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Probing the localized to itinerant behavior of the 4 f electron in CeIn3−xSnx
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2Laboratório Nacional de Luz Sı́ncrotron, C.P. 6192, 13083-970 Campinas, SP, Brazil

3Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170 Santo André, SP, Brazil
4Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-4575, USA

(Received 4 October 2011; revised manuscript received 24 July 2012; published 6 September 2012)

The CeIn3−xSnx cubic heavy fermion system presents an antiferromagnetic transition at TN = 10 K, for x = 0,
that decreases continuously down to 0 K upon Sn substitution at a critical concentration of xc ≈ 0.65. In the
vicinity of TN → 0 the system shows non-Fermi liquid behavior due to antiferromagnetic critical fluctuations.
For a high Sn content, x � 2.2, intermediate valence effects are present. In this work we show that Gd3+-doped
electron spin resonance (ESR) probes a change in the character of the Ce 4f electron, as a function of Sn
substitution. The Gd3+ ESR results indicate a transition of the Ce 4f spin behavior from localized to itinerant.
Near the quantum critical point, on the antiferromagnetic side of the magnetic phase diagram, both localized and
itinerant behaviors coexist.
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I. INDRODUCTION

Heavy fermion (HF) systems have shown to the scientific
community interesting physical phenomena like antiferro-
magnetism (AFM), superconductivity (SC),1 and non-Fermi
liquid (NFL) behavior in the vicinity of quantum instabilities.2

However, the evolution from high-temperature unscreened
localized f electrons to itinerant heavy quasiparticles at low
temperature is still an open question in condensed matter
physics. The description of these HF materials stands on
the Kondo lattice model,1 in which there are three important
energy scales: the crystalline electric field (CEF) splitting,
the characteristic temperature T ∗, and the single impurity
Kondo temperature TK . The latter is related to the screening
of local moments by the conduction electrons due to the
Kondo effect, whereas T ∗ represents the crossover between
a lattice of Kondo impurities and a coherence state where the
hybridization becomes a global process. This energy scale
is related to the Ruderman-Kittel-Kasuya-Yosida (RKKY)
exchange interaction, since it corresponds to the nearest-
neighbor intersite coupling, which is mediated by conduction
electrons.3

The cubic HF CeIn3−xSnx system is an interesting series for
studying the correlations between TK and T ∗. For x = 0 the
compound is AFM with TN = 10 K, and by Sn substitution, TN

decreases continuously down to 0 K at a critical concentration
xc ≈ 0.65.4,5 This system resembles the behavior of CeIn3

under pressure, where an SC state emerges at a critical pressure
Pc ≈ 25 kbar with a critical temperature Tc ≈ 0.15 K as
TN → 0.6 In the vicinity of Pc and xc both systems show
NFL behavior, suggesting that AFM critical fluctuations are
present. Recently, an analysis of the magnetic contribution to
the specific heat in CeIn3 showed that the magnetic fluctuations
in this material are effectively 2D.7 Indeed, an almost-linear
dependence of TN (x) is seen for CeIn3−xSnx ,5 in contrast to
what is predicted by the 3D spin density wave (SDW) theory
and it cannot be associated with disorder effects.8 The reported
scenario for the pressure and Sn substitution driven quantum
critical point (QCP) were different. For CeIn3−xSnx an SDW

description of criticality based on critical exponents analysis
of a 3D AFM was used.8,9 In the SDW QCP the 4f moments
are delocalized in the AFM state and no change in the Fermi
surface is observed across the QCP.2 However, in a local class
of QCP the 4f electrons remain localized in the magnetically
ordered phase and there is an abrupt change in the Fermi
surface volume at the QCP.2 For CeIn3 under pressure a local
QCP was proposed due to a Fermi surface volume change
observed in de Haas–van Alphen measurements.10 Also, some
indication of a first-order quantum phase transition instead
of a QCP was reported by nuclear quadrupolar resonance
measurements carried out around Pc.11

In this work we study the evolution of the Gd3+ electron
spin resonance (ESR) signal in the CeIn3−xSnx system through
its QCP. Since the Ce3+ ESR signal is silent, we chose Gd3+ as
a probe because it is almost a pure S-state, so its total angular
momentum is mainly due to spin, being weakly perturbed
by CEF effects. To the best of our knowledge no systematic
reports on microscopic studies on the Sn substitution xc were
reported. Our Gd3+ ESR results show a change in the character
of the Ce 4f electron, as a function of Sn substitution, which
indicates a transition from localized to itinerant behavior.
Near the QCP (x = 0.5), on the AFM side of the magnetic
phase diagram,5,8 the Ce 4f spin present simultaneously both
localized and itinerant characters.

II. EXPERIMENTAL DETAILS

Single crystals of Gd doped CeIn3−xSnx are synthesized
by the flux-growth technique. Elemental Ce:Gd:In:Sn are
weighted at the ratio 1 − y:y:10 − (10x/3):10x/3, with a
nominal value for y of 0.005 and x = 0, 1.5, and 3. Poly-
crystalline samples are also grown by arc melting in an argon
atmosphere. In this case the reactants ratio used is 1 − y:y:3 −
x:x, with the same nominal value for y and x = 0, 0.5, 0.7,
1.5, and 3. X-ray powder diffraction measurements confirm
the cubic AuCu3 (Pm-3m)–type structure for all synthesized
compounds. The temperature dependence of the magnetic
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FIG. 1. (Color online) Gd3+ in Ce1−yGdyIn3−xSnx . (a) Cubic
lattice parameter a dependance as a function of x. The dashed
line represents the Vegard law.5 For x = 3 the departure of linear
behavior is due to the Ce ion intermediate valence effects for x � 2.2.4

(b) Low-temperature dependence of χ (T ) at H = 2.5 kOe. Solid lines
are the Curie-Weiss fitting. Filled symbols identify single-crystalline
samples; open circles, polycrystals.

susceptibility, χ (T ), is measured for 2 � T � 300 K, after
zero-field cooling. All ESR experiments are performed on
a fine powder (d � 38 μm) in a Bruker ELEXSYS X-band
spectrometer (9.4 GHz) with a TE102 cavity coupled to a
helium-gas-flux temperature controller system at 4.2 � T �
300 K. Fine powder of crushed single and polycrystals are
used in the ESR experiments in order to increase the ESR
signal-to-noise ratio. As reference compounds, Gd doped
LaIn3−xSnx alloys were also grown and studied.12

III. EXPERIMENTAL RESULTS

The actual Sn concentrations are obtained from the cubic
lattice parameter, which one expects to follow a linear increase
(Vegard’s law)5 [see Fig. 1(a)]. For x = 3 the departure of
linear behavior is due to the Ce ion intermediate valence
effects for x � 2.2.4 The temperature dependence of the
magnetic susceptibility χ (T ) for the series of compounds
Ce1−yGdyIn3−xSnx , corrected for the core diamagnetism, is
shown in Fig. 1(b). From the Curie-Weiss law fitting of the
low-temperature magnetic susceptibility data, the Gd doping
concentration is obtained and its values are listed in Table I.

Figure 2 shows the ESR (X-band) powder spectra, at
T ∼ 10 K, of Gd3+ in CeIn3−xSnx . Except for x = 0, the

TABLE I. Experimental parameters for Gd3+ diluted in
Ce1−yGdyIn3−xSnx . Values of γ are taken from Ref. 5.

Gd3+ Gd �H0 b γ

in y �g (Oe) (Oe/K) (mJ/mol K2)

CeIn3 0.004 − 0.023(5) 120(5) 0.1(1) 130
CeIn2.5Sn0.5 0.010 +0.007(10) 825(45) 38(3) 730(50)
CeIn2.3Sn0.7 0.005 +0.027(10) 820(25) 15(5) 750(50)
CeIn1.5Sn1.5 0.005 +0.140(10) 650(60) 30(5) 250(20)
CeSn3 0.004 +0.027(5) 150(5) 16(1) 73

FIG. 2. (Color online) Gd3+ ESR powder spectra in
Ce1−yGdyIn3−xSnx for y ∼ 0.5%, at T ≈ 10 K, emphasizing the
resonance region. Solid lines are the single Dysonian line-shape
analysis. For Ce0.996Gd0.004In3 the spin Hamiltonian model discussed
in Ref. 14 for powder was used.15 Background contribution is present
for the x = 0.5 and x = 0.7 samples (see text). Filled symbols
identify single-crystalline samples; open circles, polycrystals.

ESR spectra consist of a single Dysonian resonance, consistent
with the ESR for localized magnetic moments in a metallic
host with a skin depth smaller than the size of the used
particles. By fitting the line shape to the appropriate admixture
of absorption and dispersion Lorentzian derivatives, we obtain
the g value and line width �H of the resonances. The solid
lines are the best fit to the observed resonances and the
obtained g shifts �g [relative to the g = 1.993(1) seen in
cubic insulators] are presented in Table I. For Gd3+ in CeIn3

the ESR spectrum shows the typical fine-structure features
for powder samples,13 with a main line at H ∼ 3.45 kOe,
associated with the 1/2 ↔ 1/2 transition. A previous report on
this compound, using the spin Hamiltonian H = gμBH · S +
(1/60)b4(O0

4 + 5O4
4 ) + Jf sS · s,14 extracted the crystal-field

parameter b4 = 90(5) Oe.15 For Ce0.995Gd0.005In2.3Sn0.7 a
background line is present in the spectrum at H ∼ 3.4 kOe
and for Ce0.99Gd0.01In2.5Sn0.5 the ESR spectrum also shows
some small contribution of the background. These background
contributions are due to extrinsic impurities, with a resonance
at g ∼ 2, present in the cavity or in the cryostat quartz (even
without any sample).

The temperature dependence of �H is shown in Fig. 3.
For all samples there is a range where the width increases
linearly with temperature. In this range the linear dependence
of the �H is fitted to the expression �H − �H0 = bT . The
values for �H0 (residual line width) and b (line-width thermal
broadening) are presented in Table I and Fig. 4. The relatively
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FIG. 3. (Color online) Temperature dependence of the Gd3+ ESR
line width in Ce1−yGdyIn3−xSnx . Solid lines are the best fit to �H −
�H0 = bT . A deviation from the linear dependence of �H at low
temperatures is seen for x = 1.5, which is related to short-range Gd-
Gd interaction. Filled symbols identify single-crystalline samples;
open circles, polycrystals.

high �H0 values for 0 < x < 3 are probably due to unresolved
CEF and disorder introduced by the In-Sn substitution.
The �H0 values follow the residual electrical resistivity ρ0

behavior, since both are dependent on the disorder. One can
see that �H0 has the same pattern for LaIn3−xSnx [Fig. 4(b)],
which follows the ρ0 dependence (see Fig. 4 in Ref. 16). For
Ce0.996Gd0.004In3, only the �H temperature dependance of the
main line is analyzed. A deviation from the linear dependence
of �H at low temperature for x = 1.5 is related to short-range
Gd-Gd interaction. Within the accuracy of the measurements,
the g and b values are Gd concentration independent for
y < 1.0% (not shown). Therefore, bottleneck and dynamic
effects can be disregarded.17

Since in this work samples with different Sn content
are grown by different methods, we show, particularly for
x = 3 (Fig. 2), that there are no discernible differences in the
ESR spectra of grounded single- vs polycrystalline samples.
Hence, for the CeIn3−xSnx system, single and polycrystals
are indistinguishable from the ESR point of view. However,
this is not always the case in most systems and it cannot be
established a priori. Table I and Fig. 4 do not distinguish single
and polycrystalline samples.

The error bar values presented in Table I and Fig. 4 are
determined by systematic measurements of different samples
for most Sn concentrations and by analyzing the line-shape
fitting for different field ranges. To exemplify such systematic

FIG. 4. (Color online) Gd3+ ESR in Ce1−yGdyIn3−xSnx . (a) Line-
width thermal broadening b and g shift evolution. The dash-dotted
line marks �g = 0. (b) Sommerfeld coefficient γ and residual
line-width �H0 evolution. For comparison, the Gd3+ ESR in
La1−yGdyIn3−xSnx data are also shown.12 Dashed and dotted spline
lines are guides for the eye.

procedures, Fig. 5 illustrates a line-shape analysis for different
field range fittings, in this case for the Ce0.990Gd0.010In2.5Sn0.5

sample. One can observe that the slope of the line-width
thermal broadening [Fig. 5(b)] and the g value [Fig. 5(c)] of
the Gd3+ ESR are almost independent of the field range fitting.
Also, Fig. 6 exemplifies different samples measurements for
Ce0.995Gd0.005In2.3Sn0.7. Again, the b and g values [Fig. 6(b)]
vary little between samples. Therefore, despite the large line
width of the Gd3+ ESR in Ce1−yGdyIn3−xSnx , which would
give rise to large error values, our systematic measurements
and fitting procedures allow us to reduce the error and
determine the values with a higher precision.

IV. ANALYSIS

A. Gd 3+ ESR in metals

In metals, the exchange interaction Jf s(q)S · s between
a Gd3+ localized 4f electron spin (S) and the conduction
electron spin (s) of the host metal yields an ESR �g (Knight
shift) given by18

�g = Jf s(0)ηFs
, (1)

where J f s(0) is the effective exchange interaction parameter
between the Gd3+ 4f local moment and the s-like conduction
electrons in the absence of conduction electron momentum
transfer (q = |k − k′| = kF [2(1 − cosθkk′ )]1/2 = 0).19 ηFs

is
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FIG. 5. (Color online) (a) Gd3+ ESR powder spectra in
Ce0.990Gd0.010In2.5Sn0.5, at T ≈ 10 K. Solid lines are the single Dyso-
nian line-shape analysis for two field range fittings. (b) Temperature
dependence of the Gd3+ ESR line width for the two field ranges
shown in (a). Solid lines are the best fit to �H = �H0 + bT .
(c) g-value temperature dependence of the Gd3+ ESR for the two
field ranges shown in (a). The dashed line is the g value for Gd3+

ESR in insulators.

the s-like-band bare density of states for one spin direction at
the Fermi surface.

In addition, the exchange interaction leads to a thermal
broadening of �H , b (Korringa rate), given by18

b = d(�H )

dT
= πkB

gμB

Jf s(0)2η2
Fs

, (2)

where the constants kB , μB , and g are the Boltzman constant,
the Bohr magneton, and the Gd3+ g value in insulators
(g = 1.993), respectively. The constant πkB/gμB is 2.34 ×
104 Oe/K in CGS units.

Equations (1) and (2) are normally used in the analysis
of ESR data for noninteracting and highly diluted rare-
earth magnetic moments in intermetallic compounds with
appreciable residual resistivity, i.e., large conduction electrons
spin-flip scattering (absence of “bottleneck” and “dynamic”
effects).17 Combining the above equations we can write

b = πkB

gμB

(�g)2. (3)

When the effective exchange interaction constant is not
independent of the momentum transfer (q �= 0), Eq. (2), in

FIG. 6. (Color online) (a) Gd3+ ESR powder spectra in
Ce0.995Gd0.005In2.3Sn0.7, at T ≈ 10 K, for three samples with the
same Sn concentration. Solid lines are the single Dysonian line-shape
analysis. (b) Temperature dependence of the Gd3+ ESR line width
for the three samples shown in (a). Solid lines are the best fit to
�H = �H0 + bT . Inset: Low-temperature g-value dependence of
the Gd3+ ESR for the three samples shown in (a). The dashed line is
the g value for Gd3+ ESR in insulators.

this more general case, has to be rewritten as

b = πkB

gμB

〈
J 2

f s(q)
〉
η2

Fs
(4)

or, alternatively, using Eq. (1),

b = πkB

gμB

〈
J 2

f s(q)
〉
F

J 2
f s(0)

�g2, (5)

where 〈J 2
f s(q)〉F is the square of the effective exchange

interaction parameter in the presence of conduction electron
momentum transfer, averaged over the Fermi surface.19

One way to know if the system is momentum transfer
dependent is to analyze Eq. (3). If the calculated Korringa
rate bcal by the experimental �g is equal to the experimen-
tal Korringa rate bexp (bcal = bexp), q dependance can be
neglected. However, if bcal > bexp, then it cannot. This is
because 〈J 2

f s(q)〉F /J 2
f s(0) � 1, once J (q) is proportional the

Fourier transformation of J (r), which amplitude decreases as
a function of r . So the average J (r) should be smaller than
J (0).

In cases where the conduction band also has d-, p-, or
f -like electrons, Eqs. (1) and (2) are not valid and must be
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rewritten, respectively, as

�g = �gf s + �gf d + �gfp . . .

= Jf s(0)ηFs
+ Jf d (0)ηFd

+ Jfp(0)ηFp
+ . . . (6)

and

b = πkB

gμB

[
FsJ

2
f s(0)η2

Fs
+ FdJ

2
f d (0)η2

Fd
+FpJ 2

fp(0)η2
Fp

+ . . .
]
,

(7)

where Jf s(0), Jf d (0), and Jfp(0) are the exchange interaction
constants between the Gd3+ 4f spin and the s-, d-, and p-like
bands, respectively. ηFs

, ηFd
, and ηFp

are the bare density of
states for one spin direction at the Fermi surface for each
respective band. Fs = 1, Fd = 1/5, and Fp = 1/3 are factors
associated with the orbital degeneracy of the unsplit (no CEF
effects) s, d, and p bands at the Fermi level, respectively.20,21

Multiband effects enhance the Korringa rate compared to
bcal [Eq. (3)], since the dependence of b is quadratic with the
exchange interaction parameters, while for �g it is linear and
depends on the sign and strength of each exchange interaction
constant. Therefore, the �g sign can give valuable information
about the interaction between the localized moment and its
environment.

B. Gd3+ effective exchange interaction parameter calculations
in CeIn3−xSnx

We now analyze separately the experimental ESR data for
each synthesized compound.

1. Calculation for x = 0.0

In the absence of strong electron-electron exchange in-
teraction and assuming that 〈J 2

f s(q)〉1/2
F = Jf s(0), i.e., the

effective exchange interaction is constant over the Fermi
surface, one expects b ≈ 12(5) Oe/K from Eq. (3), using
the experimental �g � −23(5) × 10−3. This value is much
larger than that measured experimentally, b = 0.1(1) Oe/K
(Fig. 3). Thus, the approximations that the relaxation does
not depend on q and that it is due to the contribution of
a single conduction s-like band are not adequate. Since �g

is negative, a relaxation via a single s band is not plausible
because Jf s(0) is atomic-like and positive. Thus, for �g < 0,
contributions coming from covalent-like (negative) exchange
interaction between the Gd3+ 4f -electron and p or f bands
must be taken into account in the relaxation process (multiband
effects).18 On the other hand, multiple bands would lead to a
Korringa rate higher than the one expected from the �g,22

contrary to what is observed for Gd3+ in CeIn3. Therefore, a
strong q-dependent effective exchange interaction parameter
Jfp(q) or Jff (q) is expected in this compound. For CeIn3

the local magnetic moment of Ce is compensated by the
conduction electron sea due to the Kondo effect. However,
when Gd3+ substitutes the Ce ions there is a strong Coulomb
repulsion potential that decreases the local density of states
at the Gd3+ site, hence decreasing the Korringa rate [Eq. (2)
or (4)]. Theoretical calculations have already shown that the
spin relaxation rate of a well-defined magnetic moment in
the neighborhood of a fluctuating valence ion decreases in
relation to the relaxation rate of an undoped metal.23 Indeed,

a much higher Korringa rate b = 16(1) Oe/K was measured
in Gd-doped LaIn3.15 This has also been observed for Gd
in CePd3 which presented an ESR �H thermal broadening
five times smaller than in LaPd3.24 Besides, the observation
of fine-structure features in the spectrum (Fig. 2) even up to
room temperature without narrowing effects18 (not shown)
suggests a low local density of states at the Gd3+ site. Another
consequence of the screening of the Ce3+ magnetic moment
by conduction electrons is that the Gd3+ resonance does not
sense the internal field caused by the AFM transition. No
change in the relaxation or in the resonance field is observed
below TN = 10 K.

From the considerations above we can assume that the
interaction of the Gd3+ 4f local moment is mainly with Ce
f -like conduction electrons. We then can rewrite Eqs. (1) and
(4), respectively, as

�g = Jff (0)ηFf
(8)

and

b = πkB

gμB

Ff

〈
J 2

ff (q)
〉
F
η2

Ff
, (9)

where Ff = 1/7 is associated with the orbital degeneracy of
the unsplit f band at the Fermi level.20,21

In the free conduction electron gas model, the electronic
heat capacity or Sommerfeld coefficient γ is given by

γ = (2/3)π2k2
BηF (10)

and one can obtain, using its experimental value, the bare
density of states for one spin direction at the Fermi surface.

For CeIn3 γ x=0 = 130 mJ/(mol K2),5 so we get from
Eq. (10) ηx=0

F = 28(2) states/(eV mol spin). Assuming that
in this compound the density of states at the Fermi level for
the 4f electrons ηx=0

Ff
is

ηx=0
Ff

= ηx=0
F − η

LaIn3
F ,

where η
LaIn3
F = 0.8(1) state/(eV mol spin) (see Fig. 4 in

Ref. 25), we calculate ηx=0
Ff

= 27(2) states/(eV mol spin).
Using Eqs. (8) and (9), experimental values of �g and b,

and ηx=0
Ff

= 27(2) states/(eV mol spin), we obtain Jff (0) =
−0.8(1) meV and 〈J 2

ff (q)〉1/2
F = 0.20(5) meV.

2. Calculation for x = 0.5

By substituting 16.67% of In by Sn, x = 0.5, TN drops
to ∼1.3 K,5 very close to xc. We also see �g going from
a relatively large negative to a very small, �7(10) × 10−3,
positive value. From Eq. (3) we get bcal � bexp. It is clear
that for Ce0.990Gd0.010In2.50Sn0.50 multiband effects are now
present.22 This is expected since Sn substitution led to the
hybridization of the localized Ce3+ 4f electrons, turning them
into an itinerant s-like conduction band. So, for x = 0.5 the
Gd3+ resonance relaxes via the contribution of the Ce 4f

itinerant s- and localized f -like bands. In this case, Eqs. (6)
and (7) can be rewritten, respectively, as

�g = Jf sηF it
f

+ Jff ηF loc
f

(11)
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and

b = πkB

gμB

[
J 2

f sη
2
F it

f
+ Ff J 2

ff η2
F loc

f

]
, (12)

where ηF it
f

and ηF loc
f

are the band bare density of states for
one spin direction at the Fermi surface for the itinerant- and
localized-like 4f band, respectively.

From γ x=0.5 = 730(50) mJ/(mol K2)5 and Eq. (10), we get
ηx=0.5

F = 155(2) states/(eV mol spin). Assuming that

ηx=0.5
Ff

= ηx=0.5
F − η

LaIn2.5Sn0.5
F ,

where η
LaIn2.5Sn0.5
F = 0.8(1) state/(eV mol spin) (see Fig. 4 in

Ref. 25), we calculate ηx=0.5
Ff

= 154(2) states/(eV mol spin).

Solving the system of three equations below for ηx=0.5
Ff

=
154(2) states/(eV mol spin), �g � 7(10) × 10−3, b =
38(3) Oe/K, and admitting that J x=0.5

ff = J x=0
ff = 0.0008 eV,

ηx=0.5
Ff

= ηF it
f

+ ηF loc
f

= 154,

�g = Jf sηF it
f

+ 0.0008ηF loc
f

= 7 × 10−3,
and

b = 2.34 × 104
[
J 2

f sη
2
F it

f
+ 1

7 (0.0008)2η2
F loc

f

] = 38,

we obtain Jf s(0) = 0.3(1) meV, ηF it
f

= 115(10) states/(eV
mol spin), and ηF loc

f
= 40(5) states/(eV mol spin).

So, naively, this result indicates that a weight of 74%
of the Ce f electrons becomes itinerant upon x = 0.5 Sn
substitution, while the other 26% remains localized. One may
argue that the multiband effects would in fact be due to
the presence of s electrons arising from a weakened Kondo
interaction at the Ce3+ site or by the addition of new electrons.
However, small Sn substitution increases the conduction
electron attractive potential23 and does not profoundly change
the density of states, as seen in LaIn3−xSnx ,12,25 favoring the
interpretation of a delocalization of the Ce f electrons.

3. Calculation for x = 0.7

For Gd3+ in CeIn2.3Sn0.7 the system is in the vicinity of
the QCP and Eq. (3) predicts bcal ≈ bexp. Therefore, we can
consider a single s-like conduction band with no q dependance
in the analysis of the resonance in this material. Hence, from
γ x=0.7 = 750(50) mJ/(mol K2)5 and Eq. (10), we get ηx=0.7

F =
160(10) states/(eV mol spin). Using Eq. (2) we find Jf s(0) =
0.2(1) meV, similar to the value found for x = 0.5.

4. Calculation for x = 1.5

The �g value observed experimentally gives bcal  bexp

by Eq. (3). So, in this case q dependence is present and
〈J 2

f s(q)〉1/2
F �= Jf s(0). From γ x=1.5 = 250(20) mJ/(mol K2)5

and Eq. (10), we get ηx=1.5
F = 53(4) states/(eV mol spin).

Using Eqs. (1) and (4) we calculate Jf s(0) = 2.6(2) meV and
〈J 2

f s(q)〉1/2
F = 0.7(1) meV, respectively.

5. Calculation for x = 3.0

From Eq. (3) we get bcal ≈ bexp, i.e., multiband and
q dependence effects of the exchange interaction may be
neglected. Thus, from γ x=3 = 73 mJ/(mol K2)5 and Eq. (10)

TABLE II. Derived effective exchange interaction parameters for
Gd3+ diluted in CeIn3−xSnx .

Gd3+ Jf s(0) 〈J 2
f s(q)〉1/2

F |Jff (0)| 〈J 2
ff (q)〉1/2

F

in (meV) (meV) (meV) (meV)

CeIn3 0.8(1) 0.20(5)
CeIn2.5Sn0.5 0.3(1) 0.8(1)
CeIn2.3Sn0.7 0.2(1)
CeIn1.5Sn1.5 2.6(2) 0.7(1)
CeSn3 1.7(1)

we get ηx=3
F = 16(1) states/(eV mol spin). Using Eq. (2) we

find Jf s(0) = 1.7(1) meV.

C. Derived effective exchange interaction parametes summary

The derived effective exchange interaction parameters
from the analysis above are summarized in Table II. Due
to the suppositions and approximations considered in the
calculations, the numerical values must be taken with care.
However, it does not invalidate the qualitative microscopic
description probed by ESR.

V. DISCUSSION

The nonmagnetic analog LaIn3−xSnx system is supercon-
ducting and shows Pauli paramagnetism in the normal sate.25

Gd3+-doped ESR measurements in these compounds showed
that the g shift and Korringa rate are not strongly changed by
Sn substitution [see Fig. 4(a)].12 The Gd3+ relaxation in these
alloys is always via a single s-like conduction band and Jf s is
q independent, decreasing slightly with increasing x (Fig. 7).12

〈〈
〈

〈
〈

〉
〉

〉
〉

FIG. 7. (Color online) Effective exchange interaction parameter
evolution as a function of Sn substitution. Data for LaIn3−xSnx

compounds are taken from Ref. 12. The AFM temperature transition
TN evolution and the non-Fermi-liquid (NFL) region in the vicinity of
the critical Sn concentration xc are also shown.5 For CeIn3−xSnx one
can identify the presence of only the localized (Loc.) spin behavior
for x = 0 and the itinerant (It.) character for x � 0.7, since only a
single-band effective exchange interaction is probed in each case.
At x = 0.5, near the quantum critical point, Gd3+ ESR probes both
localized and itinerant components of the Ce 4f electron. Shaded
areas and spline lines are guides for the eye.
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For CeIn3−xSnx compounds the evolution of the Gd3+ ESR
with Sn substitution is not as straightforward as in LaIn3−xSnx .
The b and �g values change profoundly as a function of x

[Fig. 4(a)]. For CeIn3, as we have seen, there is no exchange
interaction between Gd3+ and the s-like conduction electrons.
This is due to the Kondo effect, which creates an attractive
potential for these s-like conduction electrons at the Ce sites,
reducing its density at the Gd site. In this case, the Gd3+ ESR
relaxes only via an f -like localized band. This attests that the
Ce 4f electrons in CeIn3 are strongly localized under high
Kondo screening, which also prevents the Gd3+ resonance
from sensing the AFM transition below TN = 10 K.

As the system approaches the QCP (x = 0.5), but still pre-
senting AFM order, we observe the appearance of multiband
effects in the resonance which are related to the delocalization
of the 4f electrons, induced by the Sn substitution, giving rise
to an s-like band. For this alloy the Ce 4f electrons coexist as
localized and itinerant. In the vicinity of the QCP (x = 0.7),
on the nonmagnetic side of the phase diagram, the resonance
assumes a character where the relaxation is via a single s-like
band. The effective exchange interaction parameter Jf s(0) in
this compound is, within experimental errors, the same as at
x = 0.5, but no local f -like electrons are probed by the Gd3+;
only the itinerants.

Further increase in the Sn substitution does not alter the
Gd3+ relaxation process, which remains being via a single
s-like conduction band. For x = 1.5 the exchange interaction
is q dependent, indicating that it is not constant over the
Fermi surface and this dependance might be related to an
anisotropy observed in the s-f hybridization for CeIn1Sn2.26

In CeSn3 the Jf s(0) value decreases slightly compared to
CeIn1.5Sn1.5, probably due to intermediate valence effects
and/or lattice expansion. Thus, once the system crosses the
QCP the hybridization of the localized 4f electrons with the
conduction band becomes a global process and it behaves only
as an itinerant.

Figure 7 qualitatively summarizes this discussion of Gd3+
ESR evolution in CeIn3−xSnx materials.

VI. CONCLUSIONS

For CeIn3−xSnx , our conclusions are not drawn solely
based on the values of the extracted or derived parameters,
as a function of Sn concentration, but mostly based on the
fact that one cannot analyze in the same way the Gd3+
ESR of each sample. When comparing the LaIn3−xSnx

12 and
CeIn3−xSnx systems, one can immediately realize that the
evolution upon substituting In by Sn is dramatically different.

While for La-based compounds only a slight change in the
Jf s(0) value is observed, for the HF one, the Gd3+ effective
exchange parameter alters significantly, depending on the x

value. However, the only difference between these systems
is the addition of an 4f electron. So, the discrepancy in the
evolutionary behavior must come from the physics of this extra
4f electron. For the x = 0 end member this additional electron
is localized and highly screened by the conduction electron
sea, and thus, Gd3+ ESR only probes an f -like localized
band. However, for the other end member, x = 3, no local
magnetism occurs and the compound can be described as an
HF Landau Fermi liquid, where the Gd3+ resonance relaxes
only via a single s-like itinerant band. On the other hand,
in between, specifically for x = 0.5, we observe multiband
effects on the ESR data, i.e., contributions of localized and
itinerant bands that are originated from the same Ce extra 4f

electron. Therefore, we argue that the microscopic evolution of
the 4f electron in the CeIn3−xSnx system, as a function of Sn
substitution, can be understood as a transition from localized to
itinerant, where the localized character exists only in the AFM
phase and dies out at the QCP, while the itinerant behavior can
even coexist in the AFM state.

From the ESR results we observe that there are still some
local moments very close to the QCP in the AFM state (x =
0.5) and none in its vicinity on the nonmagnetic side (x = 0.7)
of the phase diagram. However, from our data, it is difficult to
assert whether the QCP in CeIn3−xSnx is of the itinerant or the
localized scenario, and further ESR experiments in samples
with different Sn contents are needed to clarify this issue.

VII. SUMMARY

In summary, our ESR results microscopically show that
for the CeIn3−xSnx system the AFM end member has only
highly screened local moments, whereas for the nonmagnetic
samples just itinerant bands are probed. For x = 0.5, in the
vicinity of the QCP, on the AFM side of the magnetic phase
diagram, the 4f electron has a dual character, being at the
same time localized and itinerant, giving rise to multiband
effects.
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