
PHYSICAL REVIEW B 86, 115454 (2012)

Probing the charge of a quantum dot with a nanomechanical resonator
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We have used the mechanical motion of a carbon nanotube (CNT) as a probe of the average charge on a
quantum dot. Variations of the resonance frequency and the quality factor are determined by the change in
average charge on the quantum dot during a mechanical oscillation. The average charge, in turn, is influenced by
the gate voltage, the bias voltage, and the tunnel rates of the barriers to the leads. At bias voltages that exceed the
broadening due to tunnel coupling, the resonance frequency and quality factor show a double dip as a function
of gate voltage. We find that increasing the current flowing through the CNT at the Coulomb peak does not
increase the damping, but in fact decreases damping. Using a model with energy-dependent tunnel rates, we
obtain quantitative agreement between the experimental observations and the model. We theoretically compare
different contributions to the single-electron induced nonlinearity, and show that only one term is significant for
both the Duffing parameter and the mode coupling parameter. We also present additional measurements which
support the model we develop: Tuning the tunnel barriers of the quantum dot to the leads gives a 200-fold decrease
of the quality factor. Single-electron tunneling through an excited state of the CNT quantum dot also changes
the average charge on the quantum dot, bringing about a decrease in the resonance frequency. In the Fabry-Pérot
regime, the absence of charge quantization results in a spring behavior without resonance frequency dips, which
could be used, for example, to probe the transition from quantized to continuous charge with a nanomechanical
resonator.
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I. INTRODUCTION

Nanomechanical systems1,2 are studied intensively for both
their potential applications such as mass sensing3–5 and for
insights into the quantum mechanical ground state of a macro-
scopic object.6–10 Because of their small size, nanomechanical
resonators are strongly influenced by electrostatic forces from
single-electron charge effects, which allow single-electron
transistors to be used as sensitive detectors of the deflection of
a nanomechanical beam,11,12 demonstrating clear back-action
from the single-electron forces.13 Coupling of these forces to
mechanical resonators can also be exploited in mechanical
single-electron shuttle devices14 to shuttle electrons one-by-
one through the nanomechanical resonator.

A carbon nanotube (CNT) is a stiff, bottom-up nanome-
chanical resonator with a large aspect ratio.15 Dissipation in
an ultraclean CNT at cryogenic temperatures is low, which
results in a high-quality factor16 and allows investigation into
other sources of damping, such as nonlinear17 and magnetic
damping.18 At cryogenic temperatures, a quantum dot is
formed, embedded in the CNT,19,20 which makes single-
electron charge effects couple strongly to the mechanical
motion through the bending mode.21,22 For a CNT quantum
dot, the effects of damping, spring stiffening and softening,
and nonlinearity are completely dominated by single-electron
charging effects.23

The interplay between single-electron tunneling and me-
chanical motion has been the topic of many theoretical
investigations. The motion of nanomechanical resonators is
found to have an influence on the electron transport through
the single-electron transistor24,25 affecting current26,27 and
current noise.28–31 Conversely, transport through the single-
electron transistor by tunneling of single electrons causes back-
action29,32 on the mechanical motion in the form of frequency
shifts23,33,34 and damping.27,33,35,36 Under certain conditions,

single-electron tunneling can lead to a negative charging
energy37 or negative damping, causing instabilities, where a
distinction should be made between the low-frequency limit38

(ω0 � �) and the high-frequency limit39 (ω0 � �), relating
the mechanical resonance frequency ω0 to the single-electron
tunnel rate �. Aside from causing back-action on the mechan-
ical motion, single-electron tunneling is proposed to be used
to parametrically drive the nanomechanical resonator.40 In the
Coulomb blockade regime, CNT quantum-dot resonators in
particular are found to have a large electron-vibron coupling,41

and nonlinear restoring forces are found to be completely
dominated by single-electron tunneling effects.23,34 Further
theoretical studies have been performed on the subject of
single-electron shuttles42–45 and on the coupling between a
single-electron transistor and a nanomechanical resonator in
the quantum regime.46–48

In this article, we present measurements of single-electron
effects in CNT resonators in the Coulomb blockade regime
and we demonstrate that our experimental observations agree
quantitatively with the theoretical model we develop. This
agreement allows the CNT nanomechanical resonator to be
used as a probe for the average charge residing on the CNT
quantum dot. Furthermore, we examine the implications of
the established model through additional experiments. The
layout of the paper is as follows. In Sec. II, the fabrication of
the ultraclean suspended CNT is described, followed by the
measurement setup. Section III contains the characterization
of the CNT device in electrical terms, and the influence
of single-electron tunneling on the mechanical resonance
frequency, followed by the experimental observation of a
double-frequency-dip feature. In Sec. IV, we develop a model
for the dynamics of the mechanical resonator in the presence
of Coulomb blockade, which explains the presence of such a
double frequency dip, and make a quantitative comparison to
the measured data. In Sec. V, we extend this model to include
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the effect of Coulomb blockade on mechanical damping and,
again, compare the model to experimental data. In Sec. VI,
we expand the model further with the description of single-
electron-induced nonlinearity, resulting in an expression for
the Duffing parameter and the mode coupling parameter. In
Sec. VII, we explore the coupling of the average charge to
the mechanical resonator by varying the tunnel rates of the
quantum dot, by studying the effects of excited states of
the quantum dot, and by studying the mechanical resonator
in the Fabry-Pérot regime, in which Coulomb blockade no
longer plays a role. All of these additional measurements can
be understood qualitatively in the context of the model we
present.

II. FABRICATION AND MEASUREMENT SETUP

Ultraclean suspended carbon nanotube devices are fabri-
cated as follows.49 The fabrication begins with a degenerately
doped silicon wafer with a 285-nm thermal oxide. In the
first step, the contacts are patterned by evaporating 5 nm of
tungsten and 25 nm of platinum on a patterned double layer of
poly(methyl methacrylate) (PMMA), and performing lift-off.
In the second step, a three-layer etch mask, consisting of
photoresist, tungsten, and PMMA, is used to etch the trenches
between the contacts. The trenches are first patterned onto
the PMMA by electron beam lithography. This pattern is
transferred onto the tungsten by parallel plate reactive ion
etching using a mixture of SF6 and helium, where the PMMA
acts as an etch mask. After this, the photoresist is etched by
an oxygen plasma, during which the tungsten acts as an etch
mask. In the third step, trenches between the contacts are
etched into the silicon oxide, by the same mixture of SF6 and
helium, during which the photoresist acts as an etch mask.
To improve wire bonding, a layer of 10 nm of chromium and
80 nm of platinum is evaporated onto the bondpads, followed
by a sputtered layer of 20 nm of silicon. In the final step,
catalyst islands50 are deposited onto holes patterned in a double
layer of PMMA. The sample is now placed in a CVD oven,
where CNTs grow out of the catalyst particles in a mixture
of hydrogen and methane at a temperature of 900 ◦C. As the
CNTs grow in a random direction, approximately one third of
the patterned trenches has a CNT across them, touching both
the source and the drain, thus forming a device. Room-
temperature measurements of current as a function of gate
voltage are performed for each trench, showing semiconductor
behavior for potential devices.

Figure 1(a) shows a schematic diagram of the setup used
to measure mechanical resonances in the suspended carbon
nanotube devices.16 The device is mounted at the mixing
chamber of a 3He/4He dilution refrigerator with a temperature
of 20 mK. Filtered twisted-pair cabling is used to connect
to the source, drain, and gate of the device, allowing dc
voltages to be applied to the source and gate. The current
flowing through the device is measured at the drain. The CNT
is driven into motion by an ac voltage difference between
the gate electrode and the CNT. This high-frequency signal
needed to drive the CNT is supplied by a RF source through
a coaxial cable. At a separation of ∼1 cm from the device,
the shielding of the coaxial cable is removed to form the
antenna. We expect that the electrostatic coupling between
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FIG. 1. (Color online) (a) Schematic drawing of the chip geome-
try, antenna, and measurement electronics. The CNT acts as a doubly
clamped beam resonator with a displacement x and is driven because
of an asymmetrical capacitive coupling of the radio-frequency coaxial
cable to the source, drain, and gate. (b) Current versus gate voltage
at Vb = 0.3 mV showing, for increasing gate voltage, Fabry-Pérot
oscillations, then a small band gap, and finally Coulomb oscillations
with the increasing tunnel coupling to the leads opening up the
quantum dot as the gate voltage is increased further. (c) Top panel:
current as a function of gate voltage, showing a Coulomb peak. Middle
panel: change in current as a function of drive frequency and gate
voltage, showing a dip in resonance frequency across the Coulomb
peak. Right panel: current as a function of drive frequency at a gate
voltage Vg = 508.5 mV, as denoted by the black dashed line in the
middle panel, showing the mechanical resonance as a decrease in
current around f = 287.33 MHz.

the antenna and the nanotube segment itself is much too small
to actuate the CNT, which was confirmed by a lack of response
of the CNT quantum dot to a dc voltage applied to the coax.
Instead, the coaxial cable is capacitively coupled to the dc
wires leading to the source, drain, and gate. Because of a
difference in crosstalk capacitance from the coaxial cable
to the source, drain, and gate, ac voltages are generated
asymmetrically on the three. The ac voltage difference arising
between the gate and the CNT then actuates the CNT into
motion.
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III. ELECTRICAL AND MECHANICAL
CHARACTERISTICS

Figure 1(b) shows the current through a small-band-gap
CNT with a suspended length of 600 nm as a function of
gate voltage. For gate voltages below Vg = 0.4 V, the device
is doped with holes and weak scattering at the metal-CNT
interface at the edge of the trench results in conductance
that is modulated by Fabry-Pérot interferences51 of the hole
wave function. For 0.4 < Vg < 0.5, the Fermi level lies in
the band gap and the current is suppressed. From the distance
in gate voltage from electron and hole conduction, together
with the coupling factor α = Cg/Ctot = 0.38 determined
from the Coulomb diamonds, we estimate the band gap to be
Egap = 58 meV. Above Vg = 0.5 V, Coulomb oscillations
are visible. Now, electrons tunnel onto the CNT through
tunnel barriers, which arise from the p-n junctions between
the segments of the CNT near the W/Pt metal near the edge
of the trench and the CNT. The small capacitance between
the quantum dot and the three terminals gives rise to a large
charging energy of EC = 9.6 meV. For Vg > 0.7 V, the
Coulomb peaks are increasingly more smeared out. For larger
electron doping, the p-n junctions become narrower and the
tunnel barriers to the quantum dot become more transparent.49

We measure the mechanical bending mode resonances of
the CNT by actuating it into motion and measuring the dc
current. When the drive frequency matches the resonance fre-
quency, the CNT resonates, causing the capacitance between
the CNT and the gate to oscillate with a large amplitude.
This oscillating capacitance effectively induces an oscillating
gate voltage. The nonlinearity of the Coulomb peak allows
the oscillating effective gate voltage from the motion to be
rectified into a dc current.16

As reported earlier, the mechanical resonance frequency of
the CNT is strongly influenced by single-electron tunneling.22

The middle panel of Fig. 1(c) shows the change in current
due to the mechanical motion �I as a function of the
drive frequency and gate voltage on a Coulomb peak at
Vb = 0.2 mV. On a Coulomb peak, single-electron tunneling
leads to a dip in the resonance frequency. In the top panel of
Fig. 1(c), a line cut is shown of current versus gate voltage at a
drive frequency chosen to be far from the resonance frequency.
In the right panel of Fig. 1(c), a line cut is shown of the current
versus the drive frequency at one gate voltage, denoted by the
black dashed line in the middle panel, showing the mechanical
resonance as a change in the dc current.

In order to qualitatively understand these dips in frequency,
three essential elements are required. The first is that the
motion of the CNT changes the charge on the quantum dot,
which in turn changes the electrostatic force on the CNT. Thus,
the CNT experiences a displacement-dependent electrostatic
force. Because the electron tunnel rates � are much faster than
the mechanical frequency f0 (� ∼ 450 GHz, f0 ∼ 300 MHz),
the mechanical motion sees a displacement-dependent force
from the charge averaged over many tunnel events. This
displacement-dependent force induces a reduction of the
spring constant, which changes the mechanical frequency.

The sign of the frequency shifts can be understood by
realizing that electrostatic forces do not act as a restoring force,
but instead as an antirestoring force: if the CNT is pulled away

from its equilibrium position towards the gate, for example,
the electrostatic force will increase and tend to pull the CNT
with more force towards the gate. Thus, electrostatic forces
generally result in a decrease of the net spring constant.

Finally, to understand the gate voltage dependence, it is
illustrative to examine the differential capacitance of the
quantum dot to the gate. Due to the quantized charge on the
island of the dot, the quantum dot shows zero differential
capacitance when it is in the Coulomb valleys: the charge
is fixed independent of gate voltage. At the position of
the Coulomb peaks, the charge on the island undergoes a
discrete step of one electron. In the absence of tunnel or
temperature broadening of this transition, this step would be
infinitely sharp, and the differential capacitance would diverge.
The electrostatic spring effects discussed in the previous
paragraph are determined by the differential capacitances for
small amplitudes of motion, and the diverging differential
capacitance of the quantum dot at the positions of the Coulomb
peaks leads to a diverging softening renormalization of the net
mechanical spring constant, resulting in the dips in mechanical
frequency observed in the data.

In this article, we explore in detail how single-electron
tunneling affects the mechanical motion of the CNT and
develop a quantitative model to describe our results. In contrast
to earlier work,22 here we map out the behavior of the
mechanical resonator for bias and gate voltages covering the
single-electron tunneling region between two charge states.
The stability diagram in Fig. 2(a) shows the differential
conductance dI/dVb as a function of gate voltage and bias
voltage for the transition from 1 to 2 electrons. Coulomb
blockade is visible in blue, whereas single-electron tunneling
takes place in the red and white regions.

At a low bias voltage, Fig. 2(b) shows, in blue, the exper-
imentally obtained normalized current |(I − I0)|/|I − I0|max

as a function of gate voltage and drive frequency, where I0

is the current off mechanical resonance. The bias voltage of
0.17 mV for this figure is denoted by the upper white dashed
line in Fig. 2(a). The mechanical resonance is visible as an
increase in the normalized current. Around Vg,offset = 1 mV,
where Vg,offset = Vg − 0.565 V, the mechanical resonance
frequency shows a dip, as was demonstrated in previous
measurements.

When the bias voltage is increased, the resonance fre-
quency of the CNT exhibits substantially different behavior.
Figure 2(c) shows the measured normalized current as a func-
tion of gate voltage and drive frequency as a color plot at a bias
voltage of −0.55 mV, corresponding to the lower white dashed
line in Fig. 2(a). Instead of one dip, two dips in resonance
frequency are visible. The presence of such a peculiar double-
dip feature in the mechanical resonance frequency forms the
motivation for the work in the following sections, in which we
establish a quantitative model for the mechanical resonance
frequency and quality factor in the presence of Coulomb
blockade, and further explore the coupling of the mechanical
resonator dynamics to the average charge of the quantum dot.

IV. MODELING SINGLE-ELECTRON SPRING EFFECTS

This section describes a model developed for the coupling
of the mechanical resonator to the Coulomb blockaded
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FIG. 2. (Color online) (a) Stability diagram: dI/dVb as a function
of bias and gate voltage for the charge transition from 1 to 2 electrons.
The line cuts, at which (b) and (c) are taken, are indicated by the white
dashed lines. The black dashed line denotes the gate voltage at which
the middle panel of Fig. 4(c) is taken. (b), (c) Measured normalized
current |(I − I0)|/|I − I0|max as a function of drive frequency and
gate voltage offset at (b) Vb = 0.17 mV, showing a decrease
in resonance frequency around Vg,offset = 1 mV, and at (c) Vb =
−0.55 mV, showing a double dip in resonance frequency.

quantum dot, and the quantitative fitting of the experimentally
observed frequency dips. In Sec. IV A, a model for the average
charge on the CNT is described. In Sec. IV B, we derive a
model for how the average charge leads to a displacement-
dependent force that causes the softening of the CNT spring.
In Sec. IV C, fits of the experimentally obtained resonance
frequency and current are performed using the established
model.

A. Model for the average charge on a quantum dot

The average charge on the CNT at a charge transition can
be determined as follows. Single-electron tunneling onto or
off the CNT is a stochastic process, where the amount of time

an electron spends on the source or the CNT is determined,
respectively, by the tunneling rates �+ and �−. The average
occupation 〈N〉 of charges on the CNT for the charge transition
from N0 to N0 + 1 electrons is given by

〈N〉 = N0 + �+

�tot
, (1)

where �tot = �+ + �−.
The tunneling rates, determining the average occupation,

are modeled as follows. Traditionally, tunneling onto and off a
quantum dot is described52,53 using energy-independent tunnel
rates. The average occupation and the current are determined
by using energy-independent tunnel rates and the overlap of
the density of available states of the quantum dot and the leads.
Such an approximation of energy-independent tunnel rates is
valid when the tunnel barriers are sufficiently high, so that a
change in either bias or gate voltage does not cause a significant
change in the barrier height or width.

In this work, instead, we use energy-dependent tunnel rates,
assuming that the tunnel barriers are not high. This assumption
is supported by the strong dependence of the tunnel barriers on
the gate voltage [cf. Fig. 1(b)]. The influence of bias and gate
voltage on the tunnel rates is demonstrated in Figs. 3(a) and
3(b). At zero bias voltage, Fig. 3(a) shows the p-n junctions
as tunnel barriers between the CNT and the leads. When the

Egap

p pn
(c)

(b)

(a)

FIG. 3. (Color online) (a) Energy diagram at zero bias voltage,
with the p-n junctions represented by square tunnel barriers between
the CNT and the leads. (b) Energy diagram at finite bias voltage,
showing an increase of the height of the tunnel barrier to the source
relative to the energy of the tunneling electron, and a decrease in
the height of the barrier to the drain. (c) Diagram of the CNT band
structure with two p-n junctions induced through a positive gate
voltage.
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bias voltage is increased, Fig. 3(b) illustrates how the higher
electrostatic potential of the source increases the tunnel barrier
at the source, leading to a lower tunnel rate, whereas the
tunnel barrier at the drain is decreased, resulting in a higher
tunnel rate. In our device, the tunnel barriers are not formed
by steps in the potential but instead by p-n junctions in the
CNT. Figure 3(c) shows how tunnel barriers arise from p-n
junctions formed in the CNT at the metal-CNT interface, as
the chemical potential of the CNT is decreased by a positive
gate voltage. The height of the tunnel barriers is determined
by the band gap of the CNT: Egap.

To calculate the tunnel rates, the density of available states
of the leads and the quantum dot are used, taking the energy
dependence of the tunnel rates into account. The density of
available states of the level in the CNT quantum dot D(μ),
caused by tunnel coupling to the leads, is described with a
Lorentzian line shape:

D(μ) = 1

2π

h̄�broad

(μ − μCNT)2 + (h̄�broad/2)2
. (2)

Here, μCNT is the chemical potential of the CNT. The
broadening �broad gives the full width at half maximum. At
T = 20 mK, we are in the regime where h̄�broad � kBT . The
density of available states of the left and right leads fL,R(E)
is now modeled by a step function

fL,R(E) =
{

1 : E < μL,R,

0 : E > μL,R,
(3)

where E is the energy of the electron, and μL,R is the chemical
potential of the left (right) lead. The tunnel rates are determined
by the overlap of the density of available states of the CNT
and the leads, and by their relative chemical potential:

�±
L,R = aL,RebL,R�μL,R

[
1

2
+ 1

π
arctan

(∓2�μL,R

h̄�broad

)]
. (4)

Here, the energy-dependent tunneling is reflected by the
exponential factor, which is shown theoretically54 to occur
for tunnel barriers brought about by an electrostatic potential,
where the barrier height is low and the barrier width is large.
The parameters aL,R depend on the height and width of the
tunnel barriers. The parameters bL,R describe the triangular
profile that the tunnel barriers have, which is there at zero
bias voltage [cf. Fig. 3(c)] and is additionally changed by
altering the bias and gate voltage [cf. Fig. 3(b)]. The difference
in chemical potential between the CNT and the left or right
lead is denoted by �μL,R = μCNT − μL,R . The last factor in
Eq. (4) arises from the broadening due to tunnel coupling and
is determined from the overlap of the density of available states
of the left or right electrode with that of the CNT.

The calculated average occupation, at a bias voltage of
Vb = 0.17 mV, corresponding to the white dashed line labeled
(b) in Fig. 2(a), is shown in the top panel of Fig. 4(a) as a
function of gate voltage at the charge transition from 1 to 2
electrons. At zero broadening �broad = 0, the green line shows
the average occupation increase in two discrete steps. The
left inset of Fig. 4(a) shows an energy diagram illustrating
zero broadening. The three discrete plateaus in average charge
correspond to Coulomb blockade, single-electron tunneling,
and Coulomb blockade again. At a broadening of �broad =
450 GHz, for which h̄�broad > e|Vb|, the red line shows

the average occupation increases monotonically in a single
step. The right inset of Fig. 4(a) illustrates how the double
step in average occupation, seen at zero broadening, is
completely smeared out. Here, e is the elementary charge, kB is
Boltzmann’s constant, and h̄ is the reduced Planck’s constant.

At a bias voltage of Vb = −0.55 mV, corresponding to the
white dashed line labeled (c) in Fig. 2(a), the calculated average
occupation is shown in the top panel of Fig. 4(b) as a function
of gate voltage. Both at a broadening of �broad = 0 (green) and
at a broadening of �broad = 450 GHz (red), two steps and three
plateaus are visible. The insets of the top panel of Fig. 4(b)
show how all allowed states on the CNT are inside the bias
window, both for zero broadening (left) and finite broadening
(right). Contrary to low bias, the two steps are not smeared
into a single step at finite broadening.

For different bias voltages, the calculated average occupa-
tion is shown in the top panel of Fig. 4(c) as a function of
gate voltage for different bias voltages. At low bias, the charge
transition takes place in a small range in gate voltage. This
gives rise to a large slope for the average occupation with
respect to gate voltage. As the bias voltage is increased, the
range in gate voltage increases. When the bias voltage is larger
than the broadening, the average occupation increases in two
steps.

B. Model for the single-electron spring

Using the average charge as determined in the previous
section, the shift in resonance frequency is modeled as follows.
The electrostatic force acting on the CNT depends on the
voltage difference between the CNT and the gate electrode:55

FCNT = 1

2

dCg

dx
(Vg − VCNT)2, (5)

where Cg is the capacitance between the CNT and the gate, x

is the displacement of the fundamental mode of the CNT,
and Vg and VCNT are the voltages on the gate and the
CNT, respectively. The voltage on the CNT is determined by
the control charge qc = CgVg + CSVS + CDVD , which is the
charge that would be on the CNT in the absence of Coulomb
blockade, and the average occupation 〈N〉 of charges residing
on the CNT:

VCNT = qc − e〈N〉
Ctot

. (6)

Here, CS,D and VS,D are the capacitances to and the voltages on
the source and drain, respectively, and Ctot = Cg + CS + CD .
In our case, the bias voltage is applied to the source VS =
Vb, and the drain electrode is grounded, VD = 0. Because the
charge N on the dot fluctuates stochastically between N0 and
N0 + 1 at a rate �tot � f0, the mechanical motion experiences
a voltage on the CNT due to an average occupation 〈N〉.

The spring constant and, consequently, the resonance
frequency of the CNT are determined by the change in force
acting on the CNT per unit displacement:

2mω0�ω0 = �k = −dF

dx
, (7)

where m is the mass of the CNT, and �ω0 � ω0. The full
derivative of the force with respect to the displacement of
the CNT is expanded into partial derivatives with respect to
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FIG. 4. (Color online) [(a), top] Calculated average occupation 〈N〉 as a function of gate voltage at Vb = 0.17 mV, showing two discrete
steps for �broad = 0 (green line), and a smeared-out monotonic increase for �broad = 450 GHz (red line). Insets: energy diagrams at low bias for
zero broadening (left) and finite broadening (right). [(a), (b), (c), middle] Measured normalized current |(I − I0)|/|I − I0|max as a function of
drive frequency and [(a), blue] gate voltage offset at Vb = 0.17 mV [(b), blue] gate voltage offset at Vb = −0.55 mV, and [(c), red] bias voltage
at a gate voltage offset Vg,offset = 0.04 mV and the corresponding calculated resonance frequency (red line, red line, blue line), showing (a) a
decrease in resonance frequency around Vg,offset = 0, (b) a double dip in resonance frequency, (c) a decrease in resonance frequency for low
bias voltages. [(a), (b), (c), bottom] Measured (blue dots) and calculated (red line) current as a function of gate voltage at (a) Vb = 0.17 mV,
(b) Vb = −0.55 mV, and (c) as a function of bias voltage at Vg,offset = 0.04 mV. [(b), top] Calculated average occupation 〈N〉 as a function of
gate voltage at Vb = −0.55 mV, showing two discrete steps for both �broad = 0 (green line) and for �broad = 450 GHz (red line). Insets: energy
diagrams at high bias for zero broadening (left) and finite broadening (right). [(c), top] Calculated average occupation 〈N〉 as a function of gate
voltage and bias voltage at �broad = 450 GHz, showing the average occupation 〈N〉 from increasing in a single step at zero bias to increasing
in two steps at Vb = 1 mV.

displacement and gate voltage:

−dF (x,Vg)

dx
= −∂F (x,Vg)

∂x
− dCg

dx

dqc

dCg

dVg

dqc

∂F (x,Vg)

∂Vg

= −1

2

d2Cg

dx2
(Vg − VCNT)2

− Vg(Vg − VCNT)

Cg

(
dCg

dx

)2
∂(Vg − VCNT)

∂Vg

.

(8)

The first term gives rise to a softening spring effect due to the
capacitive force between the CNT and the gate. The second
term takes into account the influence of the displacement on
the control charge through the gate capacitance. In turn, the
influence of the control charge on the force is incorporated
through the gate voltage. In this article, we focus on changes
in the spring constant that occur rapidly with gate voltage and
we show that the experimental features can be captured using
only the second term.

Combining Eq. (6) and the second term of (8) leads to the
following expression for the change in resonance frequency
due to a changing average charge:22

�ω0 = Vg(Vg − VCNT)

2mω0Ctot

(
dCg

dx

)2 (
1 − Ctot

Cg

− e

Cg

∂ 〈N〉
∂Vg

)
.

(9)

Because of the rightmost minus sign and the fact that
∂ 〈N〉 /∂Vg > 0, the changing average charge on the CNT
leads to a softening spring effect. The resonance frequency
of the CNT decreases more when the mechanical oscillation
causes a larger change in average charge, expressed by
∂ 〈N〉 /∂Vg .

C. Fitting of the experimental resonance frequency
shift and discussion

To verify the model established in the previous two
paragraphs, we perform a quantitative fit on the experimental
data shown earlier in Fig. 2. The fits are accomplished by using
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Eq. (9) and a single set of parameters for all figures. The values
chosen for the parameters can be found in Appendix A. A value
for ∂ 〈N〉 /∂Vg is obtained by numerically differentiating the
calculated average occupation, as is displayed in the top panel
of Fig. 4(a), with respect to gate voltage.

The red graphs in the middle panel of Figs. 4(a) and
4(b) show the calculated change in resonance frequency
as a function of gate voltage. At Vb = 0.17 mV, Fig. 4(a)
shows quantitative agreement between the measurement and
the model describing the frequency dips. The frequency dip
corresponds to the largest slope of the average charge with
gate voltage. At Vb = −0.55 mV, Fig. 4(b) demonstrates how
the model reproduces the experimentally observed double-dip
structure. At the plateau in average charge, the mechanical
oscillation only brings about a small change in average charge,
and the resonance frequency returns towards its original value.

To investigate the reduction in the resonance frequency as
a function of bias voltage, a vertical line cut is taken at a
constant gate voltage through the charge degeneracy point in
the stability diagram. The middle panel of Fig. 4(c) shows the
measured current, but now as a function of bias voltage, not
gate voltage, and drive frequency. The calculated resonance
frequency in blue shows excellent quantitative agreement with
the measurement. At low bias voltages, the narrow charge
transition leads to a large change in average charge due to the
mechanical oscillation and a large change in the displacement-
dependent force, resulting in a large decrease in resonance
frequency. At higher, both positive and negative, bias voltage,
the slope in average occupation ∂〈N〉/∂Vg becomes less, as

the plateau arises. This leads to a smaller change in the
displacement-dependent force and a smaller decrease in the
resonance frequency.

The experimentally obtained current flowing through the
CNT is shown with blue dots in the bottom panels of Fig. 4 at
Vb = 0.17 mV (a), Vb = −0.55 mV (b), and as a function of
bias voltage (c). For Vb = 0.17 mV, a Coulomb peak is visible.
For Vb = −0.55 mV, the plateau in current shows that the bias
voltage Vb is larger than the broadening �broad. As a function of
bias, the bottom panel of Fig. 4(c) shows no Coulomb blockade
since the vertical line cut in bias voltage exactly passes through
the charge degeneracy point. The absence of a saturation of the
current at high bias voltage indicates low tunnel barrier heights
and supports the choice of energy-dependent tunnel rates. As
an independent examination of the chosen tunnel rates, the
measured current is fitted using the same parameters as for the
frequency dips (red lines). The current is calculated using

I = e
�+

L �−
R − �+

R �−
L

�tot
. (10)

For intermediate bias voltages, Fig. 5 illustrates the
transition from the double-dip structure to a single dip. Using
the same set of parameters as for Fig. 4, the calculated
resonance frequency follows the measurement well. The
quantitative agreement between the experiment and the
calculation of the resonance frequency and the current for
different bias voltages demonstrates the consistency of the
single set of parameters used for the calculation.
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FIG. 5. (Color online) Measured normalized current (blue) and calculated resonance frequency (red line) as a function of gate voltage offset
for different bias voltages, showing the transition of the double-dip structure into a single dip as the bias voltage becomes less negative.
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FIG. 6. (Color online) (a) Stability diagram at a parallel magnetic field of 8 T and Vg = 0.9 V, showing the charge transition from 7 to 8
electrons, with the gate and bias voltages at which (b), (d), and (f) were taken, indicated by black and blue dashed lines. (b), (d), (f) Comparison
between measurement (blue dots) and model (red lines) of the quality factor (top) and the shift in resonance frequency (bottom) as a function
of gate voltage (b), (d) and bias voltage (f), showing (b) at Vb = 0.3, a single dip, (d) at Vb = 1.1 mV, a double dip, and (f) at Vg,offset =
0 mV, a large decrease in quality factor and resonance frequency at low bias voltages. (c) Energy diagram (exaggerated) illustrating the damping
mechanism, showing the asymmetry of electrons tunneling onto the CNT at low chemical potential and off the CNT at high chemical potential.
(e) Measured (blue dots) and calculated (red line) current as a function of bias voltage at Vg,offset = 0 V.

V. SINGLE-ELECTRON DAMPING

In this section, the influence of the changing average charge
on the mechanical quality factor of the CNT is investigated.
As with the resonance frequency in the previous section,
the quality factor is determined experimentally and by using
a model, for low bias voltage, high bias voltage, and as a
function of bias voltage. To show the consistency of the used
parameters, the corresponding resonance frequency is also
displayed. Figure 6(a) shows the stability diagram of the charge
transition from 7 to 8 electrons at a parallel magnetic field
of 8 T. The current flowing through the CNT is measured
as a function of bias and gate voltage, and the derivative
dI/dVb is determined numerically. The letters b and d denote,
respectively, the low and high bias voltage, at which Figs. 6(b)
and 6(d) were taken. The letter f denotes the gate voltage at
which Fig. 6(f) was taken.

A. Experimental observation of single-electron damping

The experimentally determined mechanical quality factor
at a low bias voltage of Vb = 0.3 mV is displayed in blue dots
in the top panel of Fig. 6(b). The quality factor is obtained
by measuring the current versus drive frequency 10 times and
averaging. The drive power is adjusted for each quality factor
measurement such that the frequency response shows a line
shape which is as close as possible to Lorentzian, but which is
not obscured by noise. By working at low powers in the linear
response regime, we minimize the likelihood that nonlinear
damping terms17 play a significant role. The change in current
�I due to the mechanical motion in our detection scheme

is proportional to the amplitude of the displacement squared.
At the sides of the Coulomb peak, the lack of nonlinearity
of the current with gate voltage prevents the measurement
of the mechanical motion through a change in current, and
consequently a determination of the quality factor. A fit with
the following Lorentzian function is performed to extract the
quality factor:

�I (ω) = A ω4
0/Q

2[(
ω2

0 − ω2
)2 + ω2

0ω
2

Q2

] . (11)

Here, Q is the mechanical quality factor, ω is the drive
frequency, and A = 1

4

( Vg

Cg

dCg

dx

)2 d2I
dV 2

g
x2 is a fit parameter,

which incorporates the amplitude of oscillation x and the
electromechanical coupling. At a low bias of Vb = 0.3 mV,
a large decrease in the quality factor of two orders of
magnitude is visible, spanning several millivolts of gate
voltage corresponding to single-electron tunneling. The top
panel of Fig. 6(d) shows the experimentally obtained quality
factor in blue dots at a high bias voltage of Vb = 1.1 mV.
Here, similarly to the double frequency dip at high bias in
the middle panel of Fig. 4(b), two dips in quality factor are
visible.

To investigate the relation between current and single-
electron damping of the mechanical motion, Fig. 6(e) shows
the current as a function of bias voltage. The gate voltage is
chosen such that the graph is a vertical line cut through the
charge degeneracy point. The top panel of Fig. 6(f) shows the
corresponding quality factor as a function of bias voltage, again
at a gate voltage of Vg = 0.9002 V. The quality factor exhibits
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a dip at low bias voltages and returns to its original value at
higher, both negative and positive, bias voltage. We emphasize
that the highest current flowing through the CNT does not
correspond to the largest reduction in quality factor. Instead,
in fact, when the gate voltage is positioned at a Coulomb peak,
the quality factor actually goes up when increasing the current
through the device.

Figure 6(c) shows the basic concept of the damping
mechanism, illustrated with zero broadening and one electron
tunneling event during a mechanical oscillation. Let us first
consider the zero-bias-voltage case. The mechanical motion
brings the chemical potential of the CNT below and above the
Fermi level of the leads. The asymmetry of the Fermi sea in the
leads implies that electrons can only tunnel onto the CNT when
the level of the CNT is below the Fermi energy of the leads,
and can only tunnel off when it is above. As the mechanical
oscillation pushes the level downwards through the Fermi
energy, there is a small retardation in the time when the
electron tunnels on, given by 1/�. As the level is pushed back
upwards in electrostatic energy by the motion, the electron
tunnels off, again with a small time delay. The net result is that
electrons are pumped from below the Fermi energy to above
it, extracting energy from the mechanical motion, and thus
resulting in mechanical damping. Although the retardation
time is small compared to the mechanical frequency (� � ω0),
the damping is still large due to the large electromechanical
coupling. At finite bias voltage, the same picture applies,
but now the damping occurs when the level of the CNT
passes by the Fermi energy of each of the left and right leads
separately.

At zero temperature and with no broadening of the transi-
tion from the tunnel coupling to the leads, the dip in quality
factor would be infinitely narrow. Including finite temperature
and tunnel coupling of the level to the leads, the dip in quality
factor acquires a finite width, and is proportional to the change
in average occupation with gate voltage ∂〈N〉/∂Vg , as shown
in Eq. (12) in the next section. The fact that the quality factor
is determined in this way also explains the observed single-
and double-dip structures in the quality factor. At low bias
voltage, the charge transition takes place in a single step and
consequently there is a single dip in the quality factor. As
the bias voltage is increased, the single step changes into two
steps with a plateau between them. On the plateau, the change
in average occupation with gate voltage ∂〈N〉/∂Vg is smaller,
leading to a smaller retarded single-electron force acting on the
CNT and a smaller reduction of the quality factor. Although a
larger current is due to more tunnel events, the CNT does not
perform extra work at high bias. As more electrons pass the
CNT and reside on it, the retardation time is reduced. What
causes the reduction in quality factor is the pumping of the
electrons from below the Fermi energy to above it, and the
retardation between the electrostatic force and the mechanical
motion.

B. Model for single-electron damping

Using the following model, the quality factor is calculated,
as shown in the red lines in the top panels of Figs. 6(b), 6(d),
and 6(f). We look at the limit where there are many tunneling
events per mechanical oscillation, �tot � f0. As derived in

Refs. 27 and 38, the total damping has an intrinsic contribution
and a contribution due to the displacement-dependent force
associated with tunneling electrons:

ω0

Qtot
= ω0

Qint
+ FstochVg

mCg

1

�tot

dCg

dx

∂〈N〉
∂Vg

, (12)

where Qtot is the total quality factor and Qint is the intrinsic
quality factor in the absence of tunneling electrons. The
stochastic force experienced by the CNT Fstoch = F (N0 +
1) − F (N0) is the difference between the force experienced
at N0 and N0 + 1 electrons. Assuming that both source and
drain voltage are much smaller than the dc gate voltage,
Vs,Vd � V dc

g , and taking only into account the dc force acting
on the electrons as the CNT oscillates (which is valid as long
as V ac

g � V dc
g ), Ref. 27 gives the following expression for the

stochastic force:

Fstoch = 1

C2
tot

dCg

dx
[2e(CS + CD)Vg + e2(2N + 1)]. (13)

Equation (12) illustrates how single-electron damping is
increased by a large change in average occupation because
of mechanical motion ∂〈N〉/∂Vg , but is reduced by a large
total tunnel rate �tot as the retardation time decreases. In
the case that exponential tunnel rates cause ∂〈N〉/∂Vg

to become negative, single-electron tunneling pumps the
mechanical motion, leading to self-sustained oscillation.38

C. Fitting of the experimental quality factor and discussion

The calculated and the measured quality factors, at low bias,
are compared in the top panel of Fig. 6(b), showing quantitative
agreement below Vg,offset = 1 mV, where Vg,offset = Vg − 0.9 V.
At high bias, the top panel of Fig. 6(d) shows an
excellent quantitative agreement between the model and
the measurement. As a function of bias in the top panel of
Fig. 6(f), the calculated quality factors match the measured
quality factors at bias voltages below 1 mV. Above 1 mV, an
excited state, as evident in the current in Fig. 6(e), may be the
cause of extra damping.

The bottom panels of Figs. 6(b), 6(d), and 6(f) show, in blue
dots, the resonance frequency extracted from the frequency
responses alongside the quality factors. The decrease in
quality factor is accompanied by a decrease in the resonance
frequency. The red lines show the resonance frequency
calculated with the model as described in the previous section,
using the same tunnel rates as for the quality factors. Without
changing any fit parameters, we have qualitative agreement as
the quality factor dips and the resonance frequency dips occur
at corresponding gate voltages. It is not fully understood why
agreement between the calculated and measured resonance
frequency is not quantitative.

VI. NONLINEAR RESTORING FORCES DUE TO
SINGLE-ELECTRON TUNNELING

In the previous sections, we described linear corrections
to the restoring force due to single-electron tunneling, which
change the spring constant and cause damping. In this section,
we cover nonlinear corrections due to single-electron charge
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effects,23 resulting in expressions for the Duffing parameter
and the mode coupling parameter.

A. Duffing nonlinearity due to single-electron tunneling

Adding nonlinear corrections, the single-electron force is
expanded with respect to the displacement x as follows:

FCNT = −�kSETx − βSETx2 − αSETx3. (14)

The βSET parameter and the Duffing parameter αSET are
calculated as derivatives of the single-electron force:

βSET = −1

2

d2FCNT

dx2
, (15)

αSET = −1

6

d3FCNT

dx3
. (16)

Expanding the full derivatives into partial partial derivatives
as d/dx = ∂/∂x + (Vg/Cg)(dCg/dx)∂/∂Vg , we arrive at

βSET = −1

2
Fxx − Vg

Cg

dCg

dx
Fxg − 1

2

(
Vg

Cg

dCg

dx

)2

Fgg, (17)

αSET = −1

6
Fxxx − 1

2

Vg

Cg

dCg

dx
Fxxg

− 1

2

(
Vg

Cg

dCg

dx

)2

Fxgg − 1

6

(
Vg

Cg

dCg

dx

)3

Fggg. (18)

Here, the subscripts of F denote differentiation with respect
to displacement x or gate voltage g.

The quadratic nonlinearity βSET renormalizes56 αSET, lead-
ing to an effective Duffing parameter αeff,SET:

αeff,SET = αSET + �αβ,SET = αSET − 10

9

β2
SET

mω2
0

. (19)

For the parameters of the device we study here, there is a
leading-order dominant contribution α0

SET given by

α0
SET = −1

6

(
dCg

dx

)4 (
Vg

Cg

)3
e(Vg − VCNT)

Ctot

∂3〈N〉
∂V 3

g

, (20)

which is one of the terms arising from −1/6
[(Vg/Cg)(dCg/dx)]3Fggg in Eq. (18). Using the same set of
parameters as for Figs. 4 and 5, we repeat the calculated
average occupation as displayed in Fig. 4(a), and we plot
αeff,SET and α0

SET together in Fig. 7. The figure shows that
the other contributions in Eq. (18) and the renormalization
�αβ,SET, due to βSET, play no significant role in our device.
For completeness, the other contributions, which are more than
one order of magnitude smaller than α0

SET, are plotted in Fig.
12 in Appendix B. The switching of the sign of the Duffing
parameter αeff,SET, due to the third derivative of the average
occupation with respect to gate voltage, is visible in Fig. 7 and
has been observed experimentally previously.22

B. Mode coupling due to single-electron tunneling

Recently,57 different bending modes in CNT quantum-dot
resonators have experimentally been shown to have strong
coupling, resulting in a shift in the resonance frequency of
one mode due to the resonance of another mode. In contrast
to top-down micromechanical beams58 and CNTs outside the

 0

 4 1013

-5  0  5

N
on

lin
ea

rit
y 

pa
ra

m
et

er
 (

N
/m

3 )

 2 1013

-2 1013

α

α0

SET

 1

 1.5

 2

〈N
〉

FIG. 7. (Color online) (Top) Average occupation 〈N〉 as a
function of gate voltage, identical to the top panel of Fig. 4(a).
(Bottom) Calculated nonlinearity parameter as a function of gate
voltage at Vb = 0.17 mV across the Coulomb peak depicted in
Fig. 2, with its sign flipping from negative to positive to negative
again, showing the significance of the α0

SET contribution in αeff,SET.
Other contributions, including the renormalization �αβ,SET, due to
βSET, are shown to be negligible.

Coulomb blockade regime,59 mode coupling in CNT quantum-
dot resonators is not dominated by tension but, instead, by
single-electron charge effects. In this section, we establish
a theoretical framework for single-electron mode coupling.
We focus on the leading-order nonlinear contribution to the
restoring force, arising from F 0

SET = −α0
SETx3, and write it in

terms of the change in capacitance δCg due to mechanical
motion:

F 0
SET = −B(Vg)

∂3〈N〉
∂V 3

g

dCg

dx
(δCg)3, (21)

where, for brevity, we capture the slowly varying dependence
on gate voltage in B(Vg) = 1

6 ( Vg

Cg
)3 e(Vg−VCNT)

Ctot
. The change in

capacitance due to mechanical motion depends on the mode
shape:

δCg =
∫ L

0

dcg

du

(∑
n

un(z) cos(ωnt)

)
dz, (22)

where dcg/du is the change in capacitance per unit length with
respect to the amplitude u(z) at position z along the CNT. We
use the infinite cylinder parallel to a plate model,60 and assume
that dcg/du is independent of the position z along the CNT.
The position-dependent amplitude un(z) is given by

un(z) = xnξn(z), (23)

where the mode shapes ξn(z) are orthonormalized as∫ L

0 ξi(z)ξj (z)dz = Lδij with δij the Kronecker delta, such that
the amplitude x represents the root-mean-squared amplitude
over the length of the CNT (not over time). With this definition
of the amplitude,10 the mass of each mode is given by the
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total mass and the spring constant is given by kn = mω2
n. The

change in gate capacitance due to the mechanical motion is
simplified to

δCg = L
dcg

du

∑
n

xnan cos(ωnt), (24)

with the first four elements of an = (1/L)
∫ L

0 ξn(z)dz

calculated10 for a bending-rigidity dominated beam to be
0.83, 0, 0.36, and 0. The leading-order nonlinear term F 0

SET
is expanded as

F 0
SET = −B(Vg)

∂3〈N〉
∂V 3

g

C({xi})

×
∑
m,n

a2
mx2

m

(
1

2
+ 1

2
cos(2ωmt)

)
anxn cos ωnt,

(25)

where we have used C({xi}) = (Ldcg/du)4(
∑

i aixi)/
∑

xi .
We address several terms in this expression. The terms

containing (1/2) cos(2ωmt) give rise to parametric excitation
due to single-electron effects. The terms not containing
(1/2) cos(2ωmt), while having m = n, lead to the Duffing non-
linearity of modes 1 and 3, as described in the previous section.
Single-electron mode coupling is brought about through the
terms not containing (1/2) cos(2ωmt), while having m 	= n,
as the amplitude of one mode changes the spring constant of
another mode. The change in resonance frequency of mode m

due to the resonance of mode n is then given by

�ωm

x2
n

= − 1

4mωm

B(Vg)
∂3〈N〉
∂V 3

g

C(xm,xn)a2
nam. (26)

As the sign of ∂3〈N〉/∂V 3
g goes from positive, to negative,

to positive again, across a Coulomb peak, mode coupling
causes softening, then stiffening, and then softening, in the
CNT spring. The change in sign from mode coupling across
a Coulomb peak arises from the mechanically modulated
average charge in the same way as the sign of the Duffing
nonlinearity does.

VII. ADDITIONAL EXPERIMENTAL OBSERVATIONS
OF SINGLE-ELECTRON SPRING AND

DAMPING EFFECTS

In Secs. IV and V, we showed how the resonance frequency
and the quality factor decrease as the average charge on the
CNT is modulated through mechanical oscillation. How much
the average charge changes is determined by ∂〈N〉/∂Vg , which
in turn depends on the broadening �broad due to tunnel coupling
to the leads. First, in Sec. VII A, we show that, by tuning
the tunnel rates through magnetic field, the dips in resonance
frequency and quality factor are influenced significantly, and
in a way that is in qualitative agreement with the physical
picture of the damping and frequency shifts from our model.
In Sec. VII B, a step in the average charge caused by an excited
state of the CNT is presented to lead to a decrease in the
resonance frequency, demonstrating detection of the excited
state of the quantum dot using the mechanical resonator.
Finally, in Sec. VII C, we demonstrate that the single-electron
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FIG. 8. (Color online) (a) Current as a function of gate voltage
and parallel magnetic field, showing a decrease in the height and
width of the Coulomb peaks and a shift of the Coulomb peaks with
increasing magnetic field for the first four charge states. The yellow
dashed box denotes the region shown in (b). (b) Current as a function
of gate voltage and parallel magnetic field, showing the shift of the
transition from 0 to 1 electrons with magnetic field. (c) Cross section
of the Dirac cones of a CNT at a constant energy as a function of k⊥
and k‖, showing the intersection of the quantized k⊥ with the Dirac
cones. (d) Cross section of a Dirac cone of a CNT, showing the change
in the band gap Egap as the parallel magnetic field alters k⊥.

spring and damping effects we observe are indeed originating
from Coulomb blockade, by studying the gate dependence
of the resonance frequency in the Fabry-Pérot conductance
regime. In this regime, the charge on the suspended CNT
segment is no longer quantized, and we no longer observe
dips in the mechanical frequency as we sweep the gate.

A. Resonance frequency shifts and damping via
magnetic-field-dependent tunnel rates

In this section, we examine the quality factor and me-
chanical frequency as a function of the tunnel rates of the
quantum dot. We tune the tunnel barriers of the quantum dot
in a somewhat unconventional way by using a magnetic field
parallel to the CNT.

The tuning of the tunnel barriers by magnetic field occurs
through the parallel magnetic field’s influence on the band gap
of the CNT. Figure 8(a) shows the current flowing through the
CNT as a function of gate voltage and magnetic field parallel to
the CNT. The increase in the band gap is visible as an increase
in the gate voltage range between the hole current and the first
Coulomb peak, which can be seen clearly by the trajectory
of the first Coulomb peak in Fig. 8(b). Also, as the magnetic
field is increased, the width and the magnitude of the Coulomb
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peaks decrease. This decrease in the Coulomb peak width is a
result of an increase in the p-n junction tunnel barrier height
by the increased band gap at higher magnetic fields.

The increase of the band gap with an increasing parallel
magnetic field can be explained as follows.61 A parallel
magnetic field changes the quantized wave vectors k⊥ of
the electrons along the circumference of the CNT through
an Aharonov-Bohm term. The band structure of the CNT is
determined by taking a cross section of the Dirac cone at a
constant k⊥. Figure 8(c) shows the quantized wave vectors k⊥
intersecting with the Dirac cones. Figure 8(d) illustrates how
the band gap is changed through a parallel magnetic field. The
height of the tunnel barrier is determined by the band gap
of the CNT, through the p-n junction that is formed at the
interface of the metal and the CNT. In general, the shift of
the quantization lines with magnetic field decreases the band
gap. This occurs only up until a magnetic field BDirac, at which
point the quantization line crossing the Dirac point and the
band gap begins to increase again. From the orbital magnetic
moment we observe of 1.0 meV/T, together with the band gap
of Eg = 58 meV at zero magnetic field, this should occur at a
very large magnetic field of 29 T. Similar to previous reports,62

we observe that the quantization line crosses the Dirac point
at a magnetic field much smaller than expected, in this case at
0.6 T. At a magnetic field above BDirac, the p-n junction tunnel
barriers to the quantum dot increase in height, and the tunnel
rates to the quantum dot are significantly reduced.

The tunnel rate of the quantum dot to the leads as a function
of magnetic field �broad(B) is determined from the observed
width of the Coulomb peaks. Figure 9(a) shows the tunnel
coupling as a function of parallel magnetic field, decreasing
with an order of magnitude. To determine the tunnel coupling,
a Lorentzian fit, similar to Eq. (2), was performed on the
Coulomb peak at Vb = 0.3 mV.

In Figs. 9(b) and 9(c), the resonance frequency and quality
factor as a function of parallel magnetic field are shown,
respectively. The resonance frequency and quality factor are
determined by taking a frequency response at the top of the
Coulomb peak of the charge transition from 7 to 8 electrons,
at a low bias voltage of Vb = 0.3 mV. Between 0 and 9 T, the
reduction of the tunnel coupling with a parallel magnetic field
causes the resonance frequency to decrease by ∼1 MHz. At
a magnetic field of 9 T, the quality factor has decreased by a
factor of ∼200, compared to zero magnetic field.

The decrease in resonance frequency and quality factor
with magnetic field can be explained as follows. As the
tunnel coupling is decreased through a parallel magnetic
field, the charge transition takes place in a smaller range of
gate voltage, yielding a larger slope ∂〈N〉/∂Vg . The larger
change in the displacement-dependent force acting on the
CNT during a mechanical oscillation causes a larger change
in spring constant and therefore in resonance frequency. Also,
the asymmetry of the CNT level between being above and
below the Fermi level of the leads is sharper, leading to a
larger retarded single-electron force acting on the CNT, and
consequently a lower quality factor.

The decrease in quality factor with magnetic field has to be
put in contrast with the recently observed magnetic damping
in CNT resonators.18 Damping in Ref. 18 is measured with a
CNT placed perpendicular, not parallel, to the magnetic field.
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FIG. 9. (Color online) (a) Broadening due to tunnel coupling as
a function of magnetic field, showing a decrease in broadening with
increasing magnetic field. (b) Quality factor on the Coulomb peak
of the 7 to 8 transition at Vb = 0.3 mV showing the quality factor
decreasing by two orders of magnitude with increasing magnetic
field. (c) Shift in resonance frequency on the Coulomb peak of the 7
to 8 transition at Vb = 0.3 mV, showing a decrease of ∼1 MHz.

There, Lorentz forces are the cause of damping due to the
perpendicular orientation of eddy currents flowing through
the CNT with respect to the magnetic field. In this article,
damping is increased as the magnetic field reduces the level
broadening by increasing the band gap, and the modulation
of the average charge due to the mechanical motion
is increased.

B. Mechanical detection of an excited state

In this section, we demonstrate that the presence of
excited states of the quantum dot inside the bias window can
also result in frequency shifts of the mechanical resonator.
Figure 10(a) shows the differential conductance dI/dVb as a
function of bias and gate voltage in the charge transition from
0 to 1 electron in a stability diagram of a different device (B).
An excited electronic state of the CNT is visible as a diagonal
line inside the single-electron tunneling region at negative
bias. Because of charging effects, it is not possible for both
states to be occupied by an electron; current still takes place
through single-electron tunneling, but now can occur through
two channels: through both the ground state and the excited
state. This means that the rate to tunnel onto the quantum dot
�+ has increased. When both states are allowed for tunneling,
the current increases in a step, leading to a high dI/dVb, as
visible in the stability diagram.
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FIG. 10. (Color online) (a) Stability diagram at Vg = 293 mV
of device B, showing an excited state as a diagonal line at negative
bias voltage inside the single-electron tunneling region. (b) |(I −
I0)|/|I − I0|max as a function of drive frequency and gate voltage
offset at Vb = −2 mV, showing three dips in resonance frequency,
indicated by black arrows, with the middle dip corresponding to the
excited state.

The influence of the excited state on the mechanical motion
of the CNT is examined through a measurement of the
normalized current as a function of gate voltage and drive
frequency at a bias voltage of −2 mV, shown in Fig. 10(b).
Three dips in resonance frequency can be seen: the leftmost
and rightmost correspond to the chemical potential of the
ground state aligning with the Fermi level of the source and
drain, respectively. The middle dip corresponds to the chemical
potential of the excited state aligning with the Fermi level of
the drain. At this gate voltage, the excited state causes the
rate to tunnel onto the CNT to increase, whereas the rate to
tunnel off the CNT remains the same. This leads to a step in
the average charge residing on the CNT. As with the ground
state, tunneling through the excited state causes the CNT to
experience a displacement-dependent force as it oscillates,
resulting in a frequency dip.

C. Absence of single-electron spring effects
in the Fabry-Pérot regime

In this section, we examine the regime of low tunnel
resistance RT for its influence on the mechanical motion by
looking at the Fabry-Pérot regime51 for which RT < e2/h.
For quantum dots with large tunnel barriers (RT > e2/h),
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FIG. 11. (Color online) (Top) Voltage measured across the CNT
in a four-terminal current bias configuration as a function of
gate voltage, showing Fabry-Pérot oscillations at a bias current of
−20 nA. (Bottom) Change in measured voltage as a function of drive
frequency and gate voltage, showing the tuning of the mechanical
resonance frequency with tension arising from the gate.

the charge on the quantum dot is quantized. For sufficiently
transparent barriers with RT < e2/h, however, Coulomb
blockade is destroyed by quantum fluctuations of the charge,
and charge on the quantum dot is no longer quantized. In this
regime, the conductance as a function of gate voltage still
oscillates due to electronic Fabry-Pérot interferences, but the
charge quantization is lost. Figure 11(a) shows Fabry-Pérot
oscillations in the measured voltage across the CNT as a
function of gate voltage using a four-terminal current bias
measurement of device B. Figure 11(b) displays the measured
mechanical resonance frequency as a function of gate voltage
and drive frequency. Visible in the plot is an increase in the
resonance frequency as gate voltage is decreased, resulting
from the electrostatic force from the gate that induces tension
in the CNT. However, frequency dips do not occur at a Fabry-
Pérot oscillation. This is because the Fabry-Pérot oscillations,
in contrast to Coulomb oscillations, are not associated with
discrete steps in the average charge. Softening due to the
electrostatic force on the CNT quantum dot is therefore
constant (or very slowly varying) across the entire gate range,
and no frequency dips occur.

VIII. CONCLUSIONS

To conclude, we have found quantitative agreement be-
tween the experimental observation of single-electron effects
on the resonance frequency and quality factor of a CNT
quantum-dot resonator, and a theoretical model. This allows
the mechanical motion of a suspended CNT quantum dot to be
used as a probe to detect its average charge. It is found that the
mechanical resonance frequency and quality factor are reduced
as the average charge changes the electrostatic force during a
mechanical oscillation. At high bias, a double-dip structure
arises for both the resonance frequency and the quality factor,
which is quantitatively supported by the model. A model,
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TABLE I. Properties of device A and parameters that were used
for the quantitative fits in Figs. 4 and 6.

Device properties

m 2.6 × 10−21 kg
f0 286.82 MHz
Cg 2.9 aF

Model parameters

Figure 4, 5, 7, and 12 6
�broad 450 GHz 540 GHz
Ctot 8.2 aF 12.3 aF
dCg/dx −6.5 zF/nm −5.2 zF/nm
Qint 100 000
N0 1 7
B‖ 0 T 8 T
Vg 0.565 V 0.9 V
aL 140 GHz 22 GHz
aR 170 GHz 22 GHz
bL 288 eV 20 eV
bR 288 eV 20 eV

describing single-electron-induced Duffing nonlinearity and
mode coupling, leads to the finding of a single significant
contribution. Additional experiments illustrating the model
show that, by tuning the tunnel rates, the resonance frequency
is reduced by ∼1 MHz, and the quality factor by a factor of
∼200. The increase of the average charge due to tunneling
through an excited state of the CNT also leads to a reduction
of the resonance frequency. The occurrence of frequency dips
in the Fabry-Pérot regime is excluded due to the absence of
steps in average charge.
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APPENDIX A: PARAMETERS USED IN THE MODEL

For the quantitative fits describing the resonance frequency,
quality factor, and nonlinearity parameters in Figs. 4–7, and
12, see Table I.

APPENDIX B: OTHER SINGLE-ELECTRON
CONTRIBUTIONS TO THE DUFFING PARAMETER

In Sec. VI A, we discussed the different single-electron
contributions to the Duffing parameter, arriving at the domi-
nance of the leading-order term α0

SET. Figure 12 shows that the
other contributions to the single-electron Duffing parameter
are more than one order of magnitude smaller and can be
neglected. We use the notation where αijk is the contribution
to αSET resulting from the term with Fijk in Eq. (18).
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