 4 4 4 4 4 5 5 5 5 1 1 1 1 1 1
Dijk −2 −2 −1 −1 −6 12 2 −2 4 2 −6 2 −4 4 −2 2 1 −2 −2 −2 −2 −2 −2
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FIG. 3. (a) Number of representatives in the effective Hamiltonian of the symmetric spin ladder vs the order of the calculation for various
optimizations aiming at the ground-state energy using η̂0 and all symmetries. Highest to lowest curve: full Hamiltonian, basic simplification
rule, extended rule, full reduction of the DES based on the exact Omax. (b) Runtime time for the construction of the DES vs the order of the
calculation with more and more optimizations using η̂0 and all symmetries. Highest to lowest curve: full Hamiltonian without simplification,
basic a posteriori simplification rule, extended a posteriori rule, additional use of the basic a priori rule, additional use of the extended a priori
rule. The computations were done on an Intel Xeon CPU (E5345, 2.33 GHz, single thread).

of A0:

E0 =
n∑

m=0

f m
0 (∞)xm + O(xn+1) (41a)

= −3

4
− 3

8
x2 + O(x3). (41b)

Note that this result requires only three equations in the DES.
Likewise, the dispersion relation is determined from the

renormalized coefficients of the hopping terms A1, A5, and
A8:

ω(k) =
n∑

m=0

(
f m

1 (∞)xm + 2f m
5 (∞)xm cos(k) (42a)

+ 2f m
8 (∞)xm cos(2k)

) + O(xn+1) (42b)

= 1 + 3
4x2 + x cos(k) − 1

4x2 cos(2k) + O(x3), (42c)

which require five equations, only two more than the ground-
state energy.

F. Optimizations

The epCUT method presented so far can be applied to a
wide range of models in order to calculate a perturbative expan-
sion of decoupled quasiparticle spaces. With increasing order,
the number of representatives in the effective Hamiltonian,
the runtime, and the memory consumption rise exponentially
(see Fig. 3). One is interested in increasing the order of
the calculation as high as possible because this generically
enhances the accuracy of the calculation: More and more
orders kept imply that more and more physical processes with
an increasing spatial range are taken into account.

To increase the order, more efficient generator schemes and
the symmetries known from sCUT can be exploited. Focussing
on selected quantities of interest, the perturbative foundation
of epCUT allows us to optimize the algorithm even further.
Generic performance data possible with full optimizations are
given in Table V.

In practice, every optimization is carefully checked by
comparing the results of the optimized faster program to the
results from the slower program before optimization. In this

way, one can be sure that no errors are introduced by incorrect
assumptions.

1. Generator scheme

The (quasi)particle-conserving generator scheme η̂pc used
in our example decouples all subspaces of differing numbers
of excitations, i.e., quasiparticles, and sorts them in ascending
order of their energy.14,15,23,48 In most applications, however,
only the ground-state and the low-lying excitations are of
interest. Consequently, the computational effort can be reduced
by choosing a more efficient generator scheme which targets
the quantities of interest only. In 2010, Fischer, Duffe, and
Uhrig48 proposed a family of generator schemes based on
modifications of η̂pc where only the first q quasiparticle
spaces are decoupled from the remaining Hilbert space. The
corresponding generator reads as

η̂q[H (�)] :=
q∑

j=0

∞∑
i=j+1

(
Hi

j (�) − H
j

i (�)
)
. (43)

In this notation, Hi
j comprises all monomials of the Hamilto-

nian creating i and annihilating j quasiparticles. For instance,
the ground-state generator

η̂0[H (�)] =
∑

i

(
Hi

0(�) − H 0
i (�)

)
(44)

incorporates monomials which consist purely of either
creation or annihilation operators. Compared to the full

TABLE V. Number of representatives in the operator basis, total
runtime, and memory consumption for various generator schemes
in the highest-order calculated for the symmetric spin ladder. The
computations were done on an Intel Xeon CPU (E5345, 2.33 GHz,
single thread) with full optimizations.

Generator Runtime RAM
scheme Order # representatives (dd:hh:mm) (GB)

0:n 17 51,731,694 2:17:14 8.1
0:n, 1:n 15 107,513,297 13:09:12 17.3
0:n, 1:n, 2:n 13 51,371,642 11:09:47 8.0

125113-9



H. KRULL, N. A. DRESCHER, AND G. S. UHRIG PHYSICAL REVIEW B 86, 125113 (2012)

quasiparticle-conserving generator, the effort to compute the
corresponding DES is reduced significantly. In analogy to η̂pc,
the decoupled quasiparticle spaces are sorted according to
energy. Thus, the ground-state energy is given by the vacuum
energy of the effective Hamiltonian H (∞). If additionally the
dispersion is calculated, the one-quasiparticle subspace has to
be decoupled using η̂1. For decoupling higher quasiparticle
spaces, analogous generator schemes can be used. But, the
increase in efficiency compared to the full quasiparticle-
conserving generator becomes less and less significant because
the generator schemes η̂q do not conserve the block-band-
diagonal structure of the Hamiltonian in contrast to η̂pc.

2. Symmetries

For models defined on infinite lattices, it is necessary to use
the translation symmetry in order to be able to work directly in
the thermodynamic limit. In addition, the presence of other
symmetries leads to linear dependencies of coefficients of
monomials which are linked by the symmetry transformations
of the Hamiltonian. As in sCUT,7,67 this redundance can
be significantly reduced by passing from simple monomials
to symmetric linear combinations of them. Each of these
polynomials is invariant under symmetry transformations of
the Hamiltonian and requires only one prefactor where the
single monomials would need many more. In our example
(Table III) and in the following calculations, the size of the
operator basis is reduced by a factor of almost 24, exploiting
self-adjointness, reflection, and spin symmetry.

3. Reduction of the differential equation system (DES)

Targeting only certain quantities up to order n, such as the
ground-state energy or the one-particle dispersion, the DES
can be reduced. Here, we discuss how this can be done in
practice.

Aside from the minimum order Omin, a maximum order
Omax can be a assigned to each monomial and its coefficient
hi . The maximum order is the highest order of the series of
hi which still has an influence on the targeted coefficients
up to order n. For instance, complicated processes involving
many quasiparticles do not influence the ground-state energy
directly, but only via other processes. Then, their Omax is much
lower than the targeted order n. Technically, this is due to the
hierarchy of the DES (29), which implies

Omax(Aj ) � Omax(Ai) − Omin(Ak), (45a)

Omax(Ak) � Omax(Ai) − Omin(Aj ), (45b)

where the equality holds if we consider only a single
contribution Dijk �= 0. The inequality takes into account that
there may be many pairs (i,k) for a given j . Thus, Omax(Aj )
is the maximum value of all those right-hand sides:

Omax(Aj ) = max
{i,k|Dijk �=0}

[Omax(Ai) − Omin(Ak)] . (46)

If Aj is targeted, for instance, the ground-state energy per rung
A0, its Omax is n by definition.

For illustration, we consider the DES for the uniform spin
ladder in second order (see Table IV). If we only target the
ground-state energy h0 up to order 2, the maximum order of

monomial A4 is given by

Omax(A4) = Omax(A0) − Omin(A4) = 2 − 1 (47a)

⇒ Omax(A4) = 1, (47b)

where we deal with equalities because there is only one
contribution for ∂�h0(�) in the DES and the Omax(A0) is known.
In this case, the maximum order Omax of A4 is lower than the
targeted order 2.

The Omax of all coefficients can be calculated on the basis of
the entire DES and of the minimum orders. Note that Eq. (46)
defines Omax implicitly, i.e., one has to find the correct self-
consistent solution. This is done by starting from

Omax(Ai) =
{

n, if Ai is targeted

0, otherwise.
(48)

A monomial Ai is targeted if we want to compute its coefficient
hi in the given order n. Starting from the initial choice (48),
Eq. (46) is iterated: the number Omax is increased if necessary
until convergence is reached. Convergence is guaranteed
because we consider a finite set of {Ai} by construction and
the Omax(Ai) are bounded from above by n. Hence, even in the
worst case, there can be only a finite number of increments. For
illustration, the maximum orders for the uniform spin ladder
in second order are given in Table III targeting dispersion or
ground-state energy.

Once the maximum orders are known, we can reduce the
DES because some coefficients have a maximum order lower
than their minimum order:

Omax(Ai) < Omin(Ai). (49)

Thus, they do not matter for the relevant quantities up to order
n and can be discarded completely. Moreover, all contributions
to the DES which use these terms can be neglected. In addition,
all contributions can be discarded for which

Omax(Ai) < Omin(Aj ) + Omin(Ak) (50)

holds.
These considerations allow us to reduce the DES signifi-

cantly. In Table IV, the reduction of the DES for the uniform
spin ladder in second order is marked for the ground-state
energy (light gray line) and for the dispersion (dark gray line),
respectively. We stress that one has to know the entire DES to
apply the Omax concept as described above.

4. Simplification rules

The reduction of the DES discards a large number of
monomials and of the contributions Dijk [see for instance
Fig. 3(a)], which is essential for an efficient evaluation. But,
it would be even more advantageous if one avoided the
calculation of the omitted terms before they are tediously
computed. The minimum orders Omin are known at each step
of the iterative setup of the DES so that they can be used on the
fly. But, due to their implicit definition, the maximum orders
Omax are not known during the setup of the DES.

Fortunately, estimates help. An upper bound for the
maximum order is enough to accelerate the algorithm, setting
up the relevant part of the DES. Concomitantly, the memory
consumption is reduced significantly.10 Henceforth, we call
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such estimates “simplification rules.” Their concrete form
depends on the structure of the perturbed and the unperturbed
Hamiltonian, for instance, the block diagonality of the latter.
We emphasize that the simplification rules constitute the part
of the epCUT method which depends on the model.

In the following, we aim at a quantitative description up to
order n of the block of the effective Hamiltonian pertaining
to at most q quasiparticles. For instance, q = 0 provides the
correct perturbative expansion of the ground-state energy and
q = 1 allows us to calculate the dispersion relation up to
order n.

A monomial creating c triplons and annihilating a triplons
is targeted if both c � q and a � q hold. Its maximum order
is the targeted order Omax = n. If it is not targeted, it can
influence the targeted terms by affecting terms consisting of
fewer creation and annihilation operators via the DES. For the
Heisenberg ladder, the unperturbed Hamiltonian [Eq. (19)] is
block diagonal. Hence, no commutation of generator terms
with H0 changes the number of created and annihilated
triplons. The leading order of the generator is 1, i.e., η̂ = O (x).

In the commutation of a monomial with a generator term,
some of the local creation and annihilation operators may
cancel due to normal ordering. In order to yield a term affecting
the first subspaces with q quasiparticles,

c′ = max(c − q,0) (51a)

local creation operators and

a′ = max(a − q,0) (51b)

local annihilation operators have to cancel.
First, we consider commutations with lowest-order gen-

erator terms stemming from the initial Hamiltonian. In the
spin ladder, these terms have order 1 and create or annihilate
�QP = 2 quasiparticles on adjacent rungs. Because each
commutation with η(1) increases the order of the affected
coefficients by one, the maximum order is bounded by

Õmax = n −
⌈

c′

2

⌉
−

⌈
a′

2

⌉
� Omax, (52)

where the tilde on the left side means that one is dealing with
an upper bound and �y� stands for the smallest integer that
is still larger or equal to y. If in the calculation of ∂�H

(m) the
estimate Õmax of a monomial is lower than m, this contribution
is irrelevant and can be omitted. This reduces the size of both
the DES and of the Hamiltonian to be tracked. Moreover,
discarding irrelevant monomials avoids the calculation of
unnecessary commutators in the following iterations of the
algorithm.

Clearly, the number of created and annihilated quasipar-
ticles can be reduced by a number �QP larger than 2 by
means of commutations with generator terms involving more
quasiparticles which may have developed during the flow
from the basic terms. But, the generator terms involving more
quasiparticles have a higher minimum order Omin so that a
single commutation with them affects coefficients only in a
higher order m + Omin. In fact, for the used generator schemes,
the ratio between �QP and Omin for new terms developed
during the flow can not exceed the corresponding ratio for
generator terms present in the initial Hamiltonian. Therefore,

it is sufficient to consider only commutations with the initial
terms in our simplification rules.

The above generic simplification rule can be easily adapted
to other models as long as the unperturbed Hamiltonian H0 is
block diagonal. Otherwise, H0 will lead to generator terms of
order zero, which means that terms with high quasiparticle
number can influence the coefficients of terms with low
quasiparticle number in the same order. This is why it is
desirable to set up the perturbation in such a way that H0

is block diagonal in the number of quasiparticles.
Applying the simplification rule reduces the number of

representatives considerably (see Fig. 3), leading to a signifi-
cant improvement of runtime and memory consumption. This
basic simplification rule can be improved further by taking
more model-specific information into account. A possibility
to exploit the real-space structure of the monomials to lower
the upper bound Õmax is described in Appendix A.

The computationally most costly part in the calculation
of the DES is the evaluation of commutators. Because the
simplification rules sketched above can only be applied after
the commutation, we refer to them as a posteriori rules. For
the sake of efficiency, it is highly desirable to extend them
to a priori rules, estimating whether a commutator has to be
evaluated at all prior to its computation. We describe such a
priori simplification rules in Appendices B and C.

Because these rules are necessarily less strict than their a
posteriori analogs, one should use the combination of both
kinds in practice. The additional use of a priori rules does
not reduce the number of representatives or the memory
consumption. But, it boosts the speed of the calculation
significantly because the vast majority of commutators can
be discarded [see Fig. 3(b)] and the a priori rules help to avoid
the laborious computation of these unnecessary commutators.

G. Directly evaluated epCUT

In addition to the perturbative evaluation, the reduced
DES computed by epCUT in a given order n can be
evaluated nonperturbatively. After the reduction step described
in Sec. IV F3, the DES consists exclusively of contributions
which are relevant to the targeted quantities in the desired
order n. This reduced DES in Eq. (24a) can be numerically
integrated for any given value of x to obtain the coefficients of
the Hamiltonian hi(�) directly without passing by an expansion
in x. In such a calculation, all coefficients influence one
another to infinite order. The numerical solution depends on the
expansion parameter in an intricate manner and can no longer
be understood as finite partial sum of an infinite series. In this
sense, the perturbative reduced DES in order n is extrapolated
by the direct evaluation in a nonperturbative way. To stress the
difference to perturbation series computed by epCUT, we call
this technique directly evaluated epCUT (deepCUT). We keep
the term “enhanced perturbative” in this expression because
the approach is derived from the epCUT, and the perturbative
order of the epCUT determines the spatial range of physical
processes captured. Yet, we stress that by the direct evaluation,
contributions to infinite order in x are included.

We emphasize that the reduction of the DES before the
numeric integration is essential. It enhances the performance
of the integration because the reduced DES is much smaller.
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But, the crucial observation is that the reduction renders
the integration much more robust. Numerical integrations of
the full DES diverge for high orders and high values of x.
We conclude that the reduced DES represents the relevant
physical processes in a more consistent way. The integration
of the full DES generates spurious higher-order contributions
which overestimate certain effects. In an exact solution, the
spurious higher-order contributions would be compensated
by other processes which are captured only in a higher-order
calculation.

Analogous observations are known from diagrammatic
perturbation theory where the inclusion of subsets of diagrams
in infinite order does not guarantee improved results. Improved
results can only be expected from systematically controlled
calculations. The inclusion of infinite orders is indicated if
this achieves conserving self-consistent approximations. For
instance, the shift of poles in a propagator is not captured by
any finite perturbation series in the propagator, but it follows
easily from a perturbation of the self-energy.68

We show the difference between deepCUT and epCUT for
the perturbed harmonic oscillator (11). Targeting the ground-
state energy, the first step is to calculate the maximal orders
of the representatives Ai and to reduce the contributions in the
DES to the relevant ones (cf. Tables I and II). The minimal
DES for the coefficients hi of the three relevant representatives
in second order reads as

∂�h0 = −48h2h2, h0(0) = ε0 + ε̃x, (53a)

∂�h1 = 0, h1(0) = ω0 + ω̃x = h1(�), (53b)

∂�h2 = −4h2h1, h2(0) = x. (53c)

In contrast to the epCUT, different powers of the expansion
parameter x are not split. Because h1(�) remains constant, the
coefficient in the generator can be determined analytically as

h2(�) = h2(0)e−4h1(0) = xe−4(ω0+6ω̃x). (54)

For the ground-state energy, it follows that

h0(∞) = h0(0) − 48x2
∫ ∞

0
e−8h1(0)d� (55a)

= ε̃x − 6x2

ω0 + xω̃
. (55b)

At first glance, the slight modification ω0 → ω0 + xω̃ in the
energy denominator compared to the perturbative second-
order result (40) seems inconspicuous. But, we stress that a
Taylor series of Eq. (55) includes infinite orders of x. In Fig. 4,
the results are compared to exact diagonalization in the Hilbert
space of 500 states. Even for small values of the expansion
parameter, the perturbative result deviates significantly, while
the deepCUT of the same order behaves reasonable even
at x = 0.5 and beyond. We stress that the fact that we can
solve the equations analytically is due to the simplicity of the
calculations for this particular model in low order.

The perturbative result for the ground-state energy h0 does
not depend on whether or not we target on the single excitation
energy h1. This is different in deepCUT where changes in
the DES due to varying targeted quantities will generally
influence all quantities, at least weakly. Targeting both the
ground-state energy h0 and the excitation energy h1 modifies
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FIG. 4. (Color online) Ground-state energy E0 of the perturbed
oscillator (11) relative to the first-order shift xε̃ vs the expansion
parameter x. For reference, the ground-state energy is also determined
by exact diagonalization (ED) considering 500 oscillator states (black
solid line). The second-order result (black dashed line) deviates
already significantly for small x, while the deepCUT results of
the same order targeting the ground-state energy (0 QP) (light
gray/orange line) and targeting additionally the excitation energy
(1 QP) (dark gray/blue line) are much more robust. The parameters
are ε0 = 0, ω0 = 1, ε̃ = 10, ω̃ = 12, and U = 2 (cf. Sec. III A).

the derivative of h1(�) to

∂�h1 = −192h2h2, h1(0) = ω0 + ω̃x, (56)

so that now the complete DES is given by Eqs. (53) and
(56). We solve the DES similar to a previous treatment,69

introducing the quantity

� =
√

h2
1 − 48h2

2, (57)

which is conserved along the flow. Physically meaningful
values are �2 � 0. Both h1 and h2 decrease during the flow
until h2 vanishes in the limit of infinite �. Then, the effective
Hamiltonian reads as

h0(∞) = �, (58a)

h1(∞) = 1
4 (� − ω0 − ω̃x) + ε0 + ε̃x, (58b)

h2(∞) = 0. (58c)

As can be seen in Fig. 4, targeting h1 as well modified the
result for h0, although only slightly.

Next, we illustrate the deepCUT for the extended model of
the uniform spin ladder. Figure 5 compares the ground-state
energy per rung E0 of the uniform spin ladder as function of
the relative leg coupling x obtained from the plain perturbative
series in order 17, from various Padé extrapolations, and from
the direct evaluation.

We use three different kinds of Padé extrapolations: First,
a standard Padé extrapolation for the series expansion of
the ground-state energy in x; second, an extrapolation for
(1 − u)E0(u), where we rewrite the expansion paramater
as x = u

(1−u) ; third, a Padé extrapolation for (1 − u)E0(u)
including the asymptotic behavior of the spin ladder. For
x → ∞, one obtains two isolated spin chains, the ground-state
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FIG. 5. (Color online) Ground-state energy per rung E0 of the
uniform spin ladder vs relative leg coupling x in order 17 using
various evaluations. The direct evaluation (black line) renders a much
more stable and reliable extrapolation of the plain perturbative series
[dark gray (blue) line] than the various Padé extrapolations [light
gray (orange) line]. The solid light gray (orange) lines represent a
standard Padé extrapolation, the dotted line a Padé extrapolation in
u (x = u

1−u
), and the dashed line a Padé extrapolation in u including

the asymptotic behavior of the spin ladder given by the ground-state
energy of the spin chain.

energy per site e0 = 1
4 − ln 2 of which is known.70,71 Thus,

E0(x) → 2e0x + O(x0) for x → ∞.
The plain series shoots up at about x ≈ 0.7, while the

Padé extrapolations start to scatter strongly beyond x ≈ 1.
The direct evaluation lies between the two stiffest Padé
extrapolations and remains stable up to even very large values
of the expansion parameter x ≈ 3. Comparing various orders
(see Fig. 6), the results of deepCUT converge rapidly and
display only minor corrections for large values of x, indicating
a high reliability. The convergence of the ground-state energy
and the spin gap with increasing order n is displayed in Fig. 7.
Clearly, increasing the order improves the results, but the
convergence is not monotonic. In the spin gap, an even-odd
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FIG. 6. (Color online) Ground-state energy per rung E0 of the
uniform spin ladder vs relative leg coupling x for different orders
using the direct evaluation.
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FIG. 7. (Color online) Deviations between the results (ground-
state energy and spin gap) of the deepCUT and of a DMRG (density
matrix renormalization group) calculation for the uniform spin ladder
vs the inverse order 1/n for x = 2.

effect is visible. In Sec. V, further comparisons of the deepCUT
results with those of other methods will be presented.

This deepCUT bears similarities to the sCUT
approach.7,25,47,48,61,67 In sCUT, a set of basis operators
is selected by a truncation scheme, and for this set the full
DES is computed. It comprises all commutation relations
between the selected basis operators. In deepCUT, the
order of the expansion parameter takes over the role of
the truncation scheme. But, we stress that deepCUT is not
self-similar: In sCUT, all commutators between the selected
monomials are considered. In epCUT and thus in deepCUT,
only the commutators between specific subblocks based on
the minimum orders Omin are considered (see Sec. IV D).
Moreover, targeting certain subspaces with q quasiparticles
and the concomitant reduction of the DES does not only
discard irrelevant monomials. Also, contributions linking
relevant monomials are canceled if their effect is of too high
order. Therefore, the “truncation” taking place in (de)epCUT,
controlled by the expansion parameter, is a truncation of the
DES rather than a truncation of operators as it is done in the
sCUT approach.

One practical advantage of the deepCUT over the sCUT is
that only one parameter, the maximum order of the expansion
parameter, needs to be fixed in order to define the approx-
imation. In the sCUT, generically many parameters define
the truncation scheme,7,47,48,61,67 which leaves some ambiguity
about how to systematically improve the approximation.

Another comparison of approaches is in order. Recently,
Yang and Schmidt proposed a CUT approach based on graph
theory (gCUT).72 Their approach generalizes an idea first put
forward by Irving and Hamer for static ground-state properties
under the name of “exact linked cluster expansion” (ELCE).73

Yang and Schmidt are able to treat effective models quite
generally. To compute a certain quantity such as the ground-
state energy, the irreducible contributions of subgraphs, i.e., of
linked clusters, of the lattice are summed. The size of the
largest subgraph considered determines the approximation.
The larger it is, the better the system is described because
physical processes with a larger range are kept. Thus, the

125113-13



H. KRULL, N. A. DRESCHER, AND G. S. UHRIG PHYSICAL REVIEW B 86, 125113 (2012)

fundamental idea of the approach is similar to the one of
deepCUT: truncation in the range of processes, but local
processes are kept to infinite order.

The main difference is that the actual CUT is done
on clusters. So, ELCE and gCUT have advantages and
disadvantages. An advantage is that it is sufficient to deal with
finite-dimensional Hilbert spaces and the transformations can
be performed on matrices. A disadvantage is that momentum
conservation can not be exploited on the level of the clusters
because they are finite, which restricts the choice of applicable
generators.72 The deepCUT is based on second quantization31

and can take advantage of all symmetries of the problem under
study. A detailed comparison of the approaches is left to future
studies.

H. Transformation of observables

In order to calculate spectral densities, for instance, the
coefficients of the corresponding observable must be known
with respect to the same basis as the effective Hamiltonian.
Thus, the observables must be transformed as well. This can
be realized by integration of the flow equation for observables

∂�O(�) = [η(�),O(�)] (59)

introduced by Kehrein and Mielke.74,75

In analogy to the transformation of the Hamiltonian
discussed in Sec. IV A, we introduce an operator basis Bi for
the observable shifting the dependence on � from the operators
to their coefficients

O(�) =
∑

i

oi(�)Bi (60a)

=
∑

i

n∑
m=0

f
(m),obs
i (�)xmBi, (60b)

where the second equation stands for the perturbative ex-
pansion of these coefficients. Hence, the flow equation for
observables (59) leads to a DES for their coefficients

∂�oi(�) =
∑
j,k

Dobs
ijk hj (�)ok(�). (61a)

The contributions Dobs
ikj are obtained by calculating the com-

mutators between the monomials of the generator and the
monomials of the observable followed by a comparison of
the coefficients ∑

i

Dobs
ikj Bi = [η̂[Aj ],Bk]. (61b)

The differential equations (61a) imply a hierarchical DES
for the perturbative series (60b) for the coefficients

∂�f
(m),obs
i (�) =

∑
jk

∑
p+q=m

Dobs
ijk f

(p)
j (�)f (q),obs

k (�). (62)

The algorithm for the calculation of the DES in Sec. IV D
can easily be adapted for the transformation of observables.
Each order of the differential ∂�O

(m) is calculated recur-
sively (cf. Fig. 8). Since the generator η is defined solely
by the Hamiltonian, it is not influenced by the outcome
of the transformation of observables. For this reason, the
evaluation of [η(m),O(0)] does not need to be carried out
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FIG. 8. Sketch of the epCUT algorithm to calculate the DES for
∂�O

(4) iteratively. Due to the commutators [η(1),O (3)], . . . ,[η(4),O (0)],
additional terms with Omin = 4 emerge. In contrast to the algorithm
for the Hamiltonian (see Fig. 2), no self-consistent calculation is
needed for [η(4),O (0)]. Self-consistency is required only for [η(0),O (4)]
if η(0) is finite.

self-consistently. After the calculation of the commutators
[η(1),O(m−1)] · · · [η(m−1),O(1)], only the block [η(0),O(m)] has
to be treated self-consistently. But, recall that η(0) only
occurs if the unperturbed Hamiltonian H0 is not (block)
diagonal. Because both differential equations (4) and (59) are
coupled by the generator, their integrations have to be done
simultaneously.

For the transformation of the Hamiltonian, we extensively
discussed that only certain contributions really matter. We
introduced the concept of a maximum order in which the
coefficient of a physical process needs to be known in order
to influence the targeted quantities. This concept allowed us
to reach significantly higher orders. Thus, we want to extend
the concept of a maximum order also to the transformation of
observables. It turns out that this extension is rather subtle.

Before, in the flow of the Hamiltonian, the maximum order
of a generator coefficient O

η,H
max (Ai) is the maximum order

of the same monomial OH
max(Ai) in the Hamiltonian. Now,

we also target certain blocks of the observable and they are
influenced by the monomials in the generator. This leads to
maximum orders for both the observable term OO

max(Bi) and
the generator terms O

η,O
max (Ai). The latter does not need to

coincide with the maximum order O
η,H
max (Ai) resulting from

the consideration of the Hamiltonian flow alone. Thus, one
has to find a unique and unambiguous way to fix O

η
max(Ai).

We discuss three alternatives:
(i) The maximum order of the generator terms is chosen in

such a way that the targeted quantities in both the Hamiltonian
and the observable(s) can be computed up to the targeted
order76 n:

Oη
max(Ai) = max

[
OH

max(Ai),O
η,O
max (Ai)

]
. (63)
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Then, the iterative calculation of the Omax must be realized
within a single self-consistent loop. The perturbative evalu-
ation yields a perturbative series for the coefficients of the
observables under the transformation with the full generator up
to order n. It may happen that in this way some generator terms
are assigned a higher O

η
max � O

η,H
max than in the transformation

of the Hamiltonian alone so that the DES of the Hamiltonian
comprises additional contributions. By construction, this does
not affect the perturbative evaluation of the epCUT. But, it will
affect its direct evaluation (deepCUT), although it should be
absolutely minor in a parameter regime of good convergence
of the flow.

(ii) Alternatively, the determination of OO
max(Bi) and

O
η,O
max (Ai) can be realized after and strictly separated from

the calculation of O
η,H
max (Ai) and OH

max(Ai). Monomials which
are discarded due to the reduction of the Hamiltonian will not
be considered for the DES of the observables even though this
may affect the targeted coefficients of the observable. Hence,
the transformation of the observables in perturbative evaluation
is not realized with respect to the complete generator. We stress
that this does not violate the unitarity of the transformation
up to the calculated order because the generator is still
anti-Hermitian and it is essentially the same as for the
transformation of the Hamiltonian. No significant deviations
are expected in the regime of good convergence of the flow.
Note also that any generator whose coefficients differ only
by orders larger than OH

max(Ai) leads to the same perturbative
series for the relevant quantities in the Hamiltonian.

(iii) A third alternative consists in taking over the O
η,H
max (Ai)

for the reduction of the DES for the observables. Then, only
the values OO

max(Bi) are computed self-consistently.
For deepCUT, alternatives (ii) and (iii) ensure that the DES for
the Hamiltonian is independent of the considered observables.
Generally, we expect that the precision in the derivation of
effective Hamiltonians is more important than the precision of
matrix elements. Also, in experiment, energies are generically
known to much higher accuracy than matrix elements.

In order to keep the effective Hamiltonian in direct
evaluation independent of the observables, we decide to use
alternative (ii) for deepCUT. For the perturbative evaluation,
however, we favor alternative (i) because it makes the rigorous
determination of the perturbation series of matrix elements
possible.

The computational performance can again be increased
decisively by applying simplification rules. They can be used
directly for observables if both the Hamiltonian and the ob-
servables meet their requirements. This can often be achieved
by appropriate definitions. For instance, the observable

2S
L,z
0 = t

†
z,0 + tz,0 + it

†
y,0tx,0 − it

†
x,0ty,0 (64)

is needed for the calculation of the dynamic structure factor
relevant for inelastic neutron scattering. But, this observ-
able includes non-block-diagonal terms in order zero. To
circumvent this problem, we consider the observable x · S

L,z
0

instead. In this way, the non-block-diagonal monomials in the
observable are shifted to order 1 so that they behave like the
non-block-diagonal perturbation in the Hamiltonian. One loses
an order of accuracy for a given fixed order n of the calculation.

But, all the simplification rules relying on block diagonality in
order zero can be used as before.

V. RESULTS FOR UNIFORM SPIN LADDER

A. Ground-state energy

The ground-state energy per rung is calculated up to and
including order 17. The results of the direct (black solid line)
and of the perturbative evaluation (dashed black line) are
displayed in Fig. 9. The coefficients of the perturbative series
(see Table VI) agree perfectly with the fractions from pCUT
(up to order 14) (Ref. 16) and with the decimal numbers (up
to order 23) given by Zheng et al.58 This agreement shows
that the epCUT works for a system with equidistant spectrum
in H0.

The plain series is trustworthy only up to x ≈ 0.7. For larger
x, extrapolations are needed. The dotted black line shows
the “best,” i.e., stiffest, Padé extrapolant of order [11,6] for
this series. Other Padé extrapolants are shown in Fig. 5. The
results of the deepCUT are depicted as solid black line in
Fig. 9. It fits perfectly to the perturbative result for weak leg
couplings. For larger values of x, it serves as an excellent
extrapolation of the perturbative results. In order to support
that the directly evaluated results are quantitatively reliable
even for larger x, the deepCUT data are compared with results
from sCUT (Refs. 48 and 60) and from DMRG.77–79 The sCUT
results, represented by the solid light gray (orange) line, are
calculated with the ground-state generator and the truncation
scheme d = (12,10,10,6,6,5,5,4,4). The truncation reads as
d = (d2,d3,d4, . . .), where di denotes the real-space extension
of a monomial with i interacting quasiparticles. A monomial
with i interacting quasiparticles is truncated if it exceeds the
extension di . For instance, the monomial t

†
α,r tα,r+4 has an

extension d2 = 4.
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FIG. 9. (Color online) Ground-state energy E0 per rung of the
uniform spin ladder vs relative leg coupling x resulting from various
methods. The epCUT results (order 17; direct: black, solid line;
perturbative: black, dashed line; Padé [11,6]: black, dotted line)
agree with the sCUT results [d = (12,10,10,6,6,5,5,4,4), light gray
(orange), solid line] and the DMRG results [dark gray (blue) line].
The energies from the direct evaluation, the sCUT, and the DMRG
lie on top of each other (see also upper inset). The deviation
|�E0| = |E0,direct − E0,DMRG| is shown in the lower inset.
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The DMRG data, represented by a solid dark gray (blue)
line, results from a finite-size scaling. The ground-state
energies for ladders with L = 40,60, . . . ,160 rungs and m =
500 states are extrapolated with the ansatz

E0(L) = E0(∞) + c0
e−L/L0

Lc1
(65)

to estimate the ground-state energy for an infinity ladder
E0(∞) for each value of x.

The results of these methods agree perfectly. The deviations
between the DMRG results and the results of the direct
evaluation are shown in the lower inset of Fig. 9. They increase
with rising x, but they remain still small. For x = 1.5, the
deviation is less than 10−3J⊥ and for x = 3, it is still less than
10−2J⊥.

B. Dispersion

The one-triplon dispersion is calculated up to order 15. The
dispersion is obtained by a Fourier transform of the one-triplon
sector of Heff . The dispersion reads as

ω(k,x) = t0 +
n∑

d=1

2td cos(dk) , (66)

where td is a hopping element over the distance d. Figure 10
shows the dispersion for various values of x. The plain series
of the perturbative evaluation is depicted as dashed light gray
(orange) line. The coefficients of this series (see Table VII)
agree quantitatively with other series expansion results59 up to
order 8.

The coefficients of the perturbative series of the spin gap
match those of other series expansion methods58 up to order
13. The plain series is reliable up to x ≈ 0.6. For larger values
of x, extrapolations are needed. For the dispersion we used the
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FIG. 10. (Color online) Dispersion ω(k) of the uniform spin
ladder for various values of x ∈ {0.5,0.8,1,1.5,2} and various
evaluation techniques based on order 15. At k = π

2 , the lowest curve
is x = 0.5 and the highest curve is x = 2. For x = 0.5, the plain series
in x [light gray (orange), dashed line] and for x = 0.8 and x = 1 the
plain series in the parameter p(x) from Eq. (67) [dark gray (blue),
dashed line] are shown. The results of the direct evaluation (black,
solid line) agree well with the perturbative results for small x and
they are still robust for larger x.
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FIG. 11. (Color online) Gap �(x) of the uniform spin ladder vs
relative leg coupling x for various orders (6,10,14,15) using the
direct evaluation (black, solid line), perturbative evaluation (plain
series; order 15; black, dashed line), and a 1

L2 finite-size scaling
DMRG result [dark gray (blue), solid line]. The lowest curve in direct
evaluation at x = 3 stems from order 6; the highest curve from order
15. The 15th-order curve in direct evaluation agrees very well with
the DMRG results. The deviations to the DMRG results are depicted
in the inset.

extrapolation scheme based on a reexpansion of the original
series in terms of a suitable internal parameter80 p(x):

p(x) = 1 − �(x)

(1 + x)J⊥
, (67)

where �(x) denotes the gap. In order to use the above mapping
x → p, a reliable extrapolation of the gap �(x) is needed.
This was achieved by dlog-Padé extrapolations which work
very robustly for the gap. The dashed dark gray (blue) lines
in Fig. 10 represent the plain series in this internal parameter
without any further extrapolation.

The solid black lines are the results of the direct evaluation.
For small x, the perturbative and the direct evaluation agree
very well. The direct results are again very robust for larger x

as well.
To corroborate that the deepCUT results are reliable even

for relatively large values of x, its spin gap is compared to the
one obtained in DMRG (Refs. 77–79) in Fig. 11. The solid
black lines represent the deepCUT results. The solid dark gray
(blue) line depicts the results of a 1

L2 finite-size scaling of the
DMRG results based on the ansatz

� (z) = �(∞) + a1z + a2z
3
2 + a3z

2 (68)

with z := 1
L2 .

The deepCUT data show that for larger x, a higher order
is needed to compute the gap accurately. This is understood
on the basis of the correlation length of the system. A larger
value of x enables us to capture the physics of systems with
larger correlation length ξ , which is given by v

�
where v is the

spin-wave velocity in absence of a gap. By construction of the
(de)epCUT, the order n defines the range of processes which
are still captured. Hence, one can expect a reliable result as
long as

n � ξ ⇔ n � v

�
(x), (69)
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where the lattice constant is set to unity. The velocity v can be
estimated by fitting v sin(k) to the maximum of the dispersion.
We find indeed that (69) is satisfied up to x ≈ 3 for n = 15.
The deepCUT curve for n = 15 agrees well with the DMRG
results. The deviations shown in the inset are rather small. For
x = 2, it is below 10−2J⊥. Furthermore, the dispersions shown
in Fig. 10 agree with exact diagonalization results.54

We conclude that the reliable results for the uniform spin
ladders beyond x = 1 illustrate the efficiency of the deepCUT
approach for a model with an equidistant spectrum.

C. Spectral weights

Here, we use the transformation of self-adjoint observables
O (cf. Sec. IV H) to address the issue of spectral weights. We
denote the subspace spanned by the states with q quasiparticles
by QPq . As in previous work,36,37,40,65 we split the total spectral
weight at zero temperature into its contributions from the
different subspaces QPq :

Iq := ∑
|i〉∈QPq

|〈i|O|0〉|2 (70a)

= 〈0|O0
qO

q

0 |0〉 , (70b)

where O
q
p stands for the sum over all terms of the transformed

observable consisting of q creation operators and p annihila-
tion operators in normal ordering. The state |0〉 denotes the
vacuum state of the effective model, i.e., the ground-state of
the Hamiltonian.

If the subspaces QPq have been separated by the CUT,
i.e., the effective Hamiltonian does no longer mix them,
the spectral weights defined by (70) coincide with the ones
defined previously.36,37 The spectral weights correspond to the
integral over momentum and frequency of the corresponding
dynamic structure factor Sq (k,ω) where the subscript q denotes
the contribution of the subspace QPq . Thus, separate sum
rules exist for each QPq . Such a split up is only possible
because the dynamics does not mix the subspaces according
to the above assumption. We recall that the dynamic structure
factors encode the response of various inelastic scattering
experiments.

If the subspaces QPq are not or not all separated, the equal-
time definition Eq. (70) is still well defined. But, Iq can no
longer be interpreted as the sum rule of Sq(k,ω) because the
subspaces mix in the course of the dynamics induced by the
Hamiltonian. Nevertheless, the values Iq provide a plausible
measure of the importance of the subspaces of different number
of excitations. A large spectral weight for low numbers of
quasiparticles indicates that results of scattering experiments
can be understood from the spectral densities involving only
low numbers of quasiparticles.

In this work, we concentrate on the spectral weights for the
observables

OI = S
L,z
0 , (71a)

OII = SL
0 · SL

1 , (71b)

OIII = SL
0 · SR

0 (71c)

to illustrate the transformation of observables. The observable
OI induces a local spin S = 1 excitation which can be studied
experimentally by inelastic neutron scattering.38,39,53 The

observables OII and OIII induce S = 0 excitations which
can be studied by optical probes, e.g., Raman scattering35 or
infrared absorption,34,52 in polarizations parallel and perpen-
dicular to the ladder, respectively. Because triplons are S = 1
states, both observables OII and OIII induce no contributions
in the one-triplon channel: I1 = 0. The calculation of the
corresponding spectral densities Sq(k,ω) is left to future
studies.

Since the description in terms of triplons on rungs is
obviously best for low values of x, we expect that more and
more triplons need to be addressed upon increasing x. To
assess the relative importance of different triplon channels,
we introduce the relative weights Iq,rel = Iq

Itot
. They can be

calculated using the sum rule

Itot :=
∞∑

q=1
Iq = 〈0|OO|0〉 − 〈0|O|0〉2 (72)

for the total spectral weight Itot. For the observables defined in
Eqs. (71), the total weights are given by

I I
tot = 1

4
, (73a)

I II
tot = 3

16
− Y

4
− Y 2

4
, (73b)

I III
tot = 3

16
− Z

2
− Z2 (73c)

with the variables

Y := 2 〈0| SL
0 · SL

1 |0〉 = ∂E0

∂x
, (74a)

Z := 〈0| SL
0 · SR

0 |0〉 = E0 − x · ∂E0

∂x
, (74b)

where we use the ground-state energy per rung E0.
We focus on the spectral weights in the first four-triplon

(four-quasiparticle) channels I1, I2, I3, and I4 up to large
values of the relative leg coupling x = 3 using deepCUT. In
this region, a complete decoupling of all subspaces using η̂pc

or η̂4 is no longer possible because divergences occur in the
numerical integration of the flow. This problem is well known
from sCUT; it stems from the overlap of continua of different
quasiparticle number.48,60,61 In this situation, the sorting of
quasiparticle spaces ascending by energy is no longer possible.
In the perturbative evaluation of epCUT, no divergencies
appear if the energies in H0 are separated and indeed ordered
according to ascending number of quasiparticles because the
hierarchy in Eq. (29) precludes any feedback of high-order
coefficients to low-order coefficients. In the alternating spin
ladder, the epCUT based on the quasiparticle number must be
modified for y � 3. But, we stress that this reflects a more
sophisticated physics which must be considered in the choice
of the generator. It does not represent a conceptual problem of
epCUT.

To avoid convergence problems due to overlapping continua
in deepCUT, we aim only at decoupling subspaces with at
most two quasiparticles using η̂2 while keeping monomials
linking subspaces with higher number of quasiparticles, for
instance, QP3 ↔ QP5. As a consequence, the observables are
transformed to a quasiparticle basis where three and four
quasiparticle states still couple to other subspaces.
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FIG. 12. (Color online) Spectral weights of the uniform spin ladder for different observables defined in Eqs. (71) and numbers of triplons
vs relative leg coupling x. Panel (a) shows the S = 1 observable O I; panels (b) and (c) show the parallel and perpendicular S = 0 observables
O II and O III. The calculations were carried out to order 8 for the modified observables x · O I, x · O II, and x · O III using deepCUT with the
generator scheme η̂2.

The spectral weights for the S = 1 observable OI depicted
in Fig. 12(a) agree well with pCUT results16,37,62 for small
values of x. Note that only the one- and the two-quasiparticle
channels can be compared quantitatively because the pCUT
separated also the three- and four-quasiparticle subspaces, but
the present calculation does not.

For OI, most weight is concentrated in the first two
quasiparticle channels. Even at x = 3, the one-triplon channel
still contains 57.9% of the total weight. The relative weight
of the two- and three-triplon channels rises up to 35.2%
and 11.3%, respectively. The four-triplon weight remains
negligible. The sum rule is slightly violated because the
accumulated relative weights exceed 100%. This inaccuracy
is related to the finite order of calculation. The degree of the
violation of the sum rule can be used as a measure for the
reliability of the results. Even at x = 3, the excess weight is
only 5.5%.

Figure 12(b) shows the spectral weights Iq for the S = 0
observable OII. Since triplons have spin S = 1, there can not
be any weight in the one-triplon channel. Instead, most weight
is concentrated in the two-triplon channel which agrees well
with pCUT results.16,36,37,62 Compared to OI, the three-triplon
channel is much more pronounced, displaying a relative weight

of 44.4% at x = 3. At this value, the sum rule is fulfilled within
6.7%.

The observable O III is symmetric with respect to the
ladder’s centerline. This implies that this observable does not
change the parity of a state.36,37 A single triplon is an odd
excitation with respect to the ground-state. Hence, OIII can
create or annihilate triplons only in pairs. There is no weight
in odd channels in Fig. 12(c). As a consequence, the spectral
weight is distributed over the two- and four-triplon channels
only. Our results do not indicate a sizable contribution from six
and more triplons, but this has not been studied quantitatively.
At x = 3, the sum rule is violated by 7.5%. Indeed, this
violation sets in at about x = 0.6 when the four-triplon weight
becomes significant. Thus, we presume that the latter is a bit
overestimated, but we could not identify the mechanism for
this effect. The perturbative results for the weights fulfill the
sum rule to the required order.

VI. RESULTS FOR ALTERNATING SPIN LADDER

A. Ground-state energy

For J o
⊥ �= J e

⊥, the ground-state energy is calculated up to
order 16. Due to the doubled unit cell, only a slightly lower
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FIG. 13. (Color online) Ground-state energy per rung E0 of the
alternating spin ladder vs relative leg coupling x for various values of
y ∈ {1,1.1,1.2,1.3,1.4,1.5} and various evaluation techniques based
on the DES in order 16. The highest curve at x = 0 is y = 1 and
the lowest curve is y = 1.5. Again, the direct evaluation [dark gray
(blue) line] yields a much more stable and reliable extrapolation
of the plain series (black line) than the various Padé extrapolants
(orange line).

order can be reached than for the uniform spin ladder. Roughly,
we need double the number of coefficients for the alternating
spin ladder. The ground-state energy per rung is given by
E0 = h0

2 .
The perturbative results from epCUT are shown in Fig. 13.

As expected, the ground-state energy decreases upon rising
y. The black lines represent the results of the plain series for
various y. The coefficients are given in Table VI. The light
gray (orange) lines correspond to various Padé extrapolants.
The plain series is reliable up to x ≈ 0.75 for y = 1 and up
to x ≈ 0.85 for y = 1.5. So, the x up to which the series is
reliable depend on the value of y. Since a larger value of y

supports the dominance of the unperturbed Hamiltonian H0,
it is clear that an increasing y supports the validity of the
perturbation. The dark gray (blue) lines represent the results
of the deepCUT. These results again represent a very robust
extrapolation of the perturbative results up to larger x.

To show the efficiency of the epCUT, the results for the
ground-state energy per rung are compared to the results of
an sCUT calculation and a DMRG (Refs. 77–79) calculation.
The sCUT was performed with the ground-state generator and
a d = (12,10,10,6,6,5,5,4,4) truncation. The DMRG results
(L = 20,40, . . . ,100, m = 100) are extrapolated according
to Eq. (65). Figure 14 compares the results of the various
approaches. They agree very well with one other. The
deviations between the results of the direct evaluation and the
DMRG calculation are small (see upper inset). For x = 1.5,
the deviation is less than 10−3J⊥.

B. Dispersion

The dispersion is calculated up to order 13 for the
alternating ladder. An important step is the Fourier transform of
the hopping in the one-triplon sector of Heff . But, the doubled
unit cell has to be taken into account which halves the Brillouin
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FIG. 14. (Color online) Ground-state energy per rung E0 of
the alternating spin ladder vs relative leg coupling x for y = 1.2
for various methods. Depicted are the results of the perturbative
evaluation (order 16; black, solid line), the direct evaluation (or-
der 16; black, dashed line), a high-level sCUT calculation [d =
(12,10,10,6,6,5,5,4,4), light gray (orange), solid line], and a DMRG
calculation [dark gray (blue), solid line]. The direct evaluation agrees
very well with the sCUT and the DMRG results. The deviation
|�E0| = |E0,direct − E0,DMRG| between the results of the DMRG and
of the direct evaluation is shown in the lower inset.

zone. In return, the dispersion acquires two branches reading as

ω±(k) = Mee + Moo

2
±

√
(Mee − Moo)2

4
+ M2

eo, (75)

where Mij stands for the Fourier transform of the hopping
processes from a rung of parity i to a rung of parity j .

Figure 15(a) displays the dispersions for x = 0.5 and
various values of y (see also Table VII). The solid lines
represent y = 1, the dashed ones y = 1.2, and the dotted ones
y = 1.4. The dark gray (blue) lines stand for directly evaluated
results and the black lines for the perturbatively evaluated
ones. For x = 0.5, the plain series is used. Both results agree
very well. For y = 1, we retrieve the uniform ladder and the
two branches meet at k = π

2 . As expected, the branches split
at k = π

2 once y > 1 holds due to the reduced translational
symmetry.

To show the efficiency of the epCUT, the dispersion
relations for y = 1.2 are compared to the dispersion from an
sCUT calculation in Fig. 16. The sCUT was performed with the
generator η1 and the truncation d = (12,10,10,6,6,5,5,4,4).
The dispersions match perfectly. The deviation between sCUT
and the perturbative evaluation is less than 10−3J⊥. The
differences in the upper branch are larger than those in the
lower branch.

Furthermore, the gap for y = 1.2 is compared to the gap
obtained by a DMRG calculation.77–79 The finite-size scaling
is carried out again based on Eq. (68). In Fig. 17, the solid black
line shows the perturbative result and the dashed black line the
result of the deepCUT. The result of the DMRG calculation is
depicted as solid dark gray (blue) line. The deviations between
the deepCUT and the DMRG calculation are shown in the
inset. Again, the results agree very well, e.g., the deviation is
less than 10−2J⊥ even at x = 2.

125113-19



H. KRULL, N. A. DRESCHER, AND G. S. UHRIG PHYSICAL REVIEW B 86, 125113 (2012)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.1 0.2 0.3 0.4 0.5

ω
/J

⊥

k [π]

(a)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0.0 0.1 0.2 0.3 0.4 0.5

ω
/J

⊥

k [π]

(b)

FIG. 15. (Color online) (a) Dispersion ω(k) of the alternating spin ladder for x = 0.5 and various values of y ∈ {1,1.2,1.4} (solid, dashed,
dotted lines; order 13). The direct evaluation is depicted by dark gray (blue) lines and the perturbative one by black lines, which are hardly
visible because they are just below the other lines. For the perturbative results, the plain series are used. (b) Dispersion ω(k) of the alternating
spin ladder for x = 1 and various values of y ∈ {1,1.2,1.4} (solid, dashed, dotted lines; order 13). The direct evaluation is depicted by dark
gray (blue) lines and the perturbative one by black lines. For the perturbative results, the plain series in the internal parameter pa(x) defined in
Eq. (76) without any further extrapolation is used. The upper branches differ slightly, but in general both evaluation techniques agree well.

The dispersions at x = 1 of the direct and of the perturbative
evaluation are plotted in Fig. 15(b). The perturbative results
are rendered using the plain series in an internal parameter.80

The parameter, however, defined in Eq. (67) does not work
because at y �= 1 it behaves like p(x) ∝ x2 and not linearly in
x. Thus, the series in x can not be reexpressed in a series in p.
So, we modify the internal parameter

pa(x) := 1 − 1

1 + y
· (Mee + Moo − 2|Meo|) , (76)
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FIG. 16. (Color online) Dispersion ω(k) of the alternating spin
ladder for x = 0.5 and y = 1.2. Displayed are the direct evaluation
(order 13; black, dashed line) and the perturbative one (order 13;
black, solid line), and an sCUT result [d = (12,10,10,6,6,5,5,4,4),
dark gray (blue), solid line]. All dispersions lie on top of each other.
The deviations |� ω

J⊥ | = | ωdirect
J⊥ − ωpert

J⊥ | (black line) and |� ω

J⊥ | =
| ωsCUT

J⊥ − ωpert

J⊥ | [blue(dark gray) line] are shown in the inset. The solid
(dashed) lines depict the lower (higher) branch.

where all matrix elements are taken at vanishing wave vector
k = 0. We choose this parameter because it reproduces the
previous definition (67) for y = 1 and for x → ∞. In addition,
it fulfills pa ∝ x for x → 0 for all values of y. Otherwise,
the extrapolation can be performed as before.80 The Fourier-
transformed matrix elements Mij (x) are obtained by robust
dlog-Padé extrapolations. The results of deepCUT and of the
series in this internal parameter agree very well.

The epCUT results for the alternating ladder exemplify the
efficiency of this CUT for a system with a nonequidistant
spectrum in H0. Thereby, the range of applicability of
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FIG. 17. (Color online) Gap �(x) of the alternating spin ladder
vs relative leg coupling x for y = 1.2 from the perturbative evaluation
(order 13; black, solid line), the direct evaluation (order 13; black,
dashed line), and a DMRG result [dark gray (blue), solid line]
extrapolated to the thermodynamic limit L = ∞ by finite-size scaling
∝ 1

L2 . The results agree well. The deviations between deepCUT and
DMRG results are plotted in the inset.
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perturbation by CUTs is crucially enhanced because the
previous pCUT (Refs. 14 and 15) is restricted to equidistant
unperturbed spectra.

VII. CONCLUSIONS

In this article, we presented a methodological development
and illustrated it for a well-understood model. We extended the
previously known perturbative continuous unitary transforma-
tion (pCUT) in two ways. First, we formulated the perturbative
realization of the CUTs directly in second quantization.
Thereby, the unperturbed part is no longer restricted to
an equidistant spectrum of energy eigenvalues. The direct
expansion of all coefficients in the effective Hamiltonian is not
efficient enough. But, by tracking the powers in the expansion
parameter x of all the physical processes, it is possible to
identify the relevant ones for the low-energy effective model:
ground-state energy, single-quasiparticle dispersion, and two-
quasiparticle interactions. We could show that this leads to an
efficient and competitive approach to obtain effective models.
Their parameters are computed as series in the expansion
parameter. For distinction, we named the enhanced approach
enhanced perturbative CUT (epCUT).

Second, we found that the system of differential flow
equations, which has been reduced to provide the perturbative
series representation of the effective model, can also be directly
evaluated. It appears that this directly evaluated perturbative
CUT (deepCUT) yields a very robust and reliable way to
exploit the information in the perturbative differential flow
equations. In some sense, one can think of it as a robust
extrapolation although we stress that it is not an algorithm
applied to a series. The deepCUT provides the parameters of
the effective models for given initial Hamiltonian. Each set of
initial parameters requires a numerical integration of the flow
equations, which is a moderate numerical task. The essential
effort lies in deriving the system of differential flow equations,
which is the same as for the epCUT.

The epCUT and the deepCUT are illustrated by the very
simple model of a perturbed harmonic oscillator where all
equations can be written explicitly. Thereby, an example with
infinite-dimensional local Hilbert space is given, although the
unperturbed spectrum is equidistant for the sake of simplicity.
The equidistance is not an essential point since two coupled
harmonic oscillators with differing eigenenergies coupled
by quartic terms would constitute another straightforward
example of only slightly higher complexity, but with non-
equidistant unperturbed spectrum.

Both abstract key results were also illustrated by calcu-
lations for antiferromagnetic S = 1/2 spin ladders with two
legs. Two types of spin ladders were studied. The expansion
parameter is the leg coupling relative to the (smallest) rung
coupling. The uniform spin ladder with the same value of
the rung coupling is the standard model, which is very well
studied. The alternating spin ladder with alternating rung
couplings has not yet been studied to our knowledge. For the
present purposes, it constitutes a model with a nonequidistant
unperturbed spectrum if the perturbation is set up around the
rung Hamiltonian.

For the uniform spin ladder, the known series coefficients
could be retrieved by epCUT. The corresponding results for

the alternating spin ladder have not been published elsewhere.
They show that general unperturbed spectra can be treated by
epCUT.

The data obtained by deepCUT illustrate that this approach
yields surprisingly robust results. The uniform spin ladder
could be treated up into the strong-leg limit with values of
the relative leg coupling x = J‖/J⊥ of up to x = 3. This
is a parameter regime which was not accessible by CUTs
before.37,38

The limit of the applicability of deepCUT can be understood
in terms of the correlation length. A deepCUT calculation
in order n in a perturbation linking adjacent sites allows us
to capture processes up to the range n · a where a is the
lattice constant. Hence, reliable results can be expected if the
correlation length ξ = v/� is lower than n · a. The deepCUT
results for the alternating ladder are also very robust, although
a little less than for the uniform ladder.

Further work on the precise preconditions required for the
applicability of epCUT and deepCUT is called for. Also,
their applicability to two- or higher-dimensional systems
deserves to be studied in the future. The deepCUT approach
works on the level of monomials of creation and annihilation
operators, i.e., in second quantization. Thus, essentially all
symmetries of the lattice problem under study can be preserved
by construction. A large variety of the generators can be
realized.

In a nutshell, we advocate two approaches to derive
effective models in a systematically controlled way in this
article. They have been illustrated for a perturbed harmonic
oscillator and spin ladders, and we expect that applications to
many other models will soon be possible.
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APPENDIX A: EXTENDED A POSTERIORI
SIMPLIFICATION RULE

The upper bound Õmax for the maximum order can be
reduced by considering the real-space structure of the mono-
mial. For clarity, we restrict ourselves to one-dimensional
models. As for the basic simplification rule, we discuss
the effect of commutations with first-order terms present in
the initial Hamiltonian. This is sufficient because any more
complicated monomials in the generator have been induced
by commutations of a number of first-order terms. Hence,
their gain in number of involved quasiparticles is paid for by
a correspondingly higher order in x. Thus, one may safely
restrict the consideration to the basic building blocks present
in the initial Hamiltonian.

For the spin ladder in terms of triplon operators [Eq. (14d)],
a commutation with the generator η(1) cancels at most two local
creation or annihilation operators on adjacent sites. Therefore,
sparse and extended monomials require more commutations in
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k1 = 1 k2 = 3 k3 = 2 k4 = 1

FIG. 18. Decomposition of the sites with creation operators (or the annihilation operators, respectively) of a monomial into linked subclusters
ki and its covering with first-order generator terms. Each circle stands for a rung of the spin ladder. Filled circles represent rungs where the
local action of the monomial differs from identity. At most, two adjacent local operators can be canceled by a single commutation with η(1);
this is represented by ellipses.

order to reduce their local operators compared to monomials
with the same numbers of operators which are more localized
in real space.

At first, we study the ground-state energy per rung, i.e.,
the coefficient of the identity operators summed over all
rungs, in highest order. The clusters of the creation and of
the annihilation operators are treated separately. Both are
decomposed into linked subclusters of size kc

i and ka
i (see

Fig. 18). To cancel all local operators, each subcluster needs to
be covered by

⌈
ki

2

⌉
first-order generator terms. In conclusion,

K0 =
∑

i

⌈
ki

2

⌉
(A1)

commutations with η(1) are needed for the clusters of creation
or annihilation operators to be reduced to the coefficient of the
identity operator. This argument leads to the extended upper
bound for the maximum order

Õmax = n − Kc
0 − Ka

0 . (A2)

For a single linked cluster, this formula resembles the result
obtained for the basic simplification rule (52).

The formula (A2) can be generalized to

Õmax = n − Kc
q − Ka

q (A3)

for the subspace QPq of states with q quasiparticles leading
to modified cluster sums Kq . Let q be the number of the
targeted subspace with the highest number of quasiparticles.
This means that q is the maximum number of local creation
and annihilation operators allowed in a monomial targeted up
to order n. Terms which affect more quasiparticles have to be
reduced to affecting at most q quasiparticles by commutations
with η(1) until at most q local creation and annihilation
operators are left. To obtain an upper bound Õmax, one has to
choose q positions for local operators to be kept in the cluster in
such a way that the other creation and/or annihilation operators
can be canceled by a minimum number of commutations. To
this end, one also has to consider that the commutations with
hopping terms stemming from H (1) may also shift creation
and/or annihilation operators so that they form adjacent pairs
which can be canceled by pair creation or annihilation. But, it
turns out that this mechanism can reduce the cluster sum K0

at most by unity, while the elimination of a pair of adjacent
local operators always reduces the cluster sum by unity. Hence,
the latter process dominates and provides the correct upper
bound Õmax.

For the hopping in the symmetric ladder model, the above
approach means to select sites at the edges of odd subclusters

first. This saves one commutation for each local operator kept.
Let α be the number of odd clusters. The cluster sum K0 is
reduced in this way by

d1 = min(α,q). (A4)

If more local operators remain, i.e., α < q, the most efficient
way to place them is in pairs on even subclusters. This reduces
the cluster sum additionally by

d2 =
⌊

q − d1

2

⌋
, (A5)

where �y� is the largest integer which is still smaller or equal
to y.

In conclusion, the cluster sums are reduced when one is
aiming at higher quasiparticle subspaces according to

K ′
q = K0 − d1 −

⌊
q − d1

2

⌋
= K0 −

⌊
q + d1

2

⌋
. (A6a)

To avoid unreasonable negative results, this expression has to
be checked against zero to obtain the final result

Kq = max(K ′
q,0). (A6b)

We remark that the extended simplification rule can be
easily adapted to other models with monomials of first order in
the generator to create or annihilate an arbitrary number �QP
of quasiparticles on adjacent sites. For further refinements
of Õmax, one may consider the triplon polarizations x,y,z as
well. But, the derivation and application of an appropriate
polarization-sensitive simplification rule is beyond the scope
of this article, which aims primarily at the proof-of-principle
demonstration of epCUT and deepCUT.

APPENDIX B: BASIC A PRIORI SIMPLIFICATION RULE

As stated in Sec. IV F4, the performance of the epCUT
algorithm can be enhanced significantly by avoiding the
computation of unnecessary commutators. For this purpose,
we consider the two normal-ordered products T D and DT
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in

[T ,D] = T D − DT (B1)

separately. Here, we discuss T D explicitly; DT is treated in
the same way. For an analog of the basic simplification rule
(Sec. IV F4), we estimate the minimum numbers of creation
and annihilation operators cT D and aT D which can appear
in the monomials of the normal ordering of T D. We use
the numbers cT ,cD,aT , and aD from each factor as input. At
most,

sT D = min(aT ,cD) (B2)

pairs of local operators can cancel in the process of normal
ordering. Hence, it follows

cT D � cT + cD − sT D, (B3a)

aT D � aT + aD − sT D. (B3b)

Using these estimates in Eq. (52), one obtains an upper
bound

Õmax,T D = n −
⌈

max

(
cT + cD − sT D

2
− q,0

)⌉

−
⌈

max

(
aT + aD − sT D

2
− q,0

)⌉
(B4)

with q being the number of the targeted quasiparticle subspace.
Considering also the inverse product DT , the commutator
[T ,D] does not need to be calculated while evaluating
∂�H

(m) if

m > max(Õmax,T D,Õmax,DT ) (B5)

holds.
As an example, we consider the second-order calculation

(n = 2) given in Tables III and IV for the ground-state
energy (q = 0). Calculating ∂�H

(2), the commutator of the
monomials

T = t
†
x,0t

†
x,1, (B6a)

D = t
†
y,0t

†
y,1tz,0tz,1 (B6b)

with Omin(T ) = Omin(D) = 1 occurs. The numbers of local
creation and annihilation operators are given by

cT = 2, aT = 0, (B7a)

cD = 2, aD = 2. (B7b)

In the normal ordering of T D, no local operator can cancel
(sT D = 0), implying cT D = 4 and aT D = 2. For the product
DT , sDT = 2 pairs of local operators may cancel implying
cT D � 2 and aT D � 0. Using Eq. (B4), we find

Õmax,T D = n − �2� − �1� = −1, (B8a)

Õmax,DT = n − �1� − �0� = +1. (B8b)

Since the commutator [T ,D] yields monomials with a max-
imum order of at most 1 in the calculation of ∂�H

(2), it can

not yield relevant contributions. Hence, it does not need to be
evaluated at all.

But, in a calculation of order n > 2 or aiming at a higher
quasiparticle subspace q > 0, Eq. (B4) yields higher upper
bounds for the maximum order and thus the commutator must
be evaluated explicitly. Note that this basic a priori rule is
only sensitive to changes of the quasiparticle numbers. It can
not anticipate that the commutator in this example actually
vanishes due to other properties of the hard-core algebra of the
triplons.

APPENDIX C: EXTENDED A PRIORI SIMPLIFICATION
RULE

The real-space structure of the commutator arguments T

and D allows us to extend the above a priori rule in analogy
to the extended a posteriori rule in Appendix A. Let CT and
CD be the clusters of the creation operators in T and in D,
respectively. Analogously, AT ,AD are the clusters of their
respective annihilation operators. Normal ordering the product
T D can cancel local operators only on the intersection

ST D = AT ∩ CD. (C1)

Due to the locality of the triplon algebra, the commutator
vanishes if none of the clusters overlap

ST D = ∅ ∧ SDT = ∅. (C2)

Thus, the normal-ordered product T D definitely has local
creation operators on the union cluster

CT D ⊇ CT ∪ (CD\ST D) (C3a)
and local annihilation operators on the union cluster

AT D ⊇ AD ∪ (AT \ST D) . (C3b)

There may be additional creation or annihilation operators,
but no general statements can be made on their existence. In
this sense, the right-hand sides of Eqs. (C3a) and (C3b) are
minimum clusters for the normal-ordered product T D. They
can be used in Eq. (A3) to obtain an upper bound for the
maximum order Õmax,T D and the corresponding reasoning is
used to obtain Õmax,DT . This makes it possible to avoid the
computation of the commutator [T ,D].

Moreover, one can use the intersections ST D and SDT to
exploit the hard-core property of the triplons: The normal-
ordered product T D will vanish if CT and CD\ST D are not
disjoint or likewise if AD and (AT \ST D) are not disjoint
because the creation or annihilation of two triplons is attempted
on the same site.

Although it is less strict, the basic a priori has the advantage
to be much more lightweight in comparison to the extended
a priori rule because it requires mere counting of operators.
Furthermore, it can be used very efficiently in the context of
translation symmetry. Because it does not rely on the real-space
structure of a term, it can be applied to all terms in the
translation group in contrast to the extended rule. Therefore,
for best performance, it turns out to be most efficient to
combine both rules in practice.
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APPENDIX D: SERIES EXPANSION OF GROUND-STATE ENERGY

TABLE VI. Coefficients of the perturbative evaluation for the ground-state energy per rung for various y = J o
⊥

J e
⊥

.

Order y = 1 y = 1.1 y = 1.2 y = 1.3 y = 1.4 y = 1.5

0 −0.75 −0.787 5 −0.825 −0.862 5 −0.9 −0.937 5
1 0 0 0 0 0 0
2 −0.375 000 00 −0.357 142 86 −0.340 909 09 −0.326 086 96 −0.312 500 00 −0.300 000 00
3 −0.187 500 00 −0.170 068 03 −0.154 958 68 −0.141 776 94 −0.130 208 33 −0.120 000 00
4 0.023 437 50 0.020 062 13 0.017 021 97 0.014 343 65 0.012 013 26 0.010 000 00
5 0.175 781 25 0.144 440 38 0.119 527 36 0.099 575 78 0.083 479 30 0.070 400 00
6 0.155 273 44 0.122 036 81 0.097 508 10 0.079 027 42 0.064 853 70 0.053 813 34
7 −0.053 649 90 −0.039 213 98 −0.028 004 12 −0.019 557 53 −0.013 300 19 −0.008 714 67
8 −0.276 306 16 −0.196 385 49 −0.141 845 65 −0.103 970 06 −0.077 245 16 −0.058 110 99
9 −0.236 884 12 −0.162 170 18 −0.115 168 91 −0.084 256 61 −0.063 152 54 −0.048 287 63
10 0.160 468 58 0.101 490 05 0.063 340 61 0.039 030 35 0.023 656 44 0.013 982 25
11 0.585 320 60 0.361 069 18 0.229 676 69 0.150 060 81 0.100 386 28 0.068 583 46
12 0.434 940 50 0.260 284 93 0.165 647 20 0.110 398 61 0.076 141 42 0.053 880 99
13 −0.502 659 13 −0.276 747 49 −0.153 513 33 −0.085 783 36 −0.048 202 40 −0.027 149 62
14 −1.415 935 60 −0.759 552 67 −0.427 522 22 −0.250 462 74 −0.151 743 18 −0.094 588 86
15 −0.844 144 14 −0.442 610 65 −0.253 543 03 −0.154 420 48 −0.098 024 26 −0.064 025 80
16 1.609 701 22 0.773 068 65 0.382 948 40 0.194 996 67 0.101 714 76 0.054 168 03
17 3.673 813 73

APPENDIX E: SERIES EXPANSION OF HOPPING TERMS

TABLE VII. Coefficients of the perturbative evaluation for the dispersion for y = 1 and 1.2.

t0 t1

Order y = 1 y = 1.2 (Mee) y = 1.2 (Moo) y = 1 y = 1.2 (Meo)

0 1 1 1.2
1 0 0 0 0.5 0.5
2 0.750 000 00 0.681 818 18 0.681 818 18 0 0
3 0.375 000 00 0.309 917 36 0.309 917 36 −0.125 000 00 −0.103 519 67
4 −0.203 124 99 −0.142 619 05 −0.159 863 42 −0.156 250 00 −0.117 879 54
5 −0.625 000 00 −0.415 570 85 −0.437 225 11 −0.101 562 50 −0.070 186 06
6 −0.500 000 00 −0.309 234 90 −0.324 594 62 0.046 875 00 0.028 533 43
7 0.296 630 86 0.155 369 31 0.159 886 61 0.164 672 85 0.093 287 77
8 1.120 300 30 0.564 472 72 0.591 490 35 0.127 792 36 0.066 804 55
9 0.900 016 80 0.427 143 78 0.461 501 60 −0.080 708 50 −0.037 597 27
10 −0.754 481 08 −0.305 710 50 −0.292 832 65 −0.249 619 96 −0.108 546 57
11 −2.446 313 35 −0.954 893 11 −0.981 162 81 −0.086 501 72 −0.035 561 42
12 −1.601 540 19 −0.601 663 96 −0.650 438 31 0.412 191 52 0.150 430 06
13 2.596 971 76 0.821 615 61 0.797 298 74 0.696 430 46 0.237 289 04
14 6.307 306 82 0.033 148 83
15 2.833 003 46 −1.467 494 7

t2 t3
2 −0.125 000 00 −0.113 636 36 −0.113 636 36
3 −0.125 000 00 −0.103 305 79 −0.103 305 79 0.062 500 00 0.051 759 83
4 −0.015 625 00 −0.012 274 00 −0.011 204 58 0.062 500 00 0.047 151 82
5 0.101 562 50 0.069 242 76 0.069 227 55 −0.046 875 00 −0.032 052 90
6 0.085 937 50 0.057 859 42 0.048 558 59 −0.158 203 13 −0.098 612 60
7 −0.086 425 78 −0.040 904 35 −0.057 045 74 −0.111 145 02 −0.063 431 40
8 −0.252 372 74 −0.129 527 72 −0.131 884 02 0.137 634 28 0.069 936 28
9 −0.130 748 75 −0.078 130 24 −0.048 336 01 0.370 344 16 0.173 327 12
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TABLE VII. (Continued.)

t2 t3

Order y = 1 y = 1.2 (Mee) y = 1.2 (Moo) y = 1 y = 1.2 (Meo)

10 0.344 519 61 0.124 605 77 0.168 087 51 0.218 644 62 0.095 687 96
11 0.737 790 87 0.289 871 33 0.294 257 93 −0.402 225 62 −0.152 019 14
12 0.331 472 82 0.159 441 78 0.096 548 11 −0.902 684 54 −0.319 080 32
13 −0.994 866 40 −0.278 854 42 −0.354 913 62 −0.339 633 71 −0.117 786 55
14 −1.987 835 36 1.364 732 69
15 −0.707 918 41 2.414 318 50

t4 t5
4 −0.039 062 50 −0.031 161 38 −0.027 926 39
5 −0.046 875 00 −0.033 177 47 −0.031 210 78 0.027 343 75 0.018 807 95
6 0.035 644 53 0.025 485 58 0.019 499 55 0.039 062 50 0.024 439 38
7 0.134 521 48 0.081 155 56 0.072 107 83 −0.030 212 40 −0.017 233 25
8 0.084 526 06 0.042 730 61 0.044 376 08 −0.132 858 28 −0.068 827 35
9 −0.168 914 79 −0.088 038 78 −0.071 288 15 −0.093 558 31 −0.044 186 94
10 −0.378 744 13 −0.170 650 03 −0.153 935 94 0.182 161 33 0.077 721 44
11 −0.125 216 64 −0.046 503 05 −0.052 717 84 0.441 067 36 0.172 113 08
12 0.635 202 41 0.241 432 38 0.207 281 13 0.168 400 86 0.061 735 47
13 1.097 589 09 0.373 620 81 0.340 616 15 −0.748 757 64 −0.239 099 40
14 0.106 611 41 −1.347 086 00
15 −2.192 845 84 −0.124 067 71

t6 t7
6 −0.020 507 81 −0.013 988 12 −0.011 844 53
7 −0.034 179 69 −0.020 913 11 −0.018 190 31 0.016 113 28 0.009 216 03
8 0.024 787 90 0.015 211 49 0.010 954 80 0.030 761 72 0.015 994 04
9 0.130 859 37 0.068 170 47 0.056 216 27 −0.020 094 87 −0.009 573 93
10 0.104 562 68 0.046 481 22 0.043 287 35 −0.129 479 65 −0.055 813 97
11 −0.190 360 49 −0.086 384 34 −0.063 967 35 −0.116 825 85 −0.045 749 93
12 −0.502 045 69 −0.195 721 16 −0.163 284 47 0.197 402 78 0.070 341 40
13 −0.208 068 81 −0.064 127 49 −0.071 306 87 0.572 104 67 0.185 667 81
14 0.903 794 96 0.268 746 40
15 1.686 527 41 −1.061 822 22

t8 t9
8 −0.013 092 04 −0.007 554 57 −0.006 182 86
9 −0.028 198 24 −0.014 687 27 −0.012 190 07 0.010 910 03 0.005 192 18
10 0.015 953 18 0.008 382 67 0.005 740 76 0.026 184 08 0.011 324 56
11 0.128 349 01 0.056 826 85 0.044 932 97 −0.012 271 87 −0.004 900 73
12 0.130 626 43 0.050 227 86 0.043 269 84 −0.127 304 13 −0.045 696 97
13 −0.200 821 20 −0.077 794 88 −0.054 996 57 −0.145 312 11 −0.047 299 19
14 −0.646 854 42 0.201 295 16
15 −0.346 984 91 0.726 014 78

t10 t11

10 −0.009 273 53 −0.004 502 84 −0.003 604 04
11 −0.024 547 58 −0.010 795 78 −0.008 699 77 0.008 008 96 0.003 172 79
12 0.008 964 06 0.004 097 73 0.002 607 78 0.023 183 82 0.008 345 36
13 0.126 256 22 0.047 148 79 0.036 338 44 −0.005 962 49 −0.002 019 14
14 0.160 704 62 −0.125 149 82
15 −0.198 700 83 −0.176 631 11

t12 t13

12 −0.007 007 84 −0.002 854 62 −0.002 249 69
13 −0.022 024 63 −0.008 142 01 −0.006 433 33 0.006 199 24 0.002 044 86
14 0.003 214 60 0.021 023 51
15 0.123 950 82 −0.000 679 34

t14 t15

14 −0.005 535 04
15 −0.020 147 53 0.004 981 53
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