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Sublattice interference in the kagome Hubbard model
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We study the electronic phases of the kagome Hubbard model (KHM) in the weak-coupling limit around Van
Hove filling. Through an analytic renormalization group analysis, we find that there exists a sublattice interference
mechanism where the kagome sublattice structure affects the character of the Fermi surface instabilities. It leads
to major suppression of Tc for d + id superconductivity in the KHM and causes an anomalous increase of Tc upon
addition of longer-range Hubbard interactions. We conjecture that the suppression of conventional Fermi liquid
instabilities makes the KHM a prototype candidate for hosting exotic electronic states of matter at intermediate
coupling.
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Introduction. Understanding the variations of the critical
scale Tc of unconventional, i.e., electronically mediated,
superconductivity is a long-standing challenge in condensed
matter. For the cuprates, Tc is nonuniversal and has been
found to depend on various quantities such as structural
parameters,1 number of layers,2 Fermi surface topology,3

and orbital content of electrons at the Fermi level.4 For the
latter, the dz2 admixture to the dominant dx2−y2 Fermi surface
character has been suggested as a substantial influence on
Tc, a motif which is even more visible in the iron pnictides.
There, at least all Fe t2g orbitals (dxz, dyz, and dxy) host large
portions of electronic states in the vicinity of the Fermi surface,
which generically necessitates a multiband description. As a
consequence, universal trends of pnictide superconductivity
in terms of order parameter anisotropy and Tc sensitively
depend on the structural features which determine this orbital
composition.5,6

Multiband descriptions are both implied due to multiple
orbitals and multiple sites associated with the unit cell of a
given lattice. While previously mentioned superconductors are
all square lattices with one single site per unit cell, the kagome
lattice7 possesses a minimal three-band model due to three sites
per unit cell [inset Fig. 1(a)]. For the kagome Hubbard model
(KMH), the three sublattices cause fundamental problems in
characterizing its preferred electronic many-body phases. In
the strong-coupling limit at half filling, the kagome spin model
exhibits strong quantum disorder fluctuations and has become
one of the paradigmatic models of frustrated magnetism.8–10

While the associated Mott transition at finite coupling might
still be described within dynamical mean-field theory,11 the
scope of collective electronic phases at intermediate Hubbard
strength and general filling is particularly challenging to
investigate: In the same way as electronic Bloch states at the
Fermi level can involve different orbital admixtures for the
multiorbital case, the electronic states in the kagome lattice
can be differently distributed among the multiple sublattices.
From a tight-binding perspective [Fig. 1(a)], it is conceivable
that the filling is a sensitive parameter in the KHM: We find
two strongly dispersive bands and one flat band which, for
appropriate fillings, has been suggested to be particularly
susceptible to ferromagnetism along Stoner’s criterion.12

While it is an ongoing demanding effort to identify kagome

lattice materials at different electron fillings, a promising
alternative route starts to emerge in optical kagome lattices
of ultracold atomic gases, where the optical wavelengths can
be suitably adjusted for fermionic isotopes such as 6Li and
40K.13

In this Rapid Communication, we take an itinerant view-
point on the KHM and study how the tight-binding kagome
model responds to weak local and longer range Hubbard
interactions. The motivation is twofold. First, we want to
investigate what kind of competing Fermi surface instabilities
emerge in the KHM revealing the interplay of the sublattice
structure and Fermi surface topology. We particularly consider
the regime of the dispersive bands around Van Hove filling,
where critical scales are enhanced due to large density of states
and nesting becomes relevant (Fig. 1). For superconductivity
which we expect to find as the generically dominant instability
channel for weak coupling,14 the multidimensional irreducible
lattice representations associated with C6v symmetry on
the kagome lattice which are even under inversion suggest
the possibility of topological chiral singlet superconducting
phases.15 Second, the weak-coupling limit equips us with a
pivotal point of the KHM parameter space which we can solve
up to analytic precision.16,17 This provides a valuable starting
point for subsequent effective studies at intermediate coupling,
and as such improves our general understanding of the KHM.

Main results. The sublattice structure of the kagome lattice
has a crucial influence on the character of Fermi surface
instabilities, as the sublattice distribution of electronic states
varies along the Fermi surface (Fig. 1). We find d + id

superconductivity in the KHM in proximity at Van Hove filling.
This finding combined with the shape of the dispersive bands
naively suggests a similarity to the honeycomb model doped to
Van Hove filling (Fig. 2). There, f wave is preferred at fillings
where there are yet disconnected Fermi surfaces whereas
d + id is the leading instability as we find one Fermi pocket
[Fig. 3(a)]. However, the scales of the KHM are suppressed as
compared to the honeycomb scenario [Fig. 3(a)]: The KHM
exhibits a mechanism which we call sublattice interference
affecting the emergence of Fermi surface instabilities, as the
inhomogeneous sublattice distribution of Fermi level states
causes reduced nesting effects. Furthermore, while the usual
effect of long-range Hubbard interactions would be to reduce
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FIG. 1. (Color online) Fermi surface properties of the kagome tight-binding model at n = 5/12 total filling. (a) Band structure in units of
t resulting from the three-sublattice structure of the kagome lattice (inset). The fillings n = 3/12 and n = 5/12 (dashed horizontal line) are
located at Van Hove singularities as visible in the density of state plot in (b). (c) The Fermi surface touches the M point of the hexagonal
Brillouin zone where the DOS is maximal; its topology allows for three nesting features one of which is Q3 = (−π/2,

√
3π/2). The colors

blue, red, and green label the major sublattice occupation of the Fermi surface states. Q̃±
3 originate from opposite shifts of Q3 and link states

of similar sublattice weights. (d) The FS labels I-VI defined in (c) assist to read off the change of sublattice occupation weights |us(k)| along
the Fermi surface.

the critical scale of superconductivity,17,18 it gets enhanced
for the KHM as the long-range interactions help to relieve
sublattice interference effects [Fig. 3(b)].

Model. We consider the Hamiltonian

H = H0 + Hint,

H0 = t
∑

〈i,j〉

∑

σ

(c†iσ cjσ + H.c.) + μ
∑

i,σ

ni,σ , (1)

Hint = U0

∑

i

ni,↑ni,↓ + U1

2

∑

〈i,j〉,σ,σ ′
ni,σ nj,σ ′ , (2)

where ci,σ denotes the annihilation operator of an electron
at site i with spin σ , ni,σ = c

†
iσ ciσ , and μ is the chemical

potential which fixes the filling. While the local Hubbard
interaction of scale U0 is summed over all kagome sites, the
sum of the tight-binding model with energy scale t as well as
the nearest neighbor interaction of scale U1 is summed over
all neighbors on the kagome lattice which are on different
sublattices [see inset in Fig. 1(a)]. In order to obtain the band

FIG. 2. (Color online) Fermi surface properties of the honeycomb
tight-binding model at n = 5/8. (a) Band structure in units of t along
with the DOS (upper inset) and the two-sublattice structure (lower
inset). Comparing the Fermi surface in (b) to the scenario in Fig. 1,
the Fermi surface topology and the density of states are approximately
identical. Inset (b): The sublattice occupation along the Fermi surface
is homogeneous.

structure of (1), we perform the Fourier transform by dividing
the kagome lattice into unit cells containing three sites each.
This corresponds to quantum numbers of superlattice site i,
sublattice s, and spin σ characterizing the second quantized
real-space electron operators c

(†)
i,s,σ . The diagonal form of (1)

reads

H0 =
∑

k,σ,n

εn(k)c†k,n,σ ck,n,σ , (3)

where n denotes the band index and the band structure is shown
in Fig. 1(a) along with the density of states in Fig. 1(b). The
transition from real space to momentum space upon Fourier
transform reads

c
†
i,s,σ =

∑

k,n

u∗
sn(k)c†k,n,σ exp[−ik(Ri + rs)], (4)

where Ri denotes the unit cell location and rs the sublattice
location within the unit cell. The core information which
is relevant for investigating the interacting problem (2) is
encoded in the transformation coefficients usn(k) which we
call sublattice weights in the following. For a given band n

and momentum point in the Brillouin zone k, the coefficients
obey

∑
s |usn(k)|2 = 1.

Method. We employ perturbative renormalization group
in the two-particle pairing channel to investigate the super-
conducting instabilities.16 Summing over all diagrammatic
contributions up to second order in the interaction scales U0

and U1, this approach is asymptotically exact for infinitesimal
coupling for which the superconducting instabilities are found
in the vicinity of the Fermi surface. The central quantity to
compute for the perturbative RG is the pairing vertex

�(k, p) ≡ �(kσ, −kσ̄ , pσ, −pσ̄ ), (5)

for incoming particles with momentum k and −k and outgoing
particles with momentum p and − p. Due to spin rotational
invariance, the spin index effectively drops out of the pairing
vertex as we can always constrain ourselves to the Sz = 0
subblock where we obtain the triplet channel via antisym-
metrization and the singlet channel via symmetrization of �.
For infinitesimal interactions, all relevant momenta entering
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FIG. 3. (Color online) (a) Critical SC scale λ versus valence band filling from weak coupling for local interaction only, presented for the
kagome scenario in Fig. 1 (blue) and the honeycomb scenario in Fig. 2 (red). Dashed line denotes f wave, solid line d + id wave. The valence
band filling nv = 0.25 corresponds to a Van Hove point. All scales in the kagome case are largely reduced as compared to the honeycomb
case. Below nv < 0.25, the Fermi surface consists of disconnected pieces (left inset) and gives sizable f wave for the honeycomb case. Above
nv > 0.25, d + id is preferred along with a drop of λ for larger nv . (b) Relative change of λ for finite U1 as compared to the U0 only case as a
function of U1/U0 for both lattice scenarios at nv = 0.3.

the interaction vertex are located at the Fermi surface. From
the diagonal form of (5), we compute the superconducting
instabilities and obtain the pairing vertex eigenvalues λi ,16

where i = 1,2, . . . are ordered starting by λ1 as the largest
negative eigenvalue implying the strongest SC instability ac-
cording to Tc ∼ EF exp[−1/|λ1|], were EF is the Fermi energy.
Aside from the single-particle propagators as obtained by (3),
the key object in the diagrammatic summation for �(k, p) is
the two-particle interaction vertex V (k1σ,k2σ̄ ,k3σ,k4σ̄ ) with
incoming particles 1 and 2 as well as outgoing particles 3
and 4, where k4 is given by momentum conservation, and,
as for �, the spin index will effectively be dropped in the
following.

Local Hubbard interaction. Let us consider the case U1 = 0
at Van Hove filling n = 5/12. The Fermi surface is depicted
in Fig. 1(c). We only consider the interaction in the band at the
Fermi level and hence drop the band index n in the following.
The interaction vertex takes the simple form

V (k1,k2,k3,k4) = U0

∑

s

u∗
s (k1)u∗

s (k2)us(k3)us(k4). (6)

From (6), because of the locality of U0, the only momentum
dependence is given by the sublattice distribution weights
as defined in (4). Their evolution along the Fermi surface
is depicted through color coding in Figs. 1(c) and 1(d).
Equation (6) looks very familiar from orbital makeup factors
in multiorbital systems. In our case, this role is assigned to
the sublattice weight distribution of the kagome model. As in
the multiorbital case, the sublattice now affects the nesting
enhancement of particle-hole fluctuations along the Fermi
surface. A first guess from Fermi surface topology without
invoking the sublattice distribution would suggest the nesting
vectors Q1 = π (− 1

2 , −
√

3
2 ), Q2 = π (1,0), Q3 = π (− 1

2 ,
√

3
2 ).

As they connect Fermi surface points with mainly different
sublattice occupation, however, the interaction vertex (6)
will be small as it is diagonal in the sublattice index s.
This is what we call sublattice interference. In fact, because
of sublattice interference, the most enhanced particle-hole

fluctuation channels split into 6 different nesting vectors
connecting equal sublattice weights. For Q3 this corresponds
to a shift to Q̃±

3 = Q3 ± π ( 1
4 , 1

4
√

3
) [Fig. 1(c)].

It is instructive to reconcile our findings with the Hubbard
model on the honeycomb lattice with two lattice sites per unit
cell (lower inset Fig. 2), which has been recently investigated
via RPA, 3-patch RG, weak coupling, and functional renormal-
ization group.15,16,19–22 There, the tight-binding band structure
matches the dispersive bands of the kagome lattice and allows
us to similarly tune the honeycomb model to the equivalent
Van Hove filling [Fig. 2(a)]. While density of states [upper
inset Fig. 2(a)] as well as Fermi surface topology [Fig. 2(b)]
exactly match with the kagome case, the sublattice weights
for the honeycomb model are homogeneous along the Fermi
surface [inset Fig. 2(b)], suggesting the absence of sublattice
interference.

Figure 3(a) summarizes our results for local Hubbard
interactions for the kagome and honeycomb tight-binding
model. We vary the doping around Van Hove filling where
we define the valence band filling nv , i.e., the fraction of the
partially occupied band, to enable a direct comparison of both
cases. The Van Hove filling is located at nv = 1/4, the Dirac
cone filling at nv = 0. For 0 < nv < 1/4, the Fermi surfaces
are disconnected [left inset Fig. 3(a)], while they form one
contingent pocket for nv > 0.25 [right inset Fig. 3(a)]. For
the honeycomb scenario, we find that triplet f wave SC is
preferred for the former (B2 representation of C6v symmetry
group), while d + id wave is preferred for the latter (E2

representation). For the kagome scenario, we only find d + id

wave in close proximity to Van Hove filling. In detail, for
d + id we find two degenerate SC eigenvalues λ1,2 of d wave
symmetry, which then in any mean-field treatment yield the
preferential topological d + id chiral superconducting state in
order to avoid loss of condensation energy due to nodes which
would necessarily cross with the Fermi surface.15 d + id

has also been obtained in variational cluster approximation
calculations23 where, however, only local correlations are kept
and no long-wavelength features of the electronic phases can
be addressed.

121105-3



RAPID COMMUNICATIONS

MAXIMILIAN L. KIESEL AND RONNY THOMALE PHYSICAL REVIEW B 86, 121105(R) (2012)

Aside from the suppression of f wave in the kagome case,
the main difference between in the kagome (k) and honeycomb
(h) scenario is seen in the quantitative difference of λ

[Fig. 3(a)]. At Van Hove filling, λk ∼ 1/3λh. This illustrates at
infinitesimal coupling how decisively sublattice interference
affects the emergence of superconductivity on the kagome
lattice.

Long-range Hubbard interactions. In the case of finite U1,
the interaction vertex gets significantly more complicated than
for the on-site interaction scenario (6): Momentum depen-
dence now originates both from the harmonics associated with
the finite-interaction range as well as the sublattice weights.
In particular, however, V is not diagonal in the sublattice
index anymore. We take a representative filling in the d + id

wave regime at nv = 0.3 and investigate the superconducting
instabilities as a function of the ratio U1/U0 [Fig. 3(b)]. We
plot the ratio λ/λ0 where λ0 is the pairing vertex eigenvalue at
U1 = 0. As elaborated on in Ref. 17, the generic case which
applies to the honeycomb scenario is such that long-range
interaction should frustrate the pairing and induce a drop of
λ, which might be tuned via the degree of external capacitive
screening of the superconducting layer.18 The KHM shows
a notably different behavior, as λ increases for longer range
interactions. We can understand this phenomenon from the
perspective of sublattice interference and the vertex function.

As the vertex becomes nondiagonal in the sublattice index
due to longer range interactions, this yields a reduction of
sublattice interference effects as particle-hole fluctuations
between different sublattice components become sizable and
allow for reestablishing nesting enhancement given by Fermi
surface topology. Altogether, the reduction of sublattice
interference effects overcompensates the effect of harmonic
modulations due to the nearest-neighbor term in (2) and yields
a slight enhancement of λ for long-range Hubbard interactions
[Fig. 3(b)].

Summary and outlook. The KHM shows highly anomalous
behavior in terms of weak-coupling Fermi surface instabilities
such as suppressed critical scales of superconductivity which
increase upon addition of longer range Hubbard interactions.
While this is beyond the scope of perturbative RG at infinitesi-
mal coupling, our findings suggest that the KHM will likewise
exhibit anomalously reduced critical scales of superconducting
or spin density wave instabilities at intermediate coupling. This
in turn might show the path towards stabilizing unconventional
Fermi surface instabilities in the kagome Hubbard model.
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