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Coherent quantum ratchets driven by tunnel oscillations: Fluctuations and correlations
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We study two capacitively coupled double quantum dots focusing on the regime in which one double dot is
strongly biased, while no voltage is applied to the other. Then the latter experiences an effective driving force
which induces a ratchet current, i.e., a dc current in the absence of a bias voltage. Its current noise is investigated
with a quantum master equation in terms of the full-counting statistics. This reveals that whenever the ratchet
current is large, it also exhibits some features of a Poissonian process. By eliminating the drive circuit, we obtain
a reduced master equation which provides analytical results for the Fano factor.
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I. INTRODUCTION

The realization of double or triple quantum dots in a linear
arrangement'™ or in a ring configuration™® enables transport
experiments in which electrons flow through delocalized
orbitals. This delocalization is visible in modified quadruple
points of the charging diagram.' Recently, also the capacitive
coupling of two double quantum dots has been achieved.” If
each double quantum dot is occupied by one electron, the setup
represents two interacting charge qubits.®* Upon opening one
double dot, a current flows and may be used for readout of the
other double dot, which still forms a charge qubit.'*3

Opening both double dots enables experiments with two
interacting mesoscopic currents. For example, predominantly
coherently transported electrons perform tunnel oscillations
which act on the other double dot as an effective ac force. This
may induce a ratchet or pump effect, i.e., cause a net current
in the absence of any bias voltage.'* A similar ratchet effect
has been realized by coupling a double dot to a quantum point
contact.” This effect is closely related to Coulomb drag'>'®
and to using a double quantum dot as a noise detector.>!”-!3 In
turn, interacting channels may block each other.!*!

A common characterization of the current fluctuations in
a mesoscopic conductor is the full-counting statistics,?>?
whose cornerstone is a counting variable for the lead electrons.
In this way, one obtains a cumulant-generating function for
the transported charge. Of particular interest is its variance,
because it relates to the zero-frequency limit of the current-
current correlation function.2* Moreover, it indicates whether
transport is sub- or super-Poissonian,?> even though a more
faithful criterion is the g® function.?® Generally some further
cumulants are specific to the system, while beyond a certain
order, camulants exhibit universal features.?’

In this work we explore the noise properties of the ratchet
mechanism proposed in Ref. 14 for capacitively coupled
double quantum dots focusing on the full-counting statistics.
Besides a numerical study with a master equation for the
full ratchet-drive setup, we derive in the spirit of Ref. 28 an
effective master equation for the ratchet under the influence
of the drive circuit. This provides an analytical expression for
the cumulant generating function. This approach is beyond a
more heuristic elimination of the drive circuit'* and beyond a
golden-rule calculation,'” because it includes effects stemming
from delocalization and from the broadening of the ratchet
levels. Therefore, it holds also for small ratchet detuning.
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In Sec. II we introduce our model Hamiltonian for the
setup sketched in Fig. 1 and, moreover, introduce a quantum
master equation for the full system. Section III is devoted
to the elimination of the drive circuit, which provides our
analytical results. In Sec. IV we present our numerical results
for the higher-order cumulants and test the quality of our
approximations.

II. MODEL AND METHOD

A. Hamiltonian

The four quantum dots and the leads (see Fig. 1) are
described by the Hamiltonian H = Hg + Hp + Hy, where

Ay =Y ved}da — (Tuddy + T3d}d)
o

— (Twdidy + Td}ds) + Y Uagiaity (1)

a<p

models the quantum dots with the electron creation and
annihilation operators ﬁl and d,,. The ratchet circuit (o« = 1,2)
has interdot tunneling T, and detuning &, such that the level
splitting becomes

§ = &2 + 4Tl @

The levels of the drive circuit (¢ = 3,4) are not detuned and
possess a tunnel matrix element 7y.. The setup is assumed
symmetric, such that interchannel Coulomb repulsion reads
U = U,z = Uy, while the internal repulsions U}, and Uz, are
assumed so large that each channel can be occupied with at
most one electron. The interchannel coupling U by contrast is
relatively weak but nevertheless is the relevant interaction for
inducing a ratchet current.'* We do not take into account more
indirect interaction mediated by phonons® or by a qubit.*°

Each dot « is coupled to a lead with chemical potential 1,
where 1 = Wy, while (3 >> 4, such thatall levels of the drive
circuit lie within the voltage window. The lead Hamiltonian
and the dot-lead couplings read

Ap =) erallylia: 3)
ko
Ay =Y (Veallodu + Vi dlra), “)
ko
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FIG. 1. Quantum ratchet (lower circuit, unbiased) capacitively
coupled to a drive circuit (top) biased by a voltage V. Each circuit
is modeled as two-level system with tunnel couplings 7;, and Ty,
respectively. The ratchet possess a detuning ¢, while the drive circuit
is undetuned. The dot-lead tunnel rates are I';, and Iy, while w,,
o =1,...,4, denotes the chemical potentials of the leads.

respectively, where 6,101 and ¢y, are the fermionic operators and
1o 1s the corresponding single-particle energy. The system-
bath interaction Hy is determined by the effective tunnel
rates [y () = 27 3, |Via|?8(e — €14) = Ty, which within the
wide-band limit are assumed energy independent. Throughout
this work we use units in which7z = 1.

B. Cumulant generating function and master equation

We are interested in the low-frequency properties of the
transport process, which can be characterized by the distribu-
tion of the number of transported electrons at large times or,
equivalently, by the corresponding cumulants. We thus intro-
duce for each lead o a counting variable x, such that we obtain
the moment generating function (e/X(V=N0)), = exp[G(x,1)],
where x = (X1, X2, X3, X4), While N = (N1,N,,N3,N,) is the
electron number in each lead in vector notation with the initial
value Ny = (N )i=0. Obviously, the Taylor coefficients of
exp[G(x,t)] are the moments of the lead electron distributions.
This allows the definition of occupation cumulants as Taylor
coefficients of In(e/XV=N0)), Eventually they grow linearly
in time.?? Thus, the information about the stationary limit is
contained in the time derivative in the long-time limit, so that
the (particle) current cumulants of leads 2 and 4 can be written
as

_ 0" 8G(x 1) (5)
Ay Aixay 8t |, Loimne

Km.n

Owing to charge conservation, the low-frequency properties
of the currents in leads 1 and 3 are identical with those of
leads 2 and 4, respectively. Thus, it is sufficient to consider
only the latter. The first-order current cumulants are the ratchet
current I, = eok,0 and the drive current Iy, = epkp,1, where eg
denotes the elementary charge. The second-order derivatives
correspond to the zero-frequency limit of the current-current
correlation functions,?* in particular, S;, = eékz,o. Since our
focus lies on the ratchet current, we introduce the notation
Km = Kmn,0-
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The cumulant generating function G(x,t) can be obtained
from a Markovian master equation approach by unraveling the
reduced density operator according to the number of electrons
N, in the leads.?® Alternatively, one may attribute a counting
variable to the system-lead tunnel operators®'~* or multiply
the full density operator by e’XN before tracing out the leads.>*
The resulting augmented density operator p(x,t) relates to
the cumulant generating function via In[trp(x,?)] = G(x,t),
while its limit p(x — 0,7) is the usual reduced density
operator. Moreover, p(x,t) obeys the master equation

p(x.t) = LOOP(X,1)

= |:£0+ 3 (e — 1)5;] p(x.D.  (6)

o,s==%

where L is the Liouville operator, in our case the one obtained
within Bloch-Redfield approximation. For a short derivation,
see Appendix A. The superoperator J describes tunneling
of an electron from dot « to the respective lead, while J
captures the opposite process. Thus, the counting variables
keep track of the electron numbers in the leads despite that the
latter are traced out. From the master equation (6), one can
obtain numerically all cumulants within the recursive scheme
of Ref. 35. Before discussing these results, we aim at further
analytical progress.

III. ELIMINATION OF THE DRIVE CIRCUIT

In order to reduce the number of degrees of freedom, such
that an analytically solvable master equation emerges, we
eliminate the drive circuit along the lines of Ref. 28. We start
by separating the master equation for p(x,?), Eq. (6), into
contributions for the ratchet, the drive circuit, and their mutual
interaction:

p(XZst) = [Era(XZ) + Edr + U»Cra—dr]p(XZat)- (7)

Since we focus on the ratchet current, we keep only the
counting variable y, for the right lead of the ratchet circuit.
The interaction Liouvillian

I n oa
Lra—arp = _E[AndrAnra, Pl (8)

is governed by the occupation imbalances A, = i, — 71 and
Afig, = fig — 7i3, which allow one to approximately write the
ratchet-drive interaction Hamiltonian as'* U (7173 + fiafis) =
(U/2)Ang Afiy,. Thereby we neglect terms that cause global
shifts of all dot energies. They are not relevant here, because
for all parameters considered below, the on-site energies stay
far from the Fermi surfaces.

After transforming master equation (7) into Laplace space,
straightforward algebra®® provides for the ratchet an effective
Liouvillian L, which follows from the relation

e = L0 = el = Lo 03} @)

and depends on the stationary state pj** of the drive circuit.

Taylor expansion up to second order in the interaction constant
U and subsequent evaluation of the partial trace yields

Leit(x2:2) = L) + ULP) + UL (2).  (10)
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Its zeroth order, Ly(x2) = Lra + Y, (€72 —
termined by the Liouvillian

Lrap = —i[Hsar p]+ TuD@A)p + TuD(d)p (1)

with the ratchet Hamiltonian Hy ,,, the Lindblad operator
D(x)p = £px' — %{ﬁﬁ, o}, and the jump operators

1)J?, is de-

+ [y 5 5t 7 odl 7 od!
T*p =216 + &) depd] + Tl (depdy + dgpd])), (12)

T =516 = o) djpdy + |Tul dipd. +d[pdp)), (13)

which describe electron tunneling between dot 2 and the
corresponding lead in the absence of the drive circuit. The
Fermi operators c?g and d, annihilates an electron in the ground
state |g) and the excited state |e), respectively. The linear and
quadratic corrections read

L) = _%<Aﬁdr>[Aflra’ ol, (14)

1
L3RG = = D0 Cle=rE") A, o1|BL° (B [ A, o).

as)

Here we employ the superoperator notation of Ref. 36
and define [M,e]p =[M,p]. Moreover, we have intro-
duced the spectral decomposition of the ratchet Liouvillian,
Zm A PN ()], with the eigenvalues AT = 0, — Ty, —
/2 j: 16 and the left and right eigenvectors (((ﬁr(g”| and
|¢r(fl”))) . Here a difficulty arises from the fact that the Liouvillian
of a double quantum dot in the zero-bias limit is defective; i.e.,
it does not possess a complete set of eigenvectors (for details,
see Appendix B). Then one may proceed either by constructing
a generalized eigenbasis or by introducing a small perturbation
that lifts the defectiveness, and finally consider the limit of
vanishing perturbation.’’ Since all levels are assumed to stay
far from the Fermi surfaces, the impact of the interaction on
the jump operators can be neglected safely. Thus, the jump
operators J; of the effective model coincide with the ones of
the full Liouvillian.
The dependence on the drive circuit enters via the Laplace
transformed autocorrelation function of the population imbal-
ance

C(1) = (Afig(t) Afigr(0)) — (Adar)? (16)

evaluated at the eigenvalues of the ratchet Liouvillian, C(z —
Amy, which fulfills C*(z) = C(z*). For a derivation, see
Appendix C. Below we will find that the poles of C(z) are
related to the extrema of the ratchet current.

The linear contribution to the effective Liouvillian, £g}c}
merely provides a small additional bias for the ratchet circuit
but does not induce any nonequilibrium effect. Thus, we omit
this term and focus on the impact of Leff By a straightforward
but tedious evaluation of Eq. (15), we obtain in the Fock basis
{10) (O, [1)(11,12)(2,12){11,[1)(2[} the expression

000 0 0
000 0 0

Y% =10 00 o0 o |, (17)
0 0 0 AQ) B*z)
0 0 0 B(x) A*z"
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where the terms
T2

A(Z) = __[ZC(Z + Fl’d) 1_‘rac/(z + Fru)]
2
-y mC( 4 Tw/2+5i8),  (18)
= 482
T2
B(z) = S_Z[ZC(Z + T — Frac/(z + ')
—Cz+Tn/2+i8) —Cz+Tw/2-i8)] (19)

contain a non-Markovian correction through the dependence
on the Laplace variable z. For the resulting effective ratchet
Liouvillian, L.,(x2)+ U 2C(ff(z) the cumulant generating
function can be obtained by a standard procedure, namely,
by computing the eigenvalue that vanishes for y, — 0.2% This
yields a somewhat bulky expression, and, thus, we restrict
ourselves to the Markovian limit obtained by z — 0. By
differentiation with respect to y,, we obtain the current and
the zero-frequency noise as

ep2be

I = Im[(—=Tra/2 +i8)C(I'a/2 +8)],  (20)

Sia = Szblm[( [e? +i8e” +i8°)C(T/2 +i8)], (21)
where b = 4|Tra|2U2/5(452 + Frza). Both expressions are pro-
portional to the autocorrelation function (16) of the drive
circuit in Laplace space, which underlines that the current
is induced by nonequilibrium fluctuations of the drive circuit
acting upon the ratchet.

Equations (20) and (21) allow us to simplify the cumulant
generating function G(x»,t). After evaluating the time deriva-
tive and the limit + — oo contained in definition (5) of the
current-cumulant, we obtain the generating function

i(Ira/e()) SiI’l(Xz) + (Sra/e(z)) [COS(XZ) —1]
1+ 2 [cos(xz) — 1] ’

which within the present approximation contains the full
information about the low-frequency properties of the ratchet
current. The presence of the counting variable x, in the
denominator, however, renders the actual calculation of higher-
order cumulants a formidable task. Only in the golden-rule
limit, i.e., to lowest order in I',,, the denominator becomes
independent of xa, so that G (x2) = i(1/ep)sin(x2) +
(SO /ed)cos(x2) — 1]. Consequently we obtain the current
cumulants

Gl = 22)

_ 9" s
= iy et

(23)

19 /ey for odd n
o LSQ/e} for evenn’

where the upper index (0) refers to the limit Iy, — 0. It turns
out to be a good approximation, unless universal cumulant
oscillations set in, as we will discuss in Sec. IV B.

Before testing the quality of this approximation and the
parameter dependence of the results, we close this section
by a remark on a formal aspect of the perturbation the-
ory. Both the current (20) and the zero-frequency noise
(21) are proportional to the autocorrelation function of the
population imbalance C(z) evaluated at the broadened level
splitting of the ratchet, where the Laplace variable reads
7o = /2 +i(e? + 4|Tu|»)!/2. Thus we expect the ratchet
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FIG. 2. (Color online) (a) Real and (b) imaginary part of the
autocorrelation function (dashed lines) of the drive population im-
balance in Laplace representation, C(z.), evaluated at the broadened
resonance of the ratchet Liouvillian, z, = /2 4 i (e 4 4|T,,|*)!/?
with 'y, = 0.5 Ty, and T, = 0.2 Ty, as function of the detuning ¢. The
dotted lines correspond to the limit I',, — 0. The dot-lead coupling
is Ty = T

current to exhibit resonance peaks. Taking into account the
broadening distinguishes the present result from that of
Ref. 14. There the ratchet current has been computed from
the golden-rule rates for noise-induced transitions between
ratchet eigenstates. While this treatment accounts properly for
delocalization effects, it predicts too pronounced resonance
peaks. Formally, the golden-rule solution is restored by the
replacement C(I'y,/2 +i8) — C(i§) in Eq. (20). Figure 2
visualizes that for ratchet detunings close to resonances,
the difference between the two approximations may be
significant.

IV. CHARACTERIZATION OF THE RATCHET CURRENT

Before starting with the analysis of the ratchet current
fluctuations, let us compare the present case to that of a ratchet
driven by an ac field. There, the current exhibits resonance
peaks with large current and low zero-frequency noise.’*8
For large driving amplitudes, the same behavior is visible at
multiphoton resonances. Figure 3 shows the corresponding
result for the present driving by tunnel oscillations. When
the level splitting of the ratchet matches the tunnel frequency
of the drive circuit, we indeed observe the qualitatively
same behavior. Here, however, we do not find higher-order
resonances, and, moreover, the Fano factor does not reach
the extremely small values found in Ref. 38. The reason for
this is that for realistic parameters the driving via Coulomb
interaction with the upper circuit is much weaker than direct
ac driving by, e.g., a high-frequency gate voltage.> The kink
in the Fano factor stems from a small step in the current and
can be attributed to an energy difference of many-particle
states that crosses the Fermi level of the ratchet.'* This
confirms our picture in which the tunnel oscillations of
electrons in the drive circuit act like an ac driving with
(angular) frequency €2 = |2Ty| determined by the tunnel
splitting.
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FIG. 3. (Color online) (a) Ratchet current I,,, its zero-frequency
noise Sy, and (b) the resulting Fano factor F' = S;,/eo| ;.| as function
of the tunnel matrix element of the drive circuit. The results are
computed with the full master equation. The other parameters are
INa=T¢=0.1T,, U=0.5T,,and ¢ =5 T,,. The vertical dotted
line marks the resonance condition 4| Ty |> = &% + 4|T,|*.

A. Zero-frequency noise and Fano factor

If the tunnel coupling of the ratchet is smaller than that of the
drive circuit, T, < Ty, one can adjust the ratchet bias € such,
that the resonance condition &2 + 4|T;,|> = 4|Ty|* is met. By
contrast, for T, > Ty, thisis not the case. In order to first sketch
the global behavior, we first consider the current, the zero-
frequency noise, and the resulting Fano factor in dependence
of the ratchet bias. We compare numerical results obtained
from the full master equation with the analytical solution of
Sec. III. Moreover, we also discuss the analytical expressions
(20) and (21) to lowest order in I'},, because this restores the
golden-rule results of Ref. 14.

Figure 4 provides an overview to the behavior. The current,
which is depicted in the first row, exhibits the expected
resonance peaks provided that 7}, < Ty;. If the tunnel matrix
element is rather small (7, = 0.2 Ty,), we witness also the
small peaks at small values of ¢, which we predicted within our
analytical treatment. Upon increasing the interdot tunneling
T:., the current peaks naturally increase as well. Once T, >
T4, the resonance peaks fade away while the structure at e & 0
becomes rather pronounced. In all regimes the analytical result
(20) for the current is well confirmed. The main difference is
the absence of the slight asymmetry with respect to reverting
the detuning, ¢ — —e¢. Nevertheless, the characteristics of the
current as function of ¢ is by and large antisymmetric, which
implies a current reversal close to zero detuning. In order to
capture also the lack of perfect antisymmetry, we would have
to consider the linear perturbation ﬁglfz which, however, would
impede concise analytical results. For the parameters used in
Fig. 4, the golden-rule expression of Ref. 14, i.e., Eq. (20) to
lowest order in I'y,, reproduces the behavior only qualitatively.
It predicts too sharp peaks, because this approximation does
not account for the level broadening of the ratchet. The
deviation is quite significant in the nonresonant case T, > Tg;.

The main features such as the location of the peaks are also
found for the zero-frequency noise plotted in the middle row.
An important difference is found only close to ¢ = 0, where the
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FIG. 4. (Color online) Ratchet current (upper row), zero-frequency noise (middle), and Fano factor (lower row) as function of the ratchet
detuning ¢ for various tunnel couplings 7;,. Results for the full master equation (solid lines) are compared to the analytical results (20) and
(21) (dashed). Dotted lines mark the golden-rule results, which ignore the broadening I';,. The dot-lead tunneling rates are I';, = 0.5 Ty and

Iy = 0.2 Ty, while the interchannel coupling reads U = 0.2 Ty;.

current vanishes for symmetry reasons. The noise nevertheless
remains finite and may even have a peak. This behavior is
reflected by the Fano factor, which stays close to the Poissonian
value F' = 1 for detunings far from the current reversal point
& = 0. There the current vanishes, while the noise remains
finite, such that F diverges. The reason for this universal behav-
ior can be understood from the analytical results for the current
and the noise. Both I, and S;, depend on the drive circuit via
the drive correlation function C(z), which, thus, cancels in their
ratio, i.e., in the Fano factor. On a smaller scale, we observe in
the Fano factor occasional kinks in less important regions in
which the current is rather small. There a small change in the
denominator of F' = S;;/ep|I;2| may have a strong effect.

B. Higher-order cumulants

For a refined study of the current noise, we investigate
also the cumulants of higher order, where we express the
results in terms of the ratio between subsequent cumulants,
|kn+1/k,|. For this quantity, the limit of small I'y, is rather
interesting, because our analytical result (23) implies that
the cumulant ratio alternates between the Fano factor and its
reciprocal. Such behavior is characteristic for a bidirectional
Poisson process,*’ i.e., a superposition of a forward and
a backward Poisson process with rates y.. The resulting
cumulants read*' «(*) = (£1)"y4., where the sign reflects the

direction of the backward current. The net transport is given by
the difference of both processes such that its cumulants read
kn = ¥4+ + (=1)"y_, provided that the two Poisson processes
are statistically independent. The alternating cumulant ratio
follows straightforwardly. The usual Poisson process with
lkn+1/Kn| = 1 emerges as special case if the backward current
is negligible. The higher-order cumulants of the effective
Liouvillian for larger values of '}, can be evaluated from the
generating function (22), but the expressions become rather
bulky, so that one has to resort to a numerical evaluation.
Figure 5 shows a comparison of these two approximations
together with the result of the full master equation. For a
small ratchet detuning below the resonance [panel(a)], we find
that all three solutions agree quite well and that the first few
cumulants exhibit the predicted alternation between the values
F and 1/ F. For higher orders, the generic universal cuamulant
oscillations set in,?” which obviously is beyond our analytical
approach. At the resonance, the universal oscillations start even
already at lower order and Eq. (23) no longer holds. This is in
agreement with our earlier observation that the broadening of
the ratchet levels plays a significant role for resonant driving.

C. Cross-correlations

Let us finally consider the cross correlations between the
drive current and the ratchet current. They can be characterized

115452-5



ROBERT HUSSEIN AND SIGMUND KOHLER

T T T T T T T T T T T T T T
,[ A A Full master eq. e =07 Tar
=10°F A, : A 1
¢ A A Effective model A
= [ D
t 101 E SN ..' . .
100 F. =& — A— ‘ﬁ— —— A A - -
B
A
| | | | ‘ | | | | | | | ((L\)
T T T T i T T T T T T T T T
e =1.94T},
=0l A 4
< 10 3 D A A }
ER Pl g g..g,.A_”
1004 AaaR Ay TR
F A YN
A (b)
L L A L L L L L L L L L L L
4 8 12
n

FIG. 5. (Color online) Cumulant ratio |k, /«,| versus order n for
the parameters used in the second column of Fig. 4 for two values of
the detuning ¢. The value ¢ &~ 1.94 T, corresponds to the resonance
between ratchet and drive circuit. The horizontal lines in panel (a)
mark the analytical result (23) valid to lowest order in I';,, i.e., F and
1/F. The dotted lines serve as guide to the eye.

by the cumulant «; ;, which is equivalent to the covariance
of the transported charge in the two circuits. As a dimen-
sionless measure, we introduce the correlation coefficient
r = K11/4/K20 Koz, which is bounded by —1 <r < 1. The
results depicted in Fig. 6 demonstrate that the correlation
between the two currents is rather low. While it can be up
to |r| ~ 0.1 at the resonances, it is hardly noticeable in the
nonresonant case T, > Tg;,.

V. CONCLUSIONS

A double quantum dot with detuned energy levels may
act as quantum ratchet or quantum pump when driven out of
equilibrium. An external force with zero net bias acting locally
upon such system can induce a dc current. Here we investigated

0.1 T T T

= " T2a=02Ty
— T7.=051Ty, |
ST =1.2Ty,

0.0 —— /. N\ N

r= ﬂll/\/HQO K02
T
)

\
<
—

£ [,I‘dr}

FIG. 6. Correlation coefficient r versus detuning ¢ for the
parameters used in Fig. 4.
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aratchet with a particular driving, namely, one that stems from
the capacitive coupling to a further double quantum dot which,
however, is biased. Electrons flowing through the drive circuit
perform tunnel oscillations, which indeed induce phenomena
similar to those induced by deterministic ac driving. In this
work we mainly focused on the fluctuations of the emerging
ratchet current. Besides a numerical solution with a master
equation for all four quantum dots, we derived an effective
ratchet Liouvillian by eliminating the drive circuit. In this way
we obtained analytical results even for higher-order cumulants,
which agree well with those of the full master equation
provided that the tunnel splitting of the drive circuit is larger
than that of the ratchet.

As a common feature of driving by tunnel oscillations and
driving by an ac field, we found resonance peaks at which
the current assumes a maximum, while the relative noise
characterized by the Fano factor is minimal. However, clearly
sub-Poissonian noise is found only for large detuning of the
ratchet levels. This noise reduction should be measurable,
even though it is not as pronounced as in the case of ac
driving, mainly because it requires large driving amplitudes,
which cannot be achieved by capacitive coupling. For less
detuned ratchet levels, the Fano factor is typically of the order
one, unless the detuning is so small that its orbitals are fully
delocalized. Then the lack of sufficiently strong asymmetry
keeps the current at a low value, while the zero-frequency noise
stays finite. Thus, the Fano factor being the ratio of these two
quantities assumes very large values. This generic behavior of
the Fano factor is explained by our analytical results, which
reveal that both the current and the zero-frequency noise are
proportional to the correlation function of the drive circuit.
Thus the Fano factor depends only on the shape of the ratchet
eigenfunctions, while the correlation function cancels.

The higher-order cumulants tend to alternate between two
values. This indicates a bidirectional Poisson process and
implies that a backward current becomes relevant. With in-
creasing order, however, universal oscillations with ever larger
amplitude dominate. The onset of the universal oscillations
marks the point at which our analytically obtained higher-order
cumulants significantly deviate from those for the full master
equation. Nevertheless, the physically relevant cumulants of
lower order are well within our analytical treatment.

The more global picture is such that the noise is close to
the Poissonian level, whenever the current is relatively large.
Thus possible applications and measurements of a ratchet
current induced by tunnel oscillations should not be hindered
by current fluctuations.
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APPENDIX A: LIOUVILLIAN AND JUMP OPERATORS

For a system-bath Hamiltonian, one can derive for the
reduced system density operator p the Bloch-Redfield or
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Born-Markov master equation*>~#*

p(t) = —ilHs, p(t)]
— / dstrg[Hy, [Hy(—s), p(H)Ro]]
0

= Lop(1), (A)

where Ry is the reference density operator of the environment,
while Hy describes the system-bath coupling. It has to
be weak, such that coherent system dynamics dominates.
Augmenting the environment density operator by a count-
ing variable for the lead electrons according to p(#)Ry —
p()eiXN=No R, vields the x-dependent density operator
p(x,t) whose trace is the moment-generating function intro-
duced in Sec. I11.** Furthermore, one obtains by inserting the
same ansatz into Eq. (A1) the master equation (6) upon which
all our results are based.

For the evaluation of the time integral in Eq. (Al),
it is convenient to work in the eigenbasis of the system
Hamiltonian, defined by Ey|m) = ﬁs|m>. Then one obtains
for the density matrix elements the equation of motion

Pon(X51) = 3 LLGX) mn gt pri(X 1), where the decomposed
Liouvillian

LLOO mn s = [Lolmn ki + Z (e — 1)[‘7;]mn,kl

o,s=%

(A2)

consists of the contributions

[EO]mn,kl = _i8km8/"(Em - E”) + Z [jOf]mn,kl

o, 5=+
1 ~ N
- 581’1 Z Ya, pk [da]mp [d:i]pk
o, p
1 A ~t
- §8km Z Va,pl[da]lp[dolt]pn
o, p
1 o
- E(Sln Z Va,kp[di]mp[dot]pk
a,p
1 _ A N
- §8km ; Ya,lp [dct]lp [da]pm (A3)
1 A n
[ja_]mn,kl = E(Va,mk + yot,nl)[djl]mk[da]ln’ (A4)
1 A u
[«Zj]mn,kl = E(Pa,km + 7a,ln)[dot]mk[d§(]ln~ (AS5)
The effective rates
Yo,mn = Fafa(Em - En)v (A6)
ya,mn = Fa[l - fot(Em - En)] (A7)

depend on the Fermi functions of the leads, f,(w) = f(w —
o) = {expl(w — po)/kgT1+ 1}7!, while

T, =27 Z |Via|28(0 — 1) (AB)
k

denotes the spectral densities of the dot-lead couplings, which
within a wide-band limit are assumed energy independent.
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APPENDIX B: SPECTRAL DECOMPOSITION OF
THE RATCHET LIOUVILLIAN

In the energy basis {|0)(0],le)(el,|g)(gl.Ig)(el.le)(gl} the
ratchet Liouvillian for vanishing counting variable x, — O,
Eq. (11), reads

T T O 0 0
0 —Tw O 0 0
Lo=|Ta 0 0 0 0 (B1)
0 0 0 —I=+4is 0
0 0 0 0 —Le s

Within the perturbative treatment of Sec. III, we need to
compute functions f(L,) of this matrix, such as the propagator
exp(Lt) or the resolvent (z — L)', which is usually
achieved by spectral decomposition of the Liouvillian. Here,
however, this is hindered by the fact that £, is defective; i.e., it
does not possess a complete set of eigenvectors. The problem
arises from the upper block

. I 0
L= 0 —I'u 0], (B2)
[ry 0 0
which we transform via
0 -1 0
S=10 0 —1/T (B3)
1 1 1/Th
to the Jordan canonical form®”%
0 o0 0
J=ST"'LsS=|0 -I'. 1 | (B4)
0 0 —Ta

Its eigenvalues obviously are O and the twofold degenerate
—TI'1a, and one immediately finds two vectors that obey the
eigenvalue equation, namely,

L10) = 0]0), (BS)

L|T) = —Trll). (B6)

A generalized eigenbasis can be found by including a third
vector |2) that fulfills’”*

L12) = —Tl2) + (1) (B7)

i.e., one adds the eigenvector of the degenerate subspace. By
repeated multiplication with L follows L¥|2) = (=T',,)¥|2) +
k(=T)*~'[1), which implies

FDI2) = f(A)I2) + f/(A)I), (B3)

where both the function of a matrix and its derivative are
defined as the corresponding Taylor series. This relation
together with the usual f(L)|k) = f(Ap)lk) for k =0,1,
allows us to evaluate any f(L). In particular, we find the
propagator
e Tn [pateTnl 0
el = 0 e Tl 0 (B9)
l—e Tl 1 —(Q+4Tut)e ™ 1
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and the resolvent

1 Cry
7+ (z+Tr)? 0
1 1
c-L'=| 0 = ol @0
T rl?a 1
2(z+Th)  z@+T)? 2

A poor man’s approach to this procedure?” is to introduce a
small perturbation that lifts the degeneracy of L. After evalu-
ating f (L), one considers the limit of vanishing perturbation.

APPENDIX C: STATIONARY STATE
OF THE DRIVE CIRCUIT

The effective ratchet Liouvillian derived in Sec. III results
from a perturbation theory with the stationary states repre-
senting the zeroth order. They are determined by the master
equation*®

par = —ilHs.ars parl + CarD(d)par + TaD@dnpar  (C1)
with the system Hamiltonian of the drive
Hs g = —(Tdrc?§6?4 + Tdtﬂc%)- (C2)

The last two terms in the master equation describe dot-lead
tunneling, which in the limit of a large voltage bias can be
written as Lindblad form with the superoperator

D(®)par = £park’ — METR, par). (C3)

For the drive circuit, the stationary state can be obtained
conveniently after a decomposition of the Liouvillian into the

PHYSICAL REVIEW B 86, 115452 (2012)

corresponding Fock basis, by which we find
1

stat __

p -_———_—
T A 12|72
4| Ty |2 0 0
x 0 2 +4|Ty|> —2iTa Ty (C4)
0 2iT 4 Tae 4| Tye|?

The autocorrelation function of the population imbalance
Afig = 7ig — 7i3 in Laplace space is defined as

CQ@) = / dt e " [(Afigr(t) Afigr(0)) — (Adar)’]
0

N [
= (Afia(2)Afar) — —(Afar)”, (€5)
with the stationary occupation
I3
Ag) = ———— C6
(Aftgr) 2 4 120Ta (Co)
and the corresponding correlation function
1 27 + Fdr
Afig(2)Afg) = ——5————
( dr( ) dr) Z Fczlr + ]2|Tdr|2
LG+ Dal +4202 4 3Tl Tl (o)

(z + Tar)*(2z + Tar) + 42z + 30a0)| Tar >
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