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Quantum breathing mode of interacting particles in a one-dimensional harmonic trap
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Extending our previous work, we explore the breathing mode—the (uniform) radial expansion and contraction
of a spatially confined system. We study the breathing mode across the transition from weak to moderate couplings
and confirm that its frequency is not independent of the pair interaction strength (coupling parameter). We present
the results of time-dependent Hartree-Fock simulations for 2 to 20 fermions with Coulomb interaction and show
that the breathing frequency has a minimum for a small particle number. We validate the accuracy of our results,
comparing them to exact configuration interaction results for up to eight particles.
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I. INTRODUCTION

Harmonically confined few-particle quantum systems and
especially their time-dependent properties are an important
subject of experimental and theoretical research activities. For
example, correlated electrons in metal clusters1 or quantum
dots2–4 and ultracold Bose and Fermi gases in traps or optical
lattices5,6 have been investigated in recent years. Particularly,
Bose-Einstein condensation in low dimensions7 and non-
ideality (interaction) effects,8–11 including superfluidity and
crystallization,12,13 lately raised attention.

The major diagnostic of the properties of finite trapped
systems is the analysis of their collective excitations or normal
modes. This spectrum is of the same importance as atomic
or molecular spectra of conventional materials. Among the
collective excitations the breathing mode (BM) attracts special
interest, as it is easily excited experimentally9 and very
accurately measurable. At the same time, it was shown14 that
the frequency of the breathing motion—the (uniform) radial
expansion and contraction of the whole system—contains
detailed information on a variety of system properties. The
BM of a nonideal quantum system is characterized by two
frequencies. In our previous work,14 we have shown for a
two-particle system that one of those frequencies changes with
the system dimensionality, the particle spin and the strength
of the pair interaction. These results were extended15 to four
and six particles and to different inverse power law interaction
potentials w(r) ∝ r−d with d = 1,2,3.

Having concentrated, in our previous works, on the tran-
sition from weak to strong coupling, here we investigate the
influence of the particle number on the breathing frequency for
various fixed coupling strengths. For that purpose, we perform
time-dependent Hartree-Fock (TDHF) simulations for up to
N = 20 particles in a quantum statistical description. After
a short theoretical introduction, we show these new results
for finite systems and compare the frequencies for small
particle numbers to those from first-principles configuration
interaction simulations and from the solution of the time-
dependent Schrödinger equation. This comparison shows that
the TDHF data reproduce the correct trends for the breathing
frequency and can be used to study the N dependence also for
larger systems where first-principles results are not available.

As an interesting result we report that the breathing fre-
quency changes nonmonotonically with the particle number.
It reaches a minimun around N = 5, . . . ,6 for small and

moderate values of the coupling parameter. The existence of
this minimum is unexpected, and we conclude the paper by
discussing the physical origin of this effect: the existence of
a maximum of nonideality effects around these N values at a
fixed value of the coupling parameter in the trap.

II. THEORY

A. Time-dependent Schrödinger equation

We briefly recall the theoretical background of the BM.14,15

Generally, a system of N interacting particles with coordinates
r ≡ (r1, . . . ,rN ) can be described by the Hamiltonian

H0(r) =
N∑

i=1

h(ri) +
N∑

i<j

w(|ri − rj |) , (1)

where

hi = ti + v(ri) (2)

is the single-particle Hamiltonian and w(|ri − rj |) is a binary
interaction potential. The external single-particle potential
v(ri) is chosen to be harmonic,

v(ri) = 1
2m�2r2

i . (3)

v serves as a trapping potential with the trapping frequency
�. In the following, we concentrate on Coulomb-interacting
particles with equal masses m and equal charges e, e.g.,
electrons or ions. Thus the interaction potential has the form

w(|ri − rj |) = a

|ri − rj | , (4)

with a ≡ e2/(4πε0). Finally, the N -particle time-dependent
Schrödinger equation (TDSE) reads

ih̄
∂

∂t
�(r,t) =

⎡
⎣ N∑

i=1

(
− h̄2

2m

∂2

∂r2
i

+ 1

2
m�2r2

i

)

+
N∑

i<j

a

|ri − rj |

⎤
⎦ �(r,t) . (5)

For convenience, we introduce the scaled quantities r̃i = ri/ l0
and t̃ = �t , so that after omitting the tilde symbol, the TDSE
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can be written in the dimensionless form

i
∂

∂t
�(r,t) =

⎡
⎣1

2

N∑
i=1

(
− ∂2

∂r2
i

+ r2
i

)

+ λ

N∑
i<j

1

|ri − rj |

⎤
⎦�(r,t) , (6)

where l0 = [h̄/ (m�)]1/2 is the well-known oscillator length
and

λ = mal0

h̄2 (7)

is the Coulomb coupling parameter for the harmonic trap. Due
to the rescaling, there will only be dimensionless quantities
throughout this work. For example, lengths, times and energies
are given in units of l0, �−1, and h̄�, respectively. The
meaning of λ can be interpretated as follows. Defining the
scale of the potential energy as

E0 = 1
2m�2l2

0 (8)

and the mean interaction energy as

EC = a

2l0
, (9)

one finds

λ = EC

E0
. (10)

Hence λ can be understood as the ratio of the interaction energy
and the confinement energy. The influence of the value of λ is
described later in Sec. II C.

The actual excitation of the breathing mode is realized by
a fast switch of the trapping potential. For a short period
of time texc the trap frequency is decreased from � to �̃.
Characterizing the excitation strength by a small parameter η,
the time-dependent Hamiltonian thus takes the form

H (t) =
N∑

i=1

hi + η [θ (t0 − t) + θ (t − texc)] v(ri)

+
N∑

i<j

w(|ri − rj |) . (11)

The additional term contains the operator for the monopole
excitation (

∑
i r2

i ). The excitation drives the particles out
of their initial state. When the potential is restored, the
time-dependent expectation value of some quantities start to
oscillate. While a classical treatment of the breathing mode
allows for the observation of oscillating particle coordinates
ri(t), the expectation value of the quantity r = ∑

i ri is always
zero. The single-particle potential energy Epot = ∑

i v(ri),
however, has a nonvanishing expectation value, as it is
proportional to r2

i . Its oscillation is dominated by a beating
of two frequencies,14 which will be denoted ωr and ωR from
now on. Both a typical time series of the potential energy
and the rapid excitation process are demonstrated in Fig. 1.
In the next sections, we want to point out some analytically
accessible properties of the frequencies and their relations to
the coupling parameter λ.
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FIG. 1. (Color online) Exemplary time series (N = 2, λ = 1) of
the potential energy 〈Epot〉. The waveform shows a superposition of
two harmonic oscillations with the dominating frequencies ωr and
ωR . The inset demonstrates the excitation of the breathing mode,
involving a decrease of the trap frequency from � to �̃ (note the very
short time interval texc = 0.02).

B. Separation of center-of-mass motion

In the general quantum case, the system of two particles,
for arbitrary λ, possesses a universal breathing mode whose
frequency has the value ωR = 2. This is a remarkable property
as this mode does not show up at all in a classical treatment.
In the following, we generalize the derivation presented in our
previous work14 for N = 2 and show that this frequency is in-
dependent of the coupling strength, the system dimensionality,
and the particle number.

The basic idea for the solution of Eq. (6) is the introduction
of center-of-mass and relative coordinates, which allows to
split the Hamiltonian in two independent parts. The center-of-
mass coordinate is given by

R ≡ 1

N

N∑
i=1

ri , (12)

and the set of relative coordinates is

x ≡ (x1, x2, . . . ,xN−1) , (13)

with the definition xi ≡ ri,i+1 ≡ ri+1 − ri . Thus �(r,t) in
Eq. (6) is replaced by �(R,x,t). Now the transformation is
shown for each term in Eq. (6), starting with

−1

2

N∑
i=1

∂2

∂r2
i

= −1

2

(
N∑

i=1

∂2

∂R2

1

N2
+ 2

N−1∑
i=1

∂2

∂x2
i

)

= − 1

2N

∂2

∂R2
−

N−1∑
i=1

∂2

∂x2
i

. (14)

For the second term, we obtain

1

2

N∑
i=1

r2
i = 1

2
NR2 + 1

4N

N∑
i=1

N∑
k=1

r2
ik , (15)
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where r2
ik still has to be expressed in relative coordinates x.

This can be done as follows:

rik =

⎧⎪⎨
⎪⎩

∑k−1
l=i xl for i < k,∑i−1
l=k xl for i > k,

0 for i = k.

(16)

Finally, the third term takes the form

λ

N∑
i<j

1

|ri − rj | = λ

N∑
i<j

1∣∣∑j−1
l=i xl

∣∣ . (17)

As a result, the Hamiltonian can be split in two independent
contributions:

HR = − 1

2N

∂2

∂R2
+ 1

2
NR2 (18)

and

Hx = −
N−1∑
i=1

∂2

∂x2
i

+ 1

4N

N∑
i=1

N∑
k=1

r2
ik + λ

N∑
i<j

1∣∣ ∑j−1
l=i xl

∣∣ .
(19)

Hence the TDSE takes the form

i
∂

∂t
�(R,x,t) = (HR + Hx) �(R,x,t) . (20)

Separating the coordinates in the factorized wave function

�(R,x,t) = φ(R,t) ϕ(x,t) (21)

yields the independent problems

i
∂

∂t
φ(R,t) = HRφ(R,t) (22)

and

i
∂

∂t
ϕ(x,t) = Hxϕ(x,t) . (23)

The center-of-mass problem can be transformed to the standard
oscillator form

i
∂

∂t
φ(R̃,t) =

(
−1

2

∂2

∂R̃2
+ 1

2
R̃2

)
φ(R̃,t) , (24)

where the rescaling R̃ = √
NR has been used. Now consider

an initial state, which can be expressed by

φ(R̃,t = 0) =
∑

n

cnφn(R̃) , (25)

where φn is a solution of(
−1

2

∂2

∂R̃2
+ 1

2
R̃2

)
φn(R̃) = Enφn(R̃) . (26)

The associated energy eigenvalues are well known: En = n +
d/2 for all n ∈ {0,1,2, . . . }, and the time evolution of the state
in Eq. (25) is given by

φ(R̃,t) =
∑

n

cnφn(R̃)e−iEnt . (27)

The breathing mode manifests itself in the dynamics of
the quantity r2 = ∑N

i=1 r2
i . Using center-of-mass and relative

coordinates, this quantity can be expressed according to

Eq. (15). For the first term in Eq. (15), a breathing frequency
can be obtained by determining the expectation value

〈R2〉(t) = N−1/2〈R̃2〉(t) . (28)

The result for this expression is

〈R̃2〉(t) =
∫

dR̃ dx �∗(R̃,x,t)R̃2�(R̃,x,t)

=
∑
i,j

c∗
i cj e−i(j−i)t (R̃2)ij , (29)

with

(R̃2)ij =
∫

dR̃ φ∗
i (R̃)R̃2φj (R̃) . (30)

It can be shown with a reduction to the matrix elements of a
one-dimensional harmonic oscillator that only the cases i = j

and i = j ± 2 contribute to the last summation in Eq. (29)
(the case i = j does not correspond to an oscillation). The only
frequency appearing in the oscillation is thus given by ωR = 2.
As the coupling parameter λ does not appear in the center-of-
mass problem, the center-of-mass mode with frequency ωR =
2 is present for all couplings. In summary, we have shown that
the frequency ωR is universal, but its amplitude tends to vanish
for large particle numbers since it is proportional to N−1/2.

C. Influence of coupling parameter and limiting cases

As we have seen in the last section, the introduction of
relative and center-of-mass coordinates has led to a separation
ansatz. The center-of-mass Hamiltonian HR yields a breathing
frequency ωR = 2. It has already been mentioned that the
breathing motion also exhibits another frequency ωr . The
properties of this frequency are an interesting subject of
numerical analysis. Only in two limiting cases, it is known
from analytical calculations that the values of ωr are universal.
In the pure quantum limit, (ideal system, λ = 0), the particles
are completely uncorrelated. As the interaction term in the
Hamiltonian is missing, a two-fold degenerate frequency
ωr = ωR = 2 occurs. On the contrary, in the strongly coupled
classical limit, λ → ∞, the frequency ωr has the value√

3.16–18 In both cases, the frequency does not depend on
the particle number or the dimensionality of the system. For
arbitrary values of the coupling parameters, ωr is expected to
be in the interval [

√
3,2]. To clarify the influence of the system

parameters such as the coupling parameter λ and the particle
number N on ωr is one of the main goals of our investigation.

III. SIMULATION METHODS

While the solution of the time-dependent Schrödinger
equation could only be performed for two particles, the
frequencies for up to eight particles are still accessible through
exact configuration interaction calculations. These results are
used to support the accuracy of time-dependent Hartree-Fock
calculations, which have been performed for even higher
particle numbers (up to 20).

Due to the high computational effort, we restrict ourselves
to the solution of a one-dimensional system. Nevertheless,
such a system can be regarded as a basic theoretical model
that requires a deepened understanding. In order to suppress
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spin effects, only spin-polarized systems are investigated.
At the beginning, the system is in the energetically lowest
antisymmetric state.

Before presenting the numerical results in Sec. IV, we give
a brief discussion of the employed methods. It shall already
be mentioned here that, in order to avoid divergencies in the
interaction potential, all methods use a regularized Coulomb
potential λ/|ri − rj + κ2|, where κ is a small finite cutoff
parameter.

A. Time-dependent Schrödinger equation (TDSE)

In our previous work,14 we determined ωr (λ) for N = 2 in
the whole range λ = 0, . . . ,∞. These values are the basis for
the comparison with other methods. Our TDSE results were
obtained by solving the time-dependent Schrödinger equation
with two different methods. On the one hand, a standard grid-
based Crank-Nicolson scheme was used, and on the other hand,
the wave function was expanded into a set of basis functions
(oscillator eigenfunctions). The results confirm the values of
the breathing frequencies in the limiting cases (λ = 0 and
λ = ∞) and yield a continuous function ωr (λ) for all other
couplings in between.

B. Configuration interaction (CI)

Configuration interaction (CI) is another method for obtain-
ing numerically exact solution of the TDSE. The basic idea of
CI is to expand the wave function in a complete set of Slater
determinants, which in turn are constructed with a complete
single-particle basis. The ground-state wave function emerges
from the eigenvalue problem

H0|�〉 = E|�〉 . (31)

In order to obtain the breathing frequencies, one can use the
ground-state wave function and propagate it, according to the
TDSE

i
∂

∂t
|�(t)〉 = H (t)|�(t)〉 . (32)

The frequencies can finally be extracted from the spectra of
appropriate observables, e.g., 〈Epot(t)〉. This method is useful
as it allows us to compare the spectra of an exact method with
those from the time-dependent Hartree-Fock method (see the
next section). However, there is another possibility to calculate
the breathing frequencies. One can avoid a time propagation,
if one assumes that the excitation is infinitely short. Hence the
Hamiltonian can be written as

H (t) = H0 + ηδ(t)
N∑

i=1

v(ri) , (33)

where the time-independent part H0 is that of Eq. (1). If H0

is diagonalized by the eigenfunctions |�n〉 with eigenvalues
En, the application of perturbation theory yields that the
expectation value of an arbitrary observable can be calculated
by

〈A〉(t) =
∑
i,j

c∗
i cj ei(Ei−Ej ) t 〈�i |A|�j 〉 , (34)

where ci,j are time-independent coefficients. As a consequence
of this relation, the oscillation of the expectation value is

restricted to frequencies

ωij ≡ |Ei − Ej | . (35)

Instead of time-propagating the solution of the Schrödinger
equation, we can use this result and extract the breathing
frequencies from the eigenvalues of H0 with relatively little
computational effort.

Since in both of the above cases an exact diagonalization is
involved, the CI method is only applicable for small particle
numbers. All presented results were produced with a basis of
oscillator functions. Especially for weak couplings, this basis
set is well adjusted to the physical problem and the number of
basis functions can be kept low. Just like the TDSE results the
CI results can be used as a benchmark for the accuracy of the
Hartree-Fock results.

C. Time-dependent Hartree-Fock (TDHF)

For larger particle numbers (N � 8), exact methods require
a prohibitively large computational effort. Therefore, as a
first step in treating large particle numbers, we describe
the system in a reduced quantum statistical approach.19 The
key quantity of this description is the one-particle density
operator F1, which, in coordinate representation, is defined
by the expectation value of the product of a creation and an
annihilation operator:

F1(x1,x2,t) = 〈ψ†(x1,t)ψ(x2,t)〉 . (36)

Using that definition, the expectation values 〈O〉 of spatially
diagonal one-body operators O = ∑N

i=1 o(xi) can be calcu-
lated by

〈O〉(t) =
∫

dx o(x)n(x) , (37)

where we introduced the density n(x) ≡ F1(x,x,t). The
equation of motion for F1 is the first equation of the BBGKY
hierarchy,19–23 which couples the one-particle density operator
to the two-particle density operator. In order to decouple the
hierarchy, we use the Hartree-Fock approximation, result-
ing in the following equation of motion for spin-polarized
fermions:19[

i∂t + 1

2

(∇2
r′ − ∇2

r′′
) − v(r′,t) + v(r′′,t)

]
F1(r′,r′′,t)

=
∫

dr {w(|r′ − r|) − w(|r′′ − r|)}
× [F1(r′,r′′,t)F1(r,r,t) − F1(r′,r,t)F1(r,r′′,t)]. (38)

In this equation, the two-particle density operator has been
replaced by an approximate expression of the one-particle
operators (see references and Appendix B for details).
The problem is thus treated on the mean-field level, where the
binary interactions are reduced to an effective single-particle
potential: each particle is influenced by the field of all other
particles. Furthermore, the excitation has been included into
the operator v(r,t).

The numerical implementation starts with a determination
of the initial density matrix. For that purpose the Roothaan-
Hall equations24 are solved iteratively. In the elderly quantum
chemistry literature, this method is commonly known as the
self-consistent field method (SCF). For our calculations we
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FIG. 2. (Color online) Monopole oscillation spectra for 2, 8, and
17 particles at two different coupling strengths λ. Each spectrum
shows clearly dominating peaks for the frequencies ωr (left) and ωR

(right). The data arise from propagations in the Hartree-Fock basis
with tprop = 6000 �−1 and η = −0.001.

use at least 400 FE-DVR (finite-element discrete variable
representation25,26) basis functions. The next step is to integrate
Eq. (38), i.e., propagate the density matrix in time. For this
calculation, one can keep the FE-DVR basis, or equivalently,
transform the equation of motion into the basis of Hartree-Fock
orbitals. The latter approach is rather efficient because the
number of necessary basis functions can be chosen in the
order of N . The breathing frequencies are finally extracted
from the spectra, which are obtained from the time series of
the single-particle potential energy 〈Epot〉.

IV. RESULTS

As mentioned before, we want to concentrate on presenting
the results of our TDHF calculations and show the dependency
of ωr on the particle number. In this work, we only investigate
the cases λ = 0.1, 0.3, and 1. Larger values of λ would
require to go beyond Hartree-Fock, which demands a very
high computational effort. Before we show our results, we start
by explaining some important aspects concerning the spectral
determination of the breathing frequencies.

A. Spectral analysis

Each of the TDHF frequencies was calculated from a time
series that has the length of at least tprop = 2500 (in units
�−1). Since the resolution in the frequency space is limited
by the size of tprop, we applied spline interpolations to the
spectra in order to achieve a higher accuracy for the extracted
frequency values. Besides, each spectrum was calculated with
a Blackman window in order to uncover peaks with small
spectral weights.

In Fig. 2, the interesting part of the spectra around the
breathing frequencies is shown for rather weak couplings and
different particle numbers. The peaks related to ωr and ωR

can be identified by their dominating spectral weights. The ωr

peak always has the largest amplitude and a smaller frequency
than all other peaks. According to the theory, the ωR peak
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FIG. 3. (Color online) Influence of the excitation strength η on
the Hartree-Fock spectrum around the breathing frequencies. The data
correspond to the case λ = 1 and N = 2. Reducing the modulus of η

to a very small value, one can always suppress additional peaks. While
the leftmost and the rightmost peaks clearly scale down with η, the
peak near ω = 2 (which must not be confused with the center-of-mass
peak) scales down with η2.

is to be found around ω = 2. However, one has to deal with
two problems when analyzing the spectra. As it can already
be surmised in Fig. 2, the HF approximation slightly breaks
the universality of the center-of-mass frequency ωR = 2. With
increasing λ the frequency is shifted to higher values and
obtains a dependence on the particle number. This can also be
seen in Figs. 3–5 for the moderate coupling λ = 1. The other
problem is the occurence of various additional peaks which
are uncovered if the propagation time is long enough (see
Fig. 3).

The unexpected behavior of the center-of-mass frequency
becomes apparent in Fig. 4 for the coupling λ = 1. One can see
that the peaks representing ωR have a rather strong deviation
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FIG. 4. (Color online) Part of the TDHF monopole spectrum
around the breathing frequencies for different particle numbers at
the moderate coupling strength λ = 1. While the relative mode (left
peaks) shows a typical behavior, which is also apparent for weak
couplings, the center-of-mass mode (right peaks) exhibits too large
values and an N dependence that deviates from the exact results. The
excitation strength is η = −10−3.
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FIG. 5. (Color online) Comparison of the spectra of different methods around the lowest breathing frequencies (left) and their higher
harmonics (right) for N = 2 and λ = 1. The TDHF and the CI spectra were obtained for η = −0.0001 and tprop = 6000 �−1. While TDHF still
shows higher harmonics 2ωr and 2ωR , they have already vanished for CI. Besides, the leftmost peak in the right image exists only in correlated
calculations (CI and TDSE). The CI results show very good agreement with the spectra of the TDSE, which, however, were obtained with
η = −1.0 and tprop = 1000 �−1, which explains the larger width of the peaks.

from the expected value 2. However, one can convince oneself
that, despite the approximate character of TDHF, those peaks
represent the center-of-mass mode. As a first possibility, one
can observe the behavior of this peak with increasing λ and
track the increase of the error. As Fig. 5 shows, if exact
solutions are available, one can also use the spectral weights
of the peaks as an identifying property. Furthermore, one
can check that the spectral weight of the center-of-mass peak
decays with the particle number, according to Eq. (28). Since
the spectra also show features which result from higher order
processes [which in the sense of perturbation theory scale
with O(η2)], one can additionally reduce the modulus of the
excitation strength η to suppress all frequencies which are
not a linear response to the monopole excitation. Hence, a
systematic reduction of the excitation strength enables one
to identify the relevant peaks by their characteristic linear
downscaling.

Especially in the case λ = 1, it becomes apparent that the
excitation must be sufficiently weak. As Fig. 3 shows, an
additional peak occurs quite close to ω = 2. This peak could
be confused with the center-of-mass peak, but it vanishes if
the modulus of η is small enough.

Before we start focusing on the lowest breathing frequency
ωr , we want to recapitulate some properties of the used
methods in the exemplary Fig. 5. One can see that the TDHF
spectrum always shows higher harmonics of the breathing
frequencies ωr and ωR . Their spectral weights scale linearly
with η. Although higher harmonics also show up in exact
methods, their amplitudes are much smaller than those of
the TDHF (they already disappeared in the CI curve in the
right figure). Of course, in exact methods, processes of higher
order are also excited. However, in the figure, they cannot be
recognized since the propagation time for the TDSE curve
is not long enough, and the CI curve was obtained with a
very small modulus of η. Another interesting outcome of
the spectrum is an additional peak with frequency ω ≈ 3.84,
which is missing in the uncorrelated HF approximation.

The position of this peak is also predicted by the exact
diagonalization method as a process of first order in η.

Having shown how to treat the various features of the
spectra, we, from now on, concentrate on the N dependence
of the lowest breathing frequency and neglect all higher order
processes.

B. Breathing frequencies of finite systems

The TDHF calculations enabled us to obtain the breathing
frequencies for up to 20 particles. We found a typical behavior
of the breathing frequency ωr . The analysis of the spectra
for the couplings λ = 0.1, 0.3, and 1 reveals that the N

dependency of ωr is qualitatively the same for all λ. It is
characteristic that the frequencies attain a minimum for five
particles, before they start steadily growing. This typical
behavior is illustrated in Fig. 4. It is qualitatively the same
for all weaker couplings. For a complete overview, the explicit
values of the breathing frequencies are summarized in the
graphs of Fig. 6. For comparison, we also show the TDSE
values for N = 2 and the CI values for up to eight particles
as well as the breathing frequencies obtained with other cutoff
parameters. As expected, the TDHF and the CI values are very
close [see Fig. 6(a)] for small λ. With increasing λ a constant
shift between both results arises. The CI results confirm that
the breathing frequency has a minimum with a slightly lower
depth and a position of N = 6, instead of N = 5 particles, in
the case of TDHF. Moreover, our analysis of the dependence
of the breathing frequency on the cutoff parameter κ indicates
that we reached convergence in the range κ2 = 0.01, . . . ,0.1.

Note that the breathing frequency becomes smaller with
increasing λ, for N = const. This confirms our previous
analysis for N = 2, cf. Ref. 14, where we showed that this
trend continues to ωr → √

3 for λ → ∞. We expect that this
trend persists for N > 2 as well, but this is beyond the range
where TDHF is reliable.
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FIG. 6. (Color online) Breathing frequency ωr vs particle number
N for coupling parameters λ = 0.1, 0.3, and 1 with cutoff parameter
κ2 = 0.1. For λ = 1, the frequencies obtained for different κ2 are
also plotted. For comparison, the TDSE frequencies for two particles
and the CI results for N � 8 are plotted as well. For κ2 = 0.1, the N

dependencies are qualitatively the same for all λ.

C. Origin of the minimum of ωr (N)

It is a remarkable and unexpected result that the breathing
frequency has a minimum for a small number of particles that
appears to be independent of the value of λ. Although this
is a result of complex numerical calculations, it is possible
to present a physical explanation. Obviously, there are two
opposite trends, which influence the value of the breathing
frequency. The first decrease of the frequency for slightly
more than two particles is due to a growing influence of the
interaction energy. For larger particle numbers, however, the
frequency approaches the value of the ideal system, where
interactions completely vanish.

Since the breathing mode is computed in linear response,
this behavior must originate from the ground-state properties
of the system. This can also be seen from Eq. (35), where
the breathing frequency corresponds to a transition between
the eigenenergies of the initial Hamiltonian H0. Although we
have no access to the full spectrum of the general N -particle
problem for arbitrary couplings, we can validate the observed
trends by presenting several characteristic quantities of the
ground state. A major advantage is that ground-state properties
can be computed for much larger particle numbers than the
time dynamics. For the sake of clarity, we re-emphasize that in
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FIG. 7. (Color online) Particle number dependence of various
ground-state properties of the interacting system. (a) The effective
coupling parameter α, Eq. (39), is nonmonotonic and has a maximum
for N = 7 particles. (b) The mean particle distance r , Eq. (40),
is nonmonotonic having a maximum for N = 7 particles and
approaching the ideal limit

√
2, for large N . (c) The point-wise

deviation of the density profile from the ideal profile d , Eq. (42),
has a maximum for five particles (see inset) and tends to vanish for
large particle numbers.

all following considerations the trap coupling λ is fixed and the
particle number will be varied. Further, in all of the following
calculations [with the exception of the perturbative ansatz in
Eq. (44)] the HF approximation is being used.

1. Role of nonideality effects

As we have seen before, cf. Fig. 6, the breathing frequency
monotonically decreases, for N fixed, with the coupling
parameter. In other words, the deviation of ωr from the ideal
quantum value 2 appears to be a measure of the role of
nonideality effects in the system. Following this argument we
may expect that the same relation between ωr and system
nonideality holds also when λ is fixed and N is varied. The
results shown in Fig. 6 then suggest that nonideality effects
increase for small N and decrease again for large N , reaching
a maximum around N = 5, . . . ,6. In the following, we verify
this hypothesis by analyzing various quantities that are suitable
to characterize the degree of nonideality in a finite system. We
then analyze the reasons for the nonmonotonic behavior of the
nonideality, in particular, we show that the system becomes
ideal in the limit N → ∞.

2. Energy-based nonideality parameter α

An obvious choice of a nonideality parameter is the ratio
of interaction energy to the single-particle energy:
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α(N ) = 〈Eint〉(N )

〈E1〉(N )
= 〈Eint〉

〈Ekin〉 + 〈Epot〉 , (39)

where, in our calculations, Eint is approximated by the Hartree-
Fock energy EHF. The values of α(N ) for up to 70 particles
at a fixed value λ = 1 are shown in Fig. 7(a). Obviously,
α first increases, reaches a maximum at N = 7 and then
converges to zero for large N , indicating that the interaction
energy normalized to the single-particle energy vanishes in a
macroscopic quantum system.

3. Length-based nonideality parameter r̄

As a second indicator we consider the mean interparticle
distance r . The motivation for this is the well-known coupling
parameter of the macroscopic homogeneous electron gas
rs (Brueckner parameter) which is the ratio of the mean
interparticle distance to the Bohr radius. Since the Bohr
radius is a constant, nonideality effects should show up in an
N dependence of r . Identifying the mean interparticle distance
of particles in a trap is not trivial since the density profile
n(x) is not homogeneous. A reasonable choice is to compute
the spatial extension of n(x) and divide it by the number of
particles,

r(N ) = 2σ (N )

N
. (40)

Here, σ is the standard deviation of the particle density n(x)
and we use 2σ as an estimator for the spatial extension of the
particle cloud in the trap. Obviously, σ is directly related to
the expectation value of the potential energy. In particular, for
an ideal system, one easily derives

r =
√

2 , (41)

as is shown in Appendix A. In Fig. 7(b), the N dependence
of r is presented for two values of the coupling parameter
λ. Again this quantity first increases, reaches a maximum for
N = 7 and decreases for larger particle numbers, approaching
the ideal value.

4. Density profile-based nonideality parameter d

A third indicator of nonideality effects can be derived by
comparing the density profile n(x) to the density profile of an
ideal system. We consider the quantity

d ≡ 1

N

∫
|n(x) − nideal(x)| dx , (42)

where nideal is the density of the ideal quantum system. We
use this quantity to demonstrate the point-wise deviation from
the densities in the interacting case from the densities in the
noninteracting case. The factor 1/N prevents d from diverging
and gives it a relative character. (Recall the normalization∫

n(x)dx = N .) In order to demonstrate the change in the
densities, the normalized densities of the ideal quantum system
and the interacting system are plotted for 2 and 30 particles
in Fig. 8 for λ = 0.1. One notices that the largest deviations
occur in the trap center (x = 0). Finally, the values d(N ) for
up to 500 particles are shown in Fig. 7(c) for a fixed value
λ = 0.3. Again, one notices that d first increases and tends to
vanish for large particle numbers. It reaches a maximum for
N = 5.
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FIG. 8. (Color online) Comparison of the normalized densities of
an ideal quantum system and an interacting system (λ = 0.1) for 2
and 30 particles. The deviation from the ideal system vanishes for
large particle numbers.

5. Perturbation theory approach to nonideality

In order to verify that the nonmonotonic N dependence of
the nonideality parameters α,r̄,d (and of ωr) is not an artefact
of the used Hartree-Fock approximation, we now perform a
calculation in terms of stationary perturbation theory. This
has the advantage that many results are available in analytical
form. (For the three-dimensional case, see, for example, the
work of Garcia.27)

Let H 0 be the Hamiltonian of the noninteracting (oscillator)
system with the assiociated N -particle eigenfunctions |�0

i 〉.
Let further W be the Coulomb operator, then, for sufficiently
small couplings (λ < 1) the energies of the interacting system
with the Hamiltonian

H = H 0 + λW (43)

are well approximated by first-order perturbation theory,

Ei = E0
i + λ

〈
�0

i

∣∣W ∣∣�0
i

〉
. (44)

As in Eq. (39), we define an effective nonideality parameter
based on the normalized interaction energy, but now with no
restriction to the Hartree-Fock approximation,

α̃(N ) =
〈
�0

0

∣∣W ∣∣�0
0

〉
(N )

E0
0(N )

=
〈
�0

0

∣∣W ∣∣�0
0

〉
1
2N2

, (45)

for the ideal result, see Appendix A. In Fig. 9, we plot the
result for α̃(N ) for up to 55 particles. Obviously, the parameter
α̃ shows the same behavior as the Hartree-Fock parameter α,
Eq. (39). Interestingly, the parameter α̃ reaches a maximum
for N = 7 particles. Thus, at least for small couplings, λ < 1
the observed trends of the nonideality parameter are directly
related to the diagonal elements of the interaction matrix W ,
i.e., to the mean interaction energy in units of the energy of
the ideal system. Evidently, for small (large) particle numbers
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FIG. 9. (Color online) Evolution of the effective nonideality
parameter α̃ with increasing particle number. The quantity was
obtained in terms of perturbation theory setting λ = 1. It shows
the characteristic maximum for seven particles and a subsequent
decrease.

the contribution of this matrix element increases (decreases)
faster than the energy of the ideal system.

6. Limits of small and large N

As we have seen, the four nonideality parameters, α, r , d

and α̃ all show the same trend, monotonically increasing up to
a maximum at N = 5 (for d) or N = 7 (for α, r , and α̃) and
then decreasing, eventually approaching the value of the ideal
quantum system.

The increase of interaction effects for small particle
numbers, N � 2, is easy to understand: the number of pair
interactions grows as N (N − 1)/2. However, it is charac-
teristic for fermions in an oscillator potential that also the
energy of the noninteracting system increases proportional
to N2, cf. Eq. (45). Thus there must exist an additional N

dependence in the interaction energy resulting from a change
of the wave function. On the other hand, the mathematical
reason for the decrease of α̃, for large N is that the majority
of the particles occupies high energy levels, for which the
eigenfunctions are localized increasingly far off the trap center.
Therefore the overlap with the Coulomb potential decreases
as does the interaction energy. At the same time, the potential
energy grows as (∝r2

i ) when particles are forced to occupy
higher orbitals that are localized away from the center, as a
consequence of the Pauli principle. These two opposite trends
of the potential energy and interaction energy are responsible
for the nonmonotonic behavior of the nonideality parameters
and of the breathing frequency.

We may attempt an alternative explanation for the vanishing
of interaction effects for N → ∞ that is based on the
ground-state energy spectrum. At least for small couplings,
this behavior can be explained in the single-particle picture of
Hartree-Fock orbitals. The interaction causes each particle to
have an energy above its corresponding ideal oscillator level.
Since this deviation is the largest for the low-lying energy
levels, the effect of the interaction becomes smaller when N

increases and vanishes in the limit N → ∞. In Fig. 10, this
explanation is illustrated for the coupling λ = 0.1. The figure
shows the occupied orbitals and the associated HF energies
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FIG. 10. Occupation of the Hartree-Fock energy levels for dif-
ferent particle numbers for a fixed coupling strength λ = 0.1. The
dots represent the energies of each single particle and the lines the
corresponding ideal energy levels εi = i + 1/2 of the noninteracting
system. Adding together the energies of each level for any particle
number yields the total energy in the HF approximation. For large
particle numbers, the relative deviation from the ideal levels is most
dominant in the lower levels.

εi (i = 0, . . . ,N − 1), cf. Appendix B, for increasing particle
numbers in comparison with the ideal oscillator energies. One
can see that for each particle number, the HF energy levels
are upshifted by an amount which increases slowly with the
particle number. For large particle numbers, the upper energy
levels, which mainly contribute to the total energy, have the
smallest relative deviation from the ideal levels. Apart from
that, the distance between the energy levels also approaches the
ideal limit. This can be seen more clearly in Fig. 11, showing
that the distances of two neighboring occupied energy levels
reach a minimum at low N and then slowly approach the ideal
value 1 with increasing N . This has an immediate consequence
for the breathing frequency which involves transitions between
levels i → i + 2. Due to the Pauli principle, only transitions
to unoccupied orbitals are possible, i.e., mostly particles from
the levels i = N − 2, N − 1 can be excited. Since the spacing
of these high-lying orbitals converges to the ideal spacing of
2, also the breathing frequency approaches this value.

V. DISCUSSION

This paper was devoted to an analysis of the breathing
oscillation—the radial expansion and contraction of particles
in a harmonic trap. This mode is one of the most impor-
tant collective properties, since its frequency allows for a
very accurate diagnostics of many system parameters,14 in
particular, the coupling strength. Here, we showed that the
breathing frequency ωr has a nontrivial N dependence if
the coupling parameter λ is fixed—it decreases for small N ,
reaches a minimum for N = 6 in CI calculations and N = 5
in Hartree-Fock and then increases monotonically again. This
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FIG. 11. (Color online) Distances between some selected
Hartree-Fock energy levels for λ = 0.1. Apparently, the spacing of
any energy levels decreases to a minimum and then approaches the
ideal value 1.

behavior is in good agreement with the exact results and
qualitatively the same for all analyzed coupling strengths,
λ = 0.1, 0.3, and 1. Although for the coupling λ = 1, the HF
approximation is not capable to describe the center-of-mass
mode anymore, the recurring characteristic behavior of ωr

supports the trustworthiness of the results in the regime λ � 1.
We expect that the same nonmonotonic behavior will be
observed for arbitrary finite couplings.

The origin of the minimum of ωr is the competition between
two restoring forces: first, the Coulomb repulsion between
the particles, which is strongest for λ → ∞ (point charges)
and which favors ωr = √

3. Second, the kinetic energy of
a quantum system that is maximal for λ = 0 and favors
the value ωr = 2. As our ground-state analysis shows, the
minimum of ωr can be related to the ratio of the expectation
values of those energies. Indeed, the associated nonideality
parameters α (in Hartree-Fock) and α̃ (in perturbation theory)
show exactly the same nonmonotonic behavior reaching a
maximum at the slightly higher particle number N = 7. We
further studied two other quantities that are suitable measures
of the degree of nonideality: the mean interparticle distance
r̄ (that takes over the role of the Brueckner parameter rs of
a homogeneous macroscopic electron gas) and the parameter
d that characterizes the deviation of the density profile n(x)
from the ideal one. These parameters are also nonmonotonic
functions of N with a maximum at N = 7 (for r̄) and N = 5
(for d), respectively.

To better compare the dependence of the different nonide-
ality parameters and the breathing frequency on the particle
number, we plot them together in Fig. 12 for the coupling
λ = 1. All quantities are normalized to their maximum value
(α, d, r) or to their minimum values (ωr ), respectively. For
better comparison, ωr and r̄ are rescaled (by raising them to
the power 50). There is remarkable agreement of the overall
trend of these quantities as a function of the particle number.
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FIG. 12. (Color online) Comparison of the N dependence of
several nonideality parameters and of the breathing frequency for
λ = 1. The maxima correspond to the largest nonideality effect, i.e.,
strongest deviations from the ideal limit.

Although there is a slight discrepancy with respect to the
exact position of the extremum there is no question that
the explanation of the minimum of ωr in terms of largest
nonideality is appropriate. Even though our result was obtained
in Hartree-Fock approximation, the CI results confirm that this
nonmonotonic behavior is not a property of the approximation
but a physical effect. The CI data suggest that the minimum of
ωr is reached for N = 6 in a one-dimensional system.

While our time-dependent HF simulations allowed us to
determine the frequencies for up to 20 particles at weak and
moderate coupling (λ � 1), we found strong hints that the
increase of ωr will continue for N > 20, and for N → ∞, the
breathing frequency will converge to the frequency ω = 2 of
an ideal quantum system, for arbitrary fixed λ. On the other
hand, if the particle number N is fixed and the limit λ → ∞
is taken, the system always approaches a classical system16,18

that has the universal frequency
√

3, for arbitrary fixed N . This
behavior, which is also known as Wigner crystallization, can
be forced by decreasing the trap frequency, i.e., � → 0. The
reason for such a classical behavior is the strong separation of
the wave function.

The appearance of the two different limiting frequencies is
only an apparent contradiction, as the result depends on the
way the limits λ → ∞ and N → ∞ are taken. To demonstrate
the scaling of interaction effects with the particle number,
we define a quantum degeneracy parameter for particles in a
harmonic trap as

χ = l0

r
. (46)

This quantity is the ratio of the extension of the wave function,
which is estimated by l0 (the extension of the ideal ground-
state wave function), and the average distance between the
particles, r . Although the exact definition of r always involves
a certain arbitrariness, this parameter is useful since it allows
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FIG. 13. (Color online) Illustration of the two limiting values of
the breathing frequency ωr for large N and λ (the direction of the
limit is indicated by arrows). The line indicates a constant quantum
degeneracy parameter χ = χ∗ ≈ 0.68, separating the quantum and
the classical regime. The data are obtained from stationary HF
calculations.

for a qualitative separation of the classical (χ → 0) and the
quantum (χ → 1/

√
2) regimes. This is shown schematically

in Fig. 13. In the area above (below), the line χ = χ∗ = const,
quantum (classical) behavior is dominant. While our present
HF results limit us to moderate λ and particle numbers, it
remains a subject of future work to extend the curve to larger
particle numbers and coupling strengths where we expect that
this trend will be confirmed. Larger couplings can be accessed,
e.g., in quantum kinetic simulations including correlations, at
least on the level of the Born approximation, e.g., Ref. 28.
Another promising route is to use a stationary approach based
on ab initio quantum Monte Carlo data.29 Finally, it will be
interesting to extend the present analysis to higher dimensions
or/and other interactions (e.g., dipole interaction) as well as to
bosonic systems.
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APPENDIX A: PROPERTIES OF N NONINTERACTING
FERMIONS IN A HARMONIC TRAP

The ideal quantum system is a standard textbook problem.
We briefly recall some results that have been used in the main
text. In the noninteracting case, the problem reduces to that of
the single-particle harmonic oscillator(

−1

2
∇2 + 1

2
r2

)
φi(r) = εiφi(r) . (A1)

The eigenfunctions φi are expressed in terms of the Hermite
polynomials with the associated eigenvalues εi = i + d/2. If
the N -particle system is spin polarized, the Pauli principle
forces each of the N particles to occupy one of those energy
levels, starting from the bottom (ground state). In the one-
dimensional case, the total energy of the ground state is then

given by

E0 =
N−1∑
i=0

(
i + 1

2

)
= 1

2
N2 , (A2)

where the potential energy Epot equals E0/2, for arbitrary
N . The standard deviation of the one-particle density (width)
reads

σ =
[∫

n(x)(x − x)2 dx

]1/2

. (A3)

As the average value x is zero, one finds

σ =
[ ∫

n(x)x2 dx

]1/2

= [2Epot]
1/2 = 1√

2
N. (A4)

APPENDIX B: CALCULATION OF THE HARTREE-FOCK
GROUND-STATE ENERGIES

We briefly explain some details of the self-consistent
Hartree-Fock method for the calculation of the HF orbital
energies from Fig. 10. Let

h(x) = −1

2
∇2

x + 1

2
x2 (B1)

be the single-particle Hamiltonian without interactions. In-
cluding the Hartree-Fock potential, the system is described by
the effective Hamiltonian

H eff =
∫

dx

∫
dx ′ψ†(x)[h(x)δ(x − x ′) + λ�HF(x,x ′)]ψ(x ′),

(B2)

where ψ†(x) and ψ(x ′) are the creation and annihilation
operators and the Hartree-Fock self-energy is given by

�HF(x,x ′) =
∫

dx

[
F 1(x,x)

1

|x − x|δ(x − x ′) (B3)

− F 1(x ′,x)
1

|x ′ − x|
]

.

The density matrix can be determined in an iterative scheme,
using the Roothaan-Hall equations.24 Finally, the total energy
can be calculated by

Etot = 1

2

N−1∑
i=0

Ei + 1

2
Tr(h0F 1), (B4)

where the Ek are the N lowest eigenvalues of H eff . In this
expression, the double counting of the Hartree-Fock potential
energy in the orbitals Ei is compensated by the addition
of the non-interacting energy Tr(h0F 1) and weighting both
terms with 1/2. If H eff is diagonalized under the unitary
transformation U †H effU , the density matrix

F̃ 1 = U †F 1U (B5)

is also diagonal with

(F̃ 1)ik =
{

1 for i = k, i ∈ {0 . . . N − 1} ,

0 otherwise,
(B6)
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i.e., only the first N entries on the diagonal are occupied with
a 1 and all other entries are zero. Defining

h̃0 = U †h0U , (B7)

one can write

Etot =
N−1∑
i=0

εi (B8)

with

εi ≡ 1

2
Ei + 1

2
(h̃0)ii . (B9)

Hence, each Hartree-Fock orbital contributes to the total
energy with an associated eigenvalue of the effective Hamil-
tonian (usually denoted as spin orbital energy) and another
compensating energy from the noninteracting system.
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