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Second-harmonic generation in metallic nanoparticles: Clarification of the role of the surface
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We present a numerical investigation of the second-order nonlinear optical properties of metal-based
metamaterial nanoresonators. The nonlinear optical response of the metal is described by a hydrodynamic
model, with the effects of electron pressure in the electron gas also taken into account. We show that as the
pressure term tends to zero the amount of converted second-harmonic field tends to an asymptotic value. In this
limit it becomes possible to rewrite the nonlinear surface contributions as functions of the value of the polarization
vector inside the bulk region. Nonlocality thus can be incorporated into numerical simulations without actually
utilizing the nonlocal equation of motion or solving for the rapidly varying fields that occur near the metal
surface. We use our model to investigate the second-harmonic generation process with three-dimensional gold
nanoparticle arrays and show that nanocrescents can easily attain conversion efficiencies of ∼6.0 × 10−8 for
pumping peak intensities of a few tens of MW/cm2.
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I. INTRODUCTION

Metamaterials are artificially structured media whose col-
lective electromagnetic properties can differ markedly from
those displayed by the individual components. The advent
of metamaterials has introduced a paradigm shift in the
concept of what constitutes a material and what determines its
fundamental electromagnetic and other physical properties.
The possibility of tailoring magnetic and electric material
responses at will, rather than merely exploiting materials
provided by nature, has enabled the pursuit of unusual
electromagnetic properties, such as invisibility1 and negative
refractive index.2

Without a doubt, metamaterials constitute novel and in-
teresting linear media that have provided a venue to explore
otherwise inaccessible concepts. Yet, artificial materials in the
context of nonlinear optical media may offer even greater
opportunities, since the inherent local field inhomogeneities
associated with metamaterial inclusions can translate into large
enhancement of the local field and significant lowering of the
nonlinear thresholds.

Nonlinear metamaterial composites have been analyzed
both theoretically and experimentally in the microwave and
near-infrared regions of the spectrum.3–5 For such materials,
one may apply an analytical homogenization model that
leads to closed-form expressions for the effective nonlinear
susceptibilities,6 placing the design of nonlinear metamaterials
on an equal footing with linear metamaterials. In addition,
numerical retrieval approaches have been developed that
allow precise values to be ascribed to the effective nonlinear
susceptibilities for a composite metamaterial comprising
both structured inclusions as well as embedded nonlinear
elements.7,8

The most common metamaterial designs have made use of
conducting metal inclusions that function as subwavelength
electrical circuits. At low frequencies, metals behave as
conductors, and, thus, metal inclusions can be conceptually
divided into inductive, capacitive, and resistive regions, with a
resonance frequency determined by the inductance and capac-

itance in the usual manner. If any of these circuit parameters
are made nonlinear—through the introduction of an actual
lumped component such as a varactor diode or an inherently
nonlinear crystal embedded into the capacitive region of the
inclusion—the effective circuit then produces a nonlinear
response to the driving electric or magnetic field (depending on
how the wave couples to the inclusion). Applying analytical
or retrieval techniques on such a structure yields adequate
effective medium values for the linear constitutive tensor
elements, as well as for the tensor elements of the nonlinear
susceptibility terms. A nonlinear metamaterial is advantageous
in that nonlinear thresholds may be significantly lowered, often
irrespective of the linear properties of the composite. That is,
the linear and nonlinear responses of a nonlinear metamaterial
can be designed with considerable independence, allowing
customized anisotropy and other properties that may be used
to improve the efficiency of nonlinear applications.

Nonlinear metamaterials based on metals are, thus, ap-
pealing for potential use in nonlinear optical applications
at infrared, visible, and ultraviolet wavelengths. However, a
simple scaling of the geometrical parameters of metamaterial
inclusions from microwave to visible frequencies, for example,
is usually not sufficient to create a viable nonlinear optical
metamaterial. At frequencies above a few terahertz, metal
response changes from conductor-like to dielectric-like, with
considerable absorption occurring as the electromagnetic
radiation extends further and further into the metal. Though
the electrical circuit properties of metal inclusions persist at
visible wavelengths, the inertia of the charge carriers becomes
an increasingly dominant contribution to the inductance,
and absorption increases significantly.9 The design of metal
optical metamaterials—where optical is roughly defined as
being above 10–12 THz—requires a different approach, with
different applications being favored.

In addition to field enhancement being a useful mecha-
nism in optical metamaterials, the intrinsic nonlinearity of
metals makes metal-based nonlinear optical metamaterials an
interesting possibility. For example, values of χ (3) for metals
at optical wavelengths are competitive with most materials.
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χ (3) of gold is 5.4 × 10−19 m2/V2, somewhat lower than
semiconductors such as silicon (χ (3) = 2.0 × 10−18 m2/V2)
but larger than other common crystals such as diamond
(χ (3) = 1.8 × 10−21 m2/V2) or Al2O3 (χ (3) = 2.2 × 10−22

m2/V2).10 Moreover, though metals are centrosymmetric and
do not possess an inherent χ (2) nonlinearity, the surface of a
metal can break the symmetry and provide a mechanism for
an effective χ (2) nonlinearity. The homogenized χ (2) nonlinear
response of a metal, thus, becomes highly dependent on its
geometry, making it inherently a metamaterial construct. In
all cases, the large absorption associated with metals suggests
nanostructuring as a means of optimizing the nonlinear effects
while minimizing propagation within the metal. As we show
here, nonlinear metal-based metamaterials can accomplish
these goals.

The origin of the nonlinearity in metals arises from the
response of both bound and free electrons. In particular,
for the visible/near-IR part of the spectrum, the nonlinear
response of thick metal layers may be attributed mostly to free
electrons, with Lorentz (magnetic) and quadrupolar contribu-
tions from bound charges becoming increasingly important
at shorter wavelengths. The interest in nonlinear interactions
at metal surfaces dates back to the beginning of nonlinear
optics.11–17 Optical second-harmonic generation from a silver
slab was first observed in 1965.18,19 Since then, numerous
experimental studies have been published,20–24 with a variety
of phenomenological25–33 and microscopic approaches34–37

developed to analyze the second-harmonic response of metal
structures.

Recent research in plasmonic phenomena has stimulated
renewed interest in the nonlinear optical properties of metals.
In particular, a steady stream of works concerning harmonic
generation from metallic nanostructures, such as hole ar-
rays in a metallic substrate,38–43 metallodielectric multilayer
structures,44,45 Au nanoantennas,46,47 and periodic nanostruc-
tured metal films,48,49 have been published recently. Second-
harmonic generation has also been observed experimentally
from ordered arrays of split-ring resonators,50,51 as well as
from a variety of single nanoparticles52–56 and nanoparticle
arrays with varying geometries.57–69 On the theoretical side,
Zeng et al. readapted the free-electron theory of second-
harmonic generation to arbitrary shaped metal nanoparticles.70

Scalora et al. have considered a dynamic description based
on the hydrodynamic model and taken into account bound
electron contributions to the second- and third-harmonic
generation in the ultrashort pulse regime.71

It should be emphasized that metals contain both volume
and surface nonlinear contributions,28 and it is generally
not possible to entirely separate the two. The separation
becomes even more ambiguous for subwavelength nanolayers
or nanoparticles, where the field can penetrate the metal
itself so the nonlinear response may be distributed inside
the volume. Under these circumstances the shape of the
nanoparticle acquires a more crucial role in determining
the nonlinear response of the metal. Moreover, nonlinear
surface contributions are strictly related to the response
of the electrons within the Thomas-Fermi screening length
(λTF ∼ 1 Å for gold) from the surface, which introduces a
crucial microscopic scale to the problem. Thus, solving for
the optical fields in the macroscopic realm, which vary on

the order of several hundred nanometers, can rapidly result in
considerable numerical complexity.

In this work we perform an analysis of second-harmonic
generation in plasmonic systems of arbitrary shape. We,
first, summarize the hydrodynamic model that describes the
nonlinear optical response of the metal, including the effects
of quantum pressure associated with the electron gas. A numer-
ical analysis of the resulting nonlocal and nonlinear problem
is performed, with particular emphasis on surface effects. In
particular, we numerically investigate the nonlinear response
at the metal surface as the electron pressure tends to zero,
thus establishing an unambiguous bridge to the free-electron
limit, in which the pressure is completely neglected. In a
recent work72 we provided a formula expressing the nonlinear
surface contribution in terms of the polarization vector in the
bulk regions. Here we show a detailed comparison with the
full resolution of nonlocal and nonlinear equations. We then
numerically investigate second-harmonic generation arising
from a variety of three-dimensional nanoparticle arrays and
show the impact of specific geometries, such as nanocrescents,
on the enhancement of conversion efficiencies.

II. MODEL

A description for the polarization inside the metal is given
by the hydrodynamic model. Here we recall the most salient
elements of the theory and refer the reader to Refs. 73, 35,
and 71 for further details.

The electron fluid density, n(r,t), and the current density,
J = env, satisfy Euler’s equation,

m∗
en

[
∂v
∂t

+ (v · ∇) v + γ v
]

= enE + env × B − ∇p, (1)

along with the continuity equation,

∇ · J = −eṅ, (2)

where the dot represents the partial derivative with respect
to time, m∗

e is the effective electron mass, γ is the electron
collision rate, v is the electron velocity field, and p is the
electron pressure which, for a three-dimensional gas, is given
by71,74

p(r,t) = p0

[
n(r,t)

n0

]5/3

, (3)

where p0 � n0EF (EF is the Fermi energy and n0 is the
equilibrium charge density). Combining Eqs. (2), (1), and (3),
and taking into account Ṗ = J, one finds that the free-electron
polarization P satisfies the following equation71:

P̈ + γ Ṗ = n0e
2

m∗
e

E − e

m∗
e

E (∇ · P) + e

m∗
e

Ṗ × B

− 1

n0e
[(∇ · Ṗ)Ṗ + (Ṗ · ∇)Ṗ] + 5

3

EF

m∗
e

∇ (∇ · P)

−10

9

EF

en0m∗
e

(∇ · P) ∇ (∇ · P) . (4)

In calculating Eq. (4), only first- and second-order terms have
been retained. Equation (4) summarizes the electron fluid
response under the influence of the electromagnetic field. In
addition to the linear Drude response, we have the nonlinear
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Coulomb term (referred to as quadrupole-like term by virtue
of its form), proportional to E (∇ · P), the magnetic Lorentz
force contribution, Ṗ × B, the convective terms (∇ · Ṗ)Ṗ and
(Ṗ · ∇)Ṗ, the linear nonlocal pressure term proportional to
∇(∇ · P), and the nonlinear pressure term (∇ · P)∇(∇ · P).

In order to calculate the expressions for the fundamental
and second-harmonic polarization, we expand all fields in a
perturbative manner,

E(r,t) = E1(r)e−iωt + E2(r)e−2iωt + · · · ,
H(r,t) = H1(r)e−iωt + H2(r)e−2iωt + · · · , (5)

P(r,t) = P1(r)e−iωt + P2(r)e−2iωt + · · · ,
where the time dependence has been explicitly indicated.
Considering terms up to the second order, we obtain the
following set of equations:

β2∇(∇ · P1) + (ω2 + iωγ )P1 = −n0e
2

m∗
e

E1, (6a)

β2∇(∇ · P2) + (4ω2 + 2iωγ )P2 = −n0e
2

m∗
e

E2 + SNL, (6b)

where β2 = (5/3)EF/m∗
e and the nonlinear source, SNL, is

given by

SNL = e

m∗
e

E1 (∇ · P1) + iωe

m∗
e

P1 × B1

− ω2

n0e
[(∇ · P1) P1 + (P1 · ∇) P1]

+10

9

EF

en0m∗
e

(∇ · P1) ∇ (∇ · P1). (7)

The quantity β is proportional to the Fermi velocity vF

and, consequently, to the Thomas-Fermi screening length
λTF = vF/ωp, with ωp being the plasma frequency. Equations
(6) with Eq. (7) describe the fundamental and second-
harmonic polarization vectors, respectively, and hold under
the assumption that the fundamental fields are not affected by
the generated harmonic (nondepleted pump approximation).
However, should one desire to calculate the self-consistent
field interaction, the necessary terms may be taken into account
by modifying Eq. (6a).

Equations (6) are solved along with Maxwell’s equations
that, in the framework of harmonic propagation, read75

∇ × ∇ × E1 − k2
1E1 = μ0ω

2P1, (8a)

∇ × ∇ × E2 − k2
2E2 = μ04ω2P2, (8b)

where k1 = ω/c and k2 = 2ω/c, with c the light velocity in
vacuum.

The polarization defined by Eqs. (6) contain linear, nonlocal
contributions arising from the electron pressure of the form
β2∇(∇ · P). This term has been shown to introduce significant
modifications in the optical properties of subnanometer-gap
metal-based systems.76 It has also been predicted to be
responsible for an unusual, resonant-like phenomenon for
nanowires only a few nanometers in diameter.77–79 More
generally, this term takes into account variations of the electric
field occurring in a region of the order of λTF in the vicinity of
the metal surface, where electron-electron interactions become
significant. The presence of spatial derivatives (nonlocality)

in the description of the polarization vector requires the
specification of additional boundary conditions to solve the
electromagnetic boundary value problem.80,81

The choice of additional boundary conditions required at
an interface is a delicate problem that remains an unsettled
topic in the literature. From the physical point of view,
the presence of a pressure in the electron fluid enables
the existence of longitudinal waves, in which the electric
field is aligned with the propagation vector, along with the
conventional transverse waves. That is, an incident field
can excite two independent waves inside the metal. The
well-known Maxwell’s boundary conditions are not sufficient
to uniquely define the amplitudes of these possible waves. In
terms of a hydrodynamic description, the number of additional
boundary conditions depends on the given equilibrium charge
density profile at the metal boundaries. For our problem, we
assume the equilibrium electron density to have a step-function
profile that vanishes outside the metal. In this case, only
one additional boundary condition is required to supplement
Eqs. (6) to obtain a unique solution.82 Intuitively, a simple
boundary condition may be ascertained by considering the
meaning of our equations. From a macroscopic point of view,
Maxwellâ equations require the normal component of the
vector D = ε0E + P to be continuous across the interface, if
no external charges are present, while the normal component
of the electric field n̂ · E is discontinuous because of the
induced surface charges (n̂ is a unit vector normal to the
boundary). However, the nonlocal, linear terms in Eqs. (6b)
account for a microscopic description of the charge behavior
at the surfaces of the metal region. It is then legitimate to
impose the continuity of the normal component of the electric
field across the interface, which means it must be n̂ · P = 0
at the metal-air interface. On the other hand, the tangential
component of the polarization vector, n̂ × P, is, in general,
nonzero. More formally, the same result may be derived from
the continuity equation and Gauss’s theorem. In this case, one
obtains that n̂ · J = 0 at the boundary.78,82

Within this context the macroscopic discontinuity of
n̂ · E translates into a rapid variation of the microscopic
fields within the neighborhood of the boundary and the
term ∇ · P will give indeed the distribution of the induced
charge along the metal-air transition. Equations (6) coupled
to Eqs. (8) are numerically solved using the finite-element
method implemented in the commercial software COMSOL

Multiphysics.84 The weak form of the nonlocal contribution
derived in the appendix has been used.

A. Second-harmonic generation from a metal nanowire

To illustrate the nature of the various nonlinear processes
that derive from the hydrodynamic response model, we
consider a p-polarized plane wave incident on a metal wire of
circular cross section as depicted in Fig. 1(a). It is interesting to
assess the influence of the linear pressure term on the induced
charge density. One would expect the electron distribution
to be zero in the bulk region and rapidly varying near the
metal surface, where it should reach its maximum value.
The induced charge density n = 1

e
∇ · P is shown in Fig. 2,

for different values of β, along the direction normal to the
metal-air interface. We note that the region where the variation
occurs is of order of λTF ∼ 0.1 nm.
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CIRACÌ, POUTRINA, SCALORA, AND SMITH PHYSICAL REVIEW B 86, 115451 (2012)

Longitudinal Coordinate [nm] Longitudinal Coordinate [nm] 

Tr
a

n
sv

e
rs

e
 C

o
o

rd
in

a
te

 [
n

m
] 

FF = 1064nm

100nm

x

y
Au

Ex
2ω Ey

2ω

Eω

(a) (b)

(c) (d)

Tr
a

n
sv

e
rs

e
 C

o
o

rd
in

a
te

 [
n

m
] 

FIG. 1. (Color online) (a) A plane wave of wavelength λ = 1064 nm impinges on a gold wire of diameter d = 100 nm. (b) Absolute value
of the fundamental electric field. The second-harmonic field components obtained by solving Eqs. (8) and (6) are shown in (c) and (d). The
following values were used: m∗

e = me, n0 = 5.7 × 1022 cm−3, γ = 1.07 × 1014 s−1, and EF = 5.5 eV.

As the fundamental wave interacts with the metal wire,
a second-harmonic field given by the nonlinear polarization
of Eq. (6b) and Eq. (7) is generated (see Fig. 1). It is
useful to closely examine the contribution of the various
nonlinear source terms to the generated second harmonic. In
Fig. 3 we show the generated second-harmonic field patterns
corresponding to each of the nonlinear terms in Eq. (6b),
with all other nonlinear sources turned off. The corresponding
second-harmonic scattered powers, QSH, are also indicated in

FIG. 2. (Color online) Electron density profile at the metal-air
interface for different values of β for the fundamental field. The
geometry was discretized by a triangular mesh with a 0.025-nm
maximum element size at the metal surface.

Fig. 3. If all the nonlinear sources are present simultaneously
the total converted power is QSH = 1.53 × 10−10 W, a value
almost twice the sum given by each of the individual
contributions. This means that the terms interfere, and each
term may establish a nonlinear interaction channel that could
be amplified or reduced by the other terms. Consequently,
it is not easy to estimate the impact of an individual term
on the generated field, which, in general, will depend on the
geometrical configuration and other parameter choices.

It is also useful to determine the relative second harmonic
contributions from the surface and the bulk of the geometry.
With respect to Eq. (7), surface terms may be identified as being
proportional to ∇ · P1, a term that is nonzero only near the
surface. That is, the Coulomb (quadrupole-like) and pressure
terms, and the first of the convective terms, may be taken to
be purely surface terms, while the Lorentz force is a purely
bulk term. On other hand, the convective term proportional
to (P1 · ∇)P1 contains both surface and bulk contributions.
In Fig. 4 we plot the absolute values of the transverse and
normal component of the vectors (∇ · P1)P1 and (P1 · ∇)P1,
respectively. Near the surface the normal components of both
terms behave similarly, while only the latter does not vanish in
the bulk region. An important difference can be observed in the
transverse component, where there is no surface contribution
for the term (P1 · ∇)P1. These distinctions qualitatively hold
for different types of nanoparticles. However, the precise
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FIG. 3. (Color online) Second-harmonic field patterns generated by the different nonlinear sources of Eq. (6b) for the geometry in Fig. 1.
The total scattered second-harmonic power QSH is shown for a pump peak intensity of ∼15 MW/cm2. The field patterns were calculated by
considering only the second-harmonic source term of interest and turning off all others.

fraction associated with surface or bulk contributions depends
on the specific geometry under consideration.

B. Free-electron limit

The hydrodynamic description of the electrons inside a
metal gives a fairly accurate description of linear and nonlinear
processes occurring at the surface of metallic structures.
Though microscopic interactions are described by a very
simplistic model, the simultaneous manifestation of multiple
scales (the angstrom length scale of the electron-electron inter-
actions, on the one hand, and the micron scale of particle-field
interaction, on the other hand) makes the numerical resolution
of the electromagnetic problem quite complex and ordinarily
necessitates considerable computational resources even for
particles whose dimensions are a few tens of nanometers. In
Ref. 72 we showed that it is possible to express the nonlinear
surface contribution in terms of the bulk polarization, without
having to solve the nonlocal equations. As already pointed out
by Sipe et al.,35 if the electron pressure is simply dropped off by
the equations, the hydrodynamic theory of second-harmonic
generation becomes inherently ambiguous. This is because
products of the form (∇ · P)E are not well defined if both P
and E are discontinuous.72

In early works this problem was circumvented by introduc-
ing phenomenological coefficients to determine the weight of
the different nonlinear contributions,34 or through an effective
plasma frequency,35 that incorporate the details of the charge
distribution near the surface, an effect that was neglected in
Ref. 70. We have numerically analyzed the effect of the linear
pressure on the amount of converted second-harmonic energy.

This is shown in Fig. 5 where the total second-harmonic
scattered power is plotted as a function of the inverse of β.
Figure 5 shows that the total second-harmonic generation
converges to an asymptotic value as β tends toward zero.
Typical reported values for β are on the order of 106 m/s
and correspond to the flat region of the curve, where the actual
converted energy does not differ too much from its asymptotic
value. Exploring the limit for β → 0 seems, then, a very
good way to get an approximate solution that includes the
effects of nonlocality, but without having to solve the complex
nonlocal equations. Note that this procedure differs totally
from assuming β is identically zero.
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FIG. 4. (Color online) Comparison between the convective source
terms calculated for the nanowire of Fig. 1. The nanowire is centered
at the origin and the fields are taken along the direction x = 0 in the
neighborhood of the metal-air interface (y = 50 nm). Note that the
direction of interest is normal to the metal boundary.
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Decreasing β

FIG. 5. (Color online) Total second-harmonic scattered power as
a function of the inverse of the parameter β for a gold nanowire of
diameter d = 30 nm.

In this limit the surface contributions to the second-
harmonic polarization may be approximated by an effective
nonlinear current sheet at the surface of the nanoparticle
given by72

KNL = iω

n0e

[
t̂(P ⊥

1 P
‖
1 ) + n̂

1

2

3ω + iγ

2ω + iγ
(P ⊥

1 )2

]
, (9)

where the unit vectors n̂ and t̂ are normal and parallel to the
metal interface, respectively, and P ⊥

1 = n̂ · P1 and P
‖
1 = t̂ · P1.

These currents are related to the polarization values in the bulk
region and do not require the resolution of nonlocal equations.
This approach provides a good description of the second-
harmonic generation process that may be easily implemented
for full three-dimensional (3D) simulations. However, since
in this local description of surface nonlinear contributions, the
derivatives in the direction parallel to the surface are neglected,
Eq. (9) is not expected to hold if, for example, one considers
geometries with sharp asperities, in which field derivatives
can be very important.72 More generally, the approximation
is valid as long as nonlocal effects do not change the linear
response of the system.

As a test case, we consider second-harmonic generation
from a thick metal film. In Ref. 84 experimental data for a pump
field tuned at 1064 nm and incident on a 400-nm silver film
are reported for three different incident/detected polarization
configurations: (i) TM-incident and TM-detected polarization;
(ii) TE-incident and TM-detected polarization, and (iii) 45◦-
incident and TE-detected polarization. In Fig. 6 we compared
the results obtained using Eq. (9) with those obtained through
the full resolution of Eqs. (6). For completeness the experi-
mental data are also reported. Both simulation results agree
qualitatively and quantitatively very well in all cases. A slight
difference between the two numerical results may be observed
for the case of TM-incident and TM-detected polarization
[see Fig. 6(a)]. This slight difference arises because in that
configuration the impact of the electron pressure is more
significant. However, the qualitative agreement is still very
good.

III. THREE-DIMENSIONAL NANOPARTICLES

In the previous paragraph we showed how second-
harmonic generation may be handled without solving the
entire electromagnetic-hydrodynamic problem. That is, the
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FIG. 6. (Color online) Second-harmonic conversion efficiency
for a silver film as a function of the incident angle θ as depicted in
the inset, under various pumping/detection polarization conditions.
The fundamental field is tuned at the wavelength λ = 1064 nm.
Experimental data are taken from Ref. 84, where the average peak
intensity is estimated about 80 MW/cm2. The shapes of both
theoretical curves agree well with the experimental data in all cases, if
we choose the following incident peak intensities: (a) ∼ 85 MW/cm2,
(b) ∼ 60 MW/cm2, and (c) ∼ 110 MW/cm2. The effective electron
mass has been fixed to m∗

e = 0.65me and n0 = 3.5 × 1022 cm−3,
γ = 4.6 × 1013 s−1, and EF = 5.5 eV.

volume sources are calculated by assuming β identically zero,
while the surface nonlinear currents are given by Eq. (9).
In this section we will use this approach to study 3D gold
nanoparticles. For the sake of simplicity, we assume the
nanoparticles are surrounded by air. The structure studied
extends periodically in the x and y directions, as depicted
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FIG. 7. (Color online) Second-harmonic conversion efficiency for different 3D gold nanoparticles. All the particles are 20 nm thick and
the geometrical parameters have been chosen to have a resonance around λFF = 1.5 μm, where the fundamental field is tuned. The linear
transmissions at normal incidence (solid line) for the variety of nanoparticles are shown in the second column. In (a) and (b) the transmission at
oblique incidence (dashed line) has been calculated for θ = 40 and θ = 70, respectively. The transmission for an incident electric field polarized
along the y direction is also shown for the U-shaped nanoparticle (dot-dash line). The vertical dotted lines indicate the fundamental and the
second-harmonic wavelength, respectively. The second-harmonic conversion efficiency as a function of the incident angle θ has been calculated
using Eq. (9) to take into account the nonlinear surface contribution. The pumping electric field is p polarized (Ey = 0) with a peak intensity
of ∼55 MW/cm2. The following values for the parameters have been used: m∗

e = me, n0 = 5.7 × 1022 cm−3, and γ = 1.07 × 1014 s−1.

in the inset of Fig. 7, so only a single unit cell is needed in
the computational space. To avoid possible numerical artifacts
due to the field localization near metal corners, we considered
rounded corner geometries with a radius of curvature of 5 nm.
The geometrical parameters were chosen so the nanoparticles
would display a resonance around λFF = 1.5 μm, where the
fundamental field is tuned.

Our results are summarized in Fig. 7 for the different kinds
of nanoparticles. The conversion efficiencies assume an aver-
age pump intensity of ∼55 MW/cm2 with the electric pumping
field lying on the xz plane. We find qualitatively good agree-
ment with the experimental data of Ref. 58, where second- and
third-harmonic generation were experimentally investigated
for a variety of gold nanoparticles. The authors considered
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arrays of unit cells ranging from 300 to 600 nm constituted of
gold nanoparticles deposited on a thick glass substrate under
normal pump incidence. Even if a quantitative comparison
between our simulations and the experimental data cannot
be made, the relative efficiencies normalized with respect to
the U-shaped nanoparticle efficiency are, nevertheless, in very
good agreement. For the U-shaped nanoparticle at normal
incidence, we find a conversion efficiency of ∼6.9 × 10−10.
This should be compared to ∼2.0 × 10−11 of the experimental
data.58,85 The T-shaped nanoparticle shows an efficiency of
∼1.1 × 10−11 for θ = 0◦, or about the 1.7% with respect of
the U-shaped nanoparticle (2.1% for the experimental data),
and the I-shaped nanoparticle has a ∼0 conversion efficiency,
as one might expect due to the absence of symmetry breaking.
It is interesting to observe the second-harmonic conversion
efficiency as a function of pumping angle θ for the three
kinds of nanoparticles. The geometry is depicted in the third
column of Fig. 7. While the U-shaped nanoparticle has its
conversion peak at 0◦, both the I- and T-shaped nanoparticles
show maximum efficiency at oblique incidence. In particular,
the T-shaped nanoparticle qualitatively behaves as a bare metal
film, reaching a maximum second-harmonic enhancement at
large angles (θ � 70◦), as shown in Fig. 7(b). The I-shaped
nanoparticle shows a more interesting response. It reaches a
conversion efficiency that overtakes the enhancement obtained
with the U-shaped nanoparticle around θ � 40◦. An analysis of
the linear transmission shows that the second resonance [see

FF

SH

(b)

(a)

(V
/m

)

(V
/m

)

E E2

FIG. 8. (Color online) (a) Fundamental and second-harmonic
field distributions for 150-nm-wide and 20-nm-thick gold nanocres-
cent arranged in a periodical array. (b) Electric field polarization state
for the fundamental and second-harmonic fields, respectively. The
polarization state of the generated field is flipped with respect to the
pumping field.

Fig. 7(a)] redshifts as θ increases, attaining the wavelength
λFF/2 for θ � 40◦, exactly where the maximum conversion
occurs. The energy flowing from the pump to the second-
harmonic field is then catalyzed, thanks to the presence of this
double resonance, as shown in Fig. 7(a). The situation differs
slightly for the T-shaped nanoparticle, where the resonances
are matched only for wide angles, when the x component of
the electric field, the one that drives the resonance, is sensibly
reduced.

Another interesting structure to study is the nanocrescent.
This structure has been shown to be able to efficiently harvest
light over a broadband spectrum.86 Moreover, its inherent
asymmetry makes it a good candidate for second-harmonic
generation enhancement. In Fig. 8(a) we show the funda-
mental and second-harmonic field distributions for 120-nm-
wide periodically arranged nanocrescents. The nanocrescent
was designed to reach a maximum sharpness defined by a
minimum allowed size δ and to have a gap of size 2δ. The
structure is excited by a fundamental wave polarized along
the horizontal direction, as shown in Fig. 8(b). Similarly to
the U-shaped nanoparticle, the symmetry breaking occurs
along the y direction, the polarization state of the generated
field results then rotated by 90◦. The structure shows a
maximum conversion efficiency at normal incidence that can
enhance the second-harmonic generation process up to two
orders of magnitude over that of the U-shaped nanoparticle
efficiency. In particular, we obtained conversion efficiencies
of η ∼ 6.0 × 10−8, η ∼ 3.5 × 10−8, and η ∼ 5.1 × 10−9 for
δ = 2,3,5 nm, respectively, corresponding to a pumping peak
intensity of ∼55 MW/cm2.

IV. CONCLUSION

We have studied the second-harmonic generation from
metal-based nanostructures. The nonlinear optical response
of metal was described using the hydrodynamic model,
which introduced a source of nonlocality in the dispersion
relation, due to electron gas pressure. We have discussed
its influence on second-harmonic generation and numerically
showed that, as the pressure term tends to zero, the amount of
converted second-harmonic field tends to an asymptotic value,
leading to the possibility of expressing the nonlinear surface
contributions as a function of the values of the polarization
vector in the bulk region. This development simplifies the
investigation of second-harmonic generation process in full
3D metal structures.

Recent experimental work has shown significant enhance-
ment of the electric field in plasmonic systems when metal
nanoparticles are strongly coupled to a metal film.76,87 As the
distances between the nanoparicles and the film approach the
scale of fraction of a nanometer nonlocal effects are no longer
negligible, and nonlinear effects become stronger. We believe
that the ability to solve the full electromagnetic-hydrodynamic
problem is crucial for this kind of system and will be the subject
of our future investigations.
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APPENDIX: NONLOCAL WEAK CONTRIBUTION

Consider a differential problem of the form Lu = f with L

a linear differential operator and f an arbitrary function. The
associated weak form is then∫

�

ϕLu dV =
∫

�

ϕf dV , (A1)

with u|∂� = u0, where ϕ is en element of a set of arbitrary
functions called test functions. Generally, the form of the
integrals of Eq. (A1) allows us to decrease the order of
derivatives of the operator L. Here, we present a suitable weak
form for the problem of Eqs. (6).

For the sake of simplicity, we rewrite here only differential
higher-order terms, since lower ones remain unchanged.
Consider, first, the term associated with the linear electron
pressure ∇ (∇ · P). Multiplying for the vectorial test function
� and integrating over the volume as in Eq. (A1), we obtain∫

�

� · [∇(∇ · P)]dV . (A2)

Integrating by parts and using the divergence theorem, we
obtain∫

�

� · [∇(∇ · P)]dV

=
∫

∂�

(∇ · P)n · �dA −
∫

�

(∇ · �)(∇ · P)dV . (A3)

Finally, considering that � · n = 0 on the boundaries, we
obtain∫

�

� · [∇(∇ · P)]dV = −
∫

�

(∇ · �)(∇ · P)dV . (A4)

Analogously, we obtain, for the nonlinear pressure term,
(∇ · P) ∇ (∇ · P), of Eq. (6b) the following result:∫

�

� · [(∇ · P)∇(∇ · P)]dV = −1

2

∫
�

(∇ · �)(∇ · P)2dV ,

(A5)

where we used the identity

(∇ · P)∇(∇ · P) = 1
2∇(∇ · P)2. (A6)

The surface currents given by Eq. (9) have been imple-
mented by using surface contributions.
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