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Towards a rigorous proof of magnetism on the edges of graphene nanoribbons
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A zigzag edge of a graphene nanoribbon supports localized zero modes, ignoring interactions. Based mainly
on mean field arguments and numerical approaches, it has been suggested that interactions can produce a large
magnetic moment on the edges. By considering the Hubbard model in the weak coupling limit, U � t , for
bearded as well as zigzag edges, we argue for such a magnetic state, based on Lieb’s theorem. Projecting the
Hubbard interactions onto the flat edge band, we then prove that the resulting one-dimensional model has a fully
polarized ferromagnetic ground state. We also study excitons and the effects of second neighbor hopping as well
as a potential energy term acting on the edge only, proposing a simple and possibly exact phase diagram with the
magnetic moment varying smoothly to zero. Finally, we consider corrections of second order in U , arising from
integrating out the gapless bulk Dirac excitations.
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I. INTRODUCTION

One of the many fascinating properties predicted for
graphene1 is that a noninteracting nanoribbon with zigzag
edges has bands of states with energy exponentially small
in the ribbon width, localized at the edges.2 Unzipping of
carbon nanotubes has recently provided a technique for pro-
ducing nanoribbons with clean edges, and scanning tunneling
microscopy (STM) on such ribbons3 has shown evidence for
interacting edge states. It has been proposed, on the basis
of mean-field theory,2,4,5 density functional theory,6,7 and
various numerical techniques,8–10 that Hubbard interactions
may induce ferromagnetic order of the electrons in these edge
states, with the moments on opposite edges ordering antifer-
romagnetically. Graphene edge magnetism looks promising
for applications in nano-electronics.11 However, there is
no experimental evidence for edge magnetism in graphene
ribbons and it is a matter of debate whether it is sufficiently
robust to occur in realistic models,12 thus motivating a deeper
and more general understanding of its origins. One might try
to regard this magnetism as an essentially one-dimensional
(1D) phenomenon, since it arises from edge states, but the 1D
Hubbard model is known to have a nonferromagnetic ground
state at all doping, being antiferromagnetic at half-filling.
Recently,13,14 the effective 1D model obtained by projecting
the Hubbard interactions onto the edge states was studied
numerically and argued to lead to ferromagnetic order of an
isolated edge. An interesting limit in which to try to prove edge
magnetism is the weak interaction limit of the Hubbard model,
U � t , at half-filling. We take two steps toward proving edge
magnetism in this limit. The first involves applying Lieb’s
theorem15 to the contrasting cases of a nanoribbon with two
zigzag edges (ZZ) versus a ribbon with one zigzag and one
bearded edge (ZB) (see Fig. 1). Then we prove that the
projected 1D Hamiltonian has a fully polarized ferromagnetic
ground state. We also study numerically other properties of the
1D model, obtaining the electron or hole addition energy and
showing that there are bound spin-1 excitons. We then consider
two important particle-hole symmetry breaking perturbations:
second neighbor hopping, t2 (in the entire ribbon), and a
potential energy, Ve, acting on the edge atoms only, with
the chemical potential maintained at the Dirac points of the

bulk dispersion relation. Both perturbations lead17 to the same
new term in the 1D Hamiltonian, ∝ t2 − Ve ≡ �. We argue
that the fully polarized ground state survives up to a critical
value of |�| of O(U ), beyond which the ground state may
still be found exactly and has a smoothly decreasing edge
magnetic moment. Integrating out the bulk excitations of the
ribbon leads to both inter-edge and intra-edge interactions. The
inter-edge interactions ∝ U 2/(tW 2), where W is the ribbon
width, produce antiferromagnetic order for the ZZ ribbon but
ferromagnetic order for the ZB ribbon. Intra-edge interactions,
∝ U 2/t , exhibit only a mild logarithmic singularity at low
energies, arising from the gapless nature of the bulk Dirac
excitations.

II. PROJECTED HUBBARD MODEL AND
FERROMAGNETISM OF THE EDGE

We consider the Hubbard model at half-filling on a long
ribbon of honeycomb lattice with periodic boundary conditions
in the x direction and zigzag edges. We actually find it
convenient to first consider an upper zigzag edge and a lower
bearded edge (see Fig. 1). Let the number of atoms along the
zigzag edge, of A type, be L. (Therefore, the length of the
ribbon is

√
3aL, where a is the nearest neighbor separation.

We generally set
√

3a = 1.) L is also the number of hairs
in the beard, ending at A sites. Noting that the number of A

sites minus the number of B sites is L, it follows from Lieb’s
theorem15 that the ground states have spin S = L/2 for all
values of U/t > 0. We label the width of the strip by another
positive integer, W , so that the width is 3aW/2 in the ZB
case or a(3W + 1)/2 in the ZZ case. For the noninteracting
model, U = 0, and W,L � 1, there are approximately L/3
zero energy states localized at the upper zigzag edge and 2L/3
localized at the lower bearded edge. The zigzag edge states
have wave-vectors, 2π/3 � |k| < π , while the bearded edge
states fill the rest of the Brillouin zone, |k| � 2π/3. It follows
from particle-hole symmetry that all of these states have
exactly zero energy (for any W ). These L zero modes are half-
filled so we have a large degeneracy of ground states, including
a spin multiplet with spin L/2 obtained by filling each of the L

states with a single electron with the same polarization. Now
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FIG. 1. (Color online) A nanoribbon with an upper zigzag edge
and lower bearded edge. In this example, L = 5 and W = 6. (We
employ periodic boundary conditions in the x direction.)

consider turning on a very small positive U , in the case of large
W and L. In the absence of boundaries we don’t expect U to
have a large effect on the ground state. A gapless nonmagnetic
Dirac liquid state is expected to persist up to a critical Uc of
O(t). This follows from the fact that perturbation theory in
U is infrared finite in the Dirac model; i.e., the four-Fermi
interaction is irrelevant. Therefore, we expect the magnetic
moment to live on the edges. The only physical explanation of
the Lieb’s theorem result seems to be that the fully polarized
edge state multiplet persists as the (unique) ground state as
we turn on U . This picture can be further substantiated by
calculating the weak interaction between the upper and lower
edges, of order U 2/(tW 2). This interaction is found to be
ferromagnetic, as we show below. Thus there must be a spin
≈L/6 on the zigzag edge and ≈L/3 on the bearded edge,
with these two spins coupled ferromagnetically. Now consider
replacing the bearded edge by a second zigzag edge. Lieb’s
theorem15 now implies a zero spin ground state, since we
have equal numbers of A and B sites. Now, at U = 0, we
have approximately L/3 edge states on both lower and upper
edges. These mix to form two bands, with 2π/3 � k � 4π/3,
with energies exponentially small in W and symmetric around
E = 0. Ignoring inter-edge interactions, we expect spin ≈L/6

on both upper and lower edges. In this case, the intra-edge
interaction of order U 2/(tW 2) is antiferromagnetic, implying
a zero spin ground state consistent with the result from Lieb’s
theorem. A further consistency check can be obtained by going
smoothly between zigzag and bearded lower edges by turning
on the hopping term, t ′ on the hairs. Lieb’s theorem implies
spin L/2 for all t , t ′ and U > 0. For t ′ = 0 we have a ZZ
ribbon together with L decoupled sites sitting below the lower
edge. The ZZ ribbon has spin 0, but we can obtain a state
with total spin L/2 by polarizing the electron spins at the
decoupled sites. Although the zigzag ribbon has total spin 0,
for large W we expect that the upper and lower edges have spin
≈L/6 with antiferromagnetic inter-edge coupling. Turning on
t ′ produces an effectively antiferromagnetic coupling between
the spin ≈L/6 on the lower zigzag edge and L/2 on the nearly
decoupled sites. This gives a moment ≈L/3, which is now
ferromagnetically coupled to the upper edge, giving a total
spin of L/2 as required by Lieb’s theorem.

Assuming that the ground state remains an unpolarized
Dirac liquid up to U = Uc, the magnetism of the edges
seems to follow from Lieb’s theorem for large W . If the
transition at Uc is into a bulk antiferromagnetic state (with,
for example, spin up on A sites and spin down on B sites),
then the edge magnetism should persist, since it is of this
type, and may be regarded as a sort of precursor of the bulk
antiferromagnetic order. A direct transition from semimetal to
insulating antiferromagnet is indicated by the most recent and
largest scale Monte Carlo simulations.18

We note that the above arguments also apply to carbon
nanotubes.19 Indeed, since we have been considering periodic
boundary conditions in the x direction, we have actually been
discussing tubes, of circumference L and length W . The
magnetic moments exist on the upper and lower caps (i.e.,
rings) of the nanotubes with ferromagnetic or antiferromag-
netic inter-ring coupling for a bearded or zigzag lower ring,
respectively. (The half-filled bulk of the nanotube might be in
a 1D version of a Mott-Hubbard insulating state but this only
serves to weaken the effects of bulk states on edge states.)

We may further substantiate this picture by considering13

the weak intra-edge interactions of O(U ). Simply projecting
the Hubbard interaction onto the zero energy states on the
zigzag edge, in the large W limit, gives a Hamiltonian:

H = 1

2

∑
k,k′,q

�(k,k′,q)

[∑
σ

e†σ (k + q)eσ (k) − δq,0

] [∑
σ ′

e
†
σ ′(k′ − q)eσ ′ (k′) − δq,0

]
+ E0. (1)

Here, eα(k) annihilates an electron in an edge state with momentum k and spin α =↑ or ↓. The interaction function is

�(k,k′,q) =
{[

1 − (
2 cos k

2

)2][
1 − (

2 cos k+q

2

)2][
1 − (

2 cos k′
2

)2][
1 − (

2 cos k′−q

2

)2]}1/2

1 − 16 cos k
2 cos k+q

2 cos k′−q

2 cos k′
2

. (2)

The sum over k, k′ and q is restricted to the band in which
2π/3 < k, k′, k + q, k′ − q < 4π/3 and �(k,k′,q) is strictly
positive.16 Periodic boundary conditions in the x direction

imply k = 2πn/L so the number of wave-vectors N ≈ L/3.
Note that we are considering the case of half-filling in the entire
lattice and that the edge Hamiltonian is, therefore, invariant
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under the particle-hole symmetry transformation:

eα(k) ↔ e†α(k). (3)

This is highly unusual since normally a particle-hole symmetry
transformation relates a particle and hole at different wave-
vectors. Here, with an exactly flat band, the particle and hole
operators occur at the same wave-vectors. It is important to
note that �(k,k′,q) arose from summing the wave-function of
the edge states over sites at arbitrary distance n from the zigzag
edge and can be written

�(l,k,q) =
∞∑

n=0

gn(k) gn(l) gn(l + q) gn(k − q), (4)

where

gn(k) ≡ θ

(
1 −

∣∣∣∣2 cos
k

2

∣∣∣∣
)√

1 −
(

2 cos
k

2

)2 (
2 cos

k

2

)n

.

(5)

Thus, dropping the constant E0, we may write

H = 1

2

∑
n,q

O†
n(q)On(q), (6)

with

On(q) ≡
∑

k

gn(k)gn(k + q)

[∑
σ

e†σ (k + q)eσ (k) − δq,0

]
.

(7)

It follows that all eigenstates of H are non-negative. It can
be seen that a fully spin-polarized state is a zero energy
eigenstate and therefore a ground state. To check this, consider,
for example, the representative fully polarized state where all
electron spins are in the up direction. Then, clearly, On(q)
annihilates this state for all nonzero q since the spin-up terms
in On(q) try to produce a spin-up electron in an occupied
state with wave-vector k + q while the spin-down terms try to
annihilate a spin-down electron in a vacant state of wave-vector
k. On(0) also annihilates this state since the occupancy of each
single particle state is precisely 1.

It is also possible, though more difficult, to argue that the
fully polarized multiplet, of spin S = L/6, are the unique
groundstates of the projected 1D Hamiltonian. To prove that
fully polarized states are the unique ground states of H , we
need to prove that the only states annihilated by On(q)†On(q)
for all n and q are fully polarized (that is, have maximal total
spin). For convenience, in this paragraph we take all momenta
to be in the region of [−π/3,π/3], which can be obtained by
shifting all of them by π . Suppose |ψ〉 is such that for any n,q,
On(q)|ψ〉 = 0. Then, we have

∑
k

gn(k)gn(k + q)[e†σ (k + q)eσ (k) − δq,0]|ψ〉 = 0

=
∑
k>0

gn(k)gn(k + q)[e†σ (k + q)eσ (k) + e†σ (−k)eσ (−k − q) − 2δq,0]|ψ〉 = 0, (8)

since gn(k)gn(k + q) = gn(−k)gn(−k − q). (Repeated spin indices are summed in this section.) For fixed q and using the
definition of gn we have, for any n that ∑

k>0

[
4 sin

(
k

2

)
sin

(
k + q

2

)]n ∣∣ψ (q)
k

〉 = 0, (9)

∣∣ψ (q)
k

〉 ≡
√

1 − (2 sin k/2)2
√

1 − (2 sin(k + q)/2)2[e†σ (k + q)eσ (k) + e†σ (−k)eσ (−k − q) − 2δq,0]|ψ〉. (10)

Since n runs from 0 to ∞, the number of independent
momenta is L/3 and all the [4 sin( k

2 ) sin( k+q

2 )] are different,
the determinant of the Vandermonde matrix is nonzero, so
Eq. (9) is satisfied if and only if for any k,q we have

[e†σ (k + q)eσ (k) + e†σ (−k)eσ (−k − q) − 2δq,0]|ψ〉 = 0.

(11)

First, using Eq. (11) for q = 0, we get n(k) + n(−k) = 2; thus,
the only possible terms have n(k) = n(−k) = 1 or n(k) = 0
and n(−k) = 2 or vice versa. In general, |ψ〉 could be written
as a linear combination of Fock states

∏
c†σ (k)|0〉. We first

will show that in the expansion of |ψ〉 in terms of such states
there is no Fock state such that for any momentum k we have

a vacancy or double occupancy in that momentum state. In
other words, in the expansion of |ψ〉, with condition Eq. (11)
and n(k) + n(−k) = 2, only Fock states with singly occupied
momentum states are allowed.

Suppose that there is a state that has the property n(k) +
n(−k) = 2 for any k and has double occupancy at momentum
l (vacancy at momentum −l); call this state φ:

|φ〉 = | · · · , 0︸︷︷︸
−l

, · · · , ↓↑︸︷︷︸
l

, · · ·〉, (12)

and we suppose 〈φ|ψ〉 �= 0. We impose the condition
Eq. (11) on |ψ〉 for q = −2l and k = l. Thus, we should
have e†σ (−l)eσ (l)|ψ〉 = 0. Let us first look at the action of
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e†σ (−l)eσ (l) on φ:

e†σ (−l)eσ (l)|φ〉 = e†σ (−l)eσ (l)| · · · , 0︸︷︷︸
−l

, · · · , ↓↑︸︷︷︸
l

, · · ·〉

= | · · · , ↑︸︷︷︸
−l

, · · · , ↓︸︷︷︸
l

, · · ·〉

− | · · · , ↓︸︷︷︸
−l

, · · · , ↑︸︷︷︸
l

, · · ·〉 (13)

Now, in order to satisfy the condition e†σ (−l)eσ (l)|ψ〉 = 0,
we should have some other Fock states in the expansion
of |ψ〉 such that the action of e†σ (−l)eσ (l) on them could
cancel the terms created in the second line of Eq. (13).
e†σ (−l)eσ (l) only acts on states with momentum l,−l, thus
it does not change the spin configurations of the other (singly
occupied) states. There are only three possible Fock states
that have the same configurations of the singly occupied
states:

|1〉 = | · · · , ↓↑︸︷︷︸
−l

, · · · , 0︸︷︷︸
l

, · · ·〉 e†σ (−l)eσ (l)|1〉 = 0

|2〉 = | · · · , ↑︸︷︷︸
−l

, · · · , ↓︸︷︷︸
l

, · · ·〉 e†σ (−l)eσ (l)|2〉 = | · · · , ↓↑︸︷︷︸
−l

, · · · , 0︸︷︷︸
l

, · · ·〉 (14)

|3〉 = | · · · , ↓︸︷︷︸
−l

, · · · , ↑︸︷︷︸
l

, · · ·〉 e†σ (−l)eσ (l)|3〉 = −| · · · , ↓↑︸︷︷︸
−l

, · · · , 0︸︷︷︸
l

, · · ·〉.

We see that none of these states is able to cancel the terms created in Eq. (13). Then the assumption is wrong and we have to have
〈φ|ψ〉 = 0. Having proven this, we show that in the expansion of |ψ〉 in terms of singly occupied Fock states, only symmetric
combinations like the following are acceptable:

| · · · , ↑︸︷︷︸
k1

, · · · , ↓︸︷︷︸
k2

, · · ·〉 + | · · · , ↓︸︷︷︸
k1

, · · · , ↑︸︷︷︸
k2

, · · ·〉. (15)

Suppose that the Fock expansion of |ψ〉 has a term like | · · · , ↑︸︷︷︸
k1

, · · · , ↓︸︷︷︸
k2

, · · ·〉. Now, by choosing k = k1 and q = k2 − k1

we should have (e†σ (k2)eσ (k1) + e†σ (−k1)eσ (−k2)|ψ〉 = 0. We also have

e†σ (k2)eσ (k1)| · · · , ↑︸︷︷︸
k1

, · · · , ↓︸︷︷︸
k2

, · · ·〉 = | · · · , 0︸︷︷︸
k1

, · · · , ↓↑︸︷︷︸
k2

, · · ·〉

(16)
e†σ (k2)eσ (k1)| · · · , ↓︸︷︷︸

k1

, · · · , ↑︸︷︷︸
k2

, · · ·〉 = −| · · · , 0︸︷︷︸
k1

, · · · , ↓↑︸︷︷︸
k2

, · · ·〉.

Thus, we see that the symmetric combinations leads to zero,
while the antisymmetric ones give us a nonzero result. Thus,
|ψ〉 must be fully symmetric under exchanging all spins and
is therefore of maximal spin.

III. NNN-HOPPING AND EDGE POTENTIAL

In this section we investigate the effects of NNN hopping
and single-site potential on the stability of the ferromagnetic
ground state. One interesting quantity that follows from the
Hamiltonian is the energy to add a spin-down electron of
momentum k, which is the same as the energy to remove a
spin-up electron of momentum k:

εk = U

2L

∑
k′

�(k,k′,0). (17)

This quantity is plotted (at L → ∞) in Fig. 2 (top curve
with η = 0). It vanishes linearly at the Dirac points, k =
2π/3, 4π/3. In principle, εk could be measured in angular
resolved photo-emission spectroscopy (ARPES) experiments.
The corresponding electron addition or removal energy is given

by εk . The corresponding density of states ∝ 1/|dεk/dk| could
be measured by STM. With a spin-polarized STM tip and
an edge fully polarized in the z direction, it would only be
possible to tunnel in a spin-down electron or tunnel out a
spin-up electron.

We have calculated numerically the lowest-energy particle-
hole state of total momentum q, for L up to 602 (N = 200).
This is plotted in Fig. 3 along with the bottom of the
particle-hole continuum (top curve with η = 0). We see that
a strongly bound exciton exists for most values of , as might
be expected in this strongly interacting system. However, the
binding energy vanishing at q = ±2π/3. This vanishing can
be understood from the fact that �(k,k′,q) vanishes when k

or k′ is at a band edge 2π/3 or 4π/3, so the zero-energy
particle and hole become noninteracting at wave-vector 2π/3
and −2π/3 or vice versa.

While Lieb’s theorem continues to imply a fully polarized
ground state at sufficiently small U for any hopping terms
between opposite sublattices (A to B), adding a small
[O(U )] second neighbor hopping term, t2, may destroy the
fully polarized state. Likewise, a single-site potential, Ve,
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FIG. 2. (Color online) Energy to add a spin-down electron of momentum k for various values of η ≡ �/U ≡ (t2 − Ve)/U (η increases
from top to bottom).

acting at the edge of the ribbon only, could destroy the
fully polarized state. Temporarily ignoring interactions, the
zigzag edge states survive at finite t2 and V but develop
a nonzero dispersion given, to first order in � ≡ t2 − Ve,
by:17 ε2(k) − εF = �(2 cos k + 1), breaking the particle-hole
symmetry. Here we are assuming, for simplicity, that the bulk
chemical potential is at the energy of the bulk Dirac points,
which becomes εF = 3t2. (Shifting εF away from the Dirac
points, the Hubbard interactions have a larger effect in the
bulk rendering the edge model approach more questionable.)
Including a small U , the energy to add a spin-down electron
or remove a spin-up electron at momentum k now becomes

Ep/h(k) = εk ± �(2 cos k + 1), (18)

respectively, where εk is given in Eq. (17). Ep(k) is plotted
in Fig. 2 for several values of �. We see that for |�| <

�c ≈ 0.109U , the energy to add an electron or hole remains

FIG. 3. (Color online) Lowest-energy particle-hole state (circles)
and bottom of the particle-hole continuum (lines) for various values
of η ≡ �/U ≡ (t2 − Ve)/U (η increases from top to bottom).

positive, so the edge states remain undoped. A local minimum
at k = π develops in Ep(k) for � > .087U , and Ep(k)
becomes negative in the vicinity of k = π for � > �c. The
lowest energy of a particle-hole state, and the bottom of the
particle-hole continuum for various values of � are shown
in Fig. 3. We see that the exciton becomes unbound except
for wave-vectors near zero, as |�| increases. For |�| > �c,
the edge states become doped, adsorbing electrons or holes
from the bulk. The simplest assumption for |�| > �c is
that a Fermi sea of spin-down electrons or spin-up holes
forms near k = π , for � > �c or � < −�c, respectively.
This assumption is reasonable, since there appear to be no
bound excitons for � > �c. We also calculated for � near
�c and L � 74, the lowest energy state with M = N/2 − 2,
finding no states below the two-particle, two-hole continuum,
consistent with this assumption. These are exact eigenstates of
the Hamiltonian of Eq. (1), Eq. (18) with the added holes,
or particles noninteracting. The corresponding exact result
for magnetization versus � is plotted in Fig. 4, given this

FIG. 4. (Color online) Edge magnetization versus � ≡ t2 − Ve.
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assumption. The noninteracting nature is a simple consequence
of the fact that the onsite Hubbard model only gives interaction
between electrons of opposite spin. On the other hand, we
cannot rule out the possibility that the ground state for � > �c

contains a finite density of spin-up holes as well as the
spin-down electrons (and similarly for � < −�c). In that
case, Hubbard interactions have a nontrivial effect. In any
event, adding a nearest-neighbor Coulomb repulsion term to
the bulk Hamiltonian has no effect on the projected edge
Hamiltonian, since such a term acts between A and B sites,
whereas the zigzag edge states live entirely on one sublattice.
On the other hand, a second-neighbor Coulomb repulsion, U2,
produces interactions between electrons with parallel spins in
the projected edge Hamiltonian. While this doesn’t change our
conclusions qualitatively in the undoped phase, it will produce
interaction effects in the ground state for the doped case even
if contains only particles or only holes. However, we might
expect U2 � U , in which case these effects could be quite
small. Thus, in general, we expect a one- or two-component
Luttinger liquid for |�| > �c. On the other hand, the edge
phase occurring for |�| < �c is definitely not a Luttinger
liquid. Instead, it might be described as a fully spin-polarized
semimetal, since all levels are filled with spin-up electrons
and there is a nonzero electron and hole addition energy for
all wave-vectors except the band-edges 2π/3 and 4π/3.

IV. EFFECTIVE INTER-EDGE AND INTRA-EDGE
INTERACTIONS

There are also important effects of O(U 2/t) that arise
from the interactions between bulk and edge states. We can
consider integrating out the bulk states to obtain a low-energy
effective action for the edge states. Due to the gapless nature
of the bulk Dirac spectrum, this produces long-range retarded
interactions among the edge excitations. Decay processes of
edge into bulk electrons are forbidden by energy-momentum
conservation, but the Feynman diagrams of Fig. 5 induce
quartic interaction terms. For large W and low energies we
may calculate these interactions keeping only the low-energy
bulk states near the Dirac points, using the corresponding
Dirac propagators. Note that we ignore interaction effects
in the bulk, as discussed above. This is rather similar to an
RKKY interaction. The interaction involving the dynamical
spin operators20 �SU/L(ω,q) on the upper and lower edge,
respectively, is:

Sinter =
∫

dqdω

(2π )2
�SU (ω,q) · �SL(−ω, −q)Jinter(ω,q,W ),

(19)

where

Jinter(ω,q,W )

= 2 U 2
∫

dω′dk

(2π )2
G(ω′,k,0,W )G(ω − ω′,q − k,0,W ).

(20)

Here, G(ω,k,0,W ) is the bulk free electron Green’s function
with momentum k in the x direction at y = 0 and y = W

with appropriate zigzag or bearded boundary conditions and
projected onto the sublattices corresponding to the upper and

FIG. 5. Feynman diagrams inducing edge interactions from inte-
grating out bulk states.

lower edge (A-A for zigzag-bearded or A-B for zigzag-zigzag).
Using the linearized, Dirac dispersion relation, which is valid
at small 1/W , ω/t , and q,

GZB(ω,kx,y = 0,y ′ = W )

= 2iv2
F

W

∑
n

(−1)nk2
nω

ε2(kx,kn)[ω2 + ε2(kx,kn)]
, (21)

where ε(�k) = vF |�k| is the Dirac dispersion relation. GZZ is
given by the same expression with ω replaced by iε(kx,kn) in
the numerator inside the sum. The sum over n can be taken up
to an arbitrary ultraviolet cut-off whose value doesn’t affect
the behavior at small 1/W , ω/t , and q. kn = πn/W for the
ZB case. Although the wave-vectors of edge modes are phase-
shifted from these values in the ZZ case, this can be ignored at
leading order in 1/W , allowing us to again use kn = πn/W .

It is straightforward to evaluate Jinter(ω,q,W ) numerically
with the two types of edges. The characteristic scales for
the ω and q dependence of Jinter are set by t/W and
1/W , respectively. Since the energy scale of the inter-edge
interaction in Eq. (21) is U 2/(tW 2), it should be permissible
to ignore the retardation and evaluate Sinter at ω = q = 0 to
calculate the properties of low-energy states. This gives

JZB/ZZ(W ) = ∓c
U 2

t

1

W 2
, (22)

where the positive constant c is given by the convergent sums
and integral:

c ≡
√

3

π
×

∞∑
n,m=1

(−1)n+m

∫ ∞

−∞

× dκ
n2m2

(κ2 + m2)(κ2 + n2)

1√
κ2 + m2 + √

κ2 + n2

≈ 0.20. (23)
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(A similar result was obtained in Ref. 4 for the ZZ case.) We
see that the ground state for the zigzag-bearded ribbon has spin
L/2, while that for the zigzag-zigzag case has spin 0, as shown
above rigorously using Lieb’s theorem. The remarkable fact
that the change in sign of this tiny coupling drastically changes
the spin of the ground state provides evidence for the polarized
nature of the edge spins. There is also a large manifold of low-
energy states, which are simply the eigenstates of JZZ

�ST · �SB

with ST = SB = L/6 (in the ZZ case).
Another important effect of O(U 2/t) is the intra-edge

interaction, independent of W . For a zigzag edge by integrating
out the low-energy bulk excitations, the spin part is

Sintra =
∫

dqdω

(2π )2
�S(ω,q) · �S(ω,q)Jintra(ω,q), (24)

with

Jintra(ω,q) = 2 U 2
∫

k,ω′/vf <�

dω′dk

(2π )2
G(ω′,k,y = y ′ = 0)

×G(ω − ω′,q − k,y = y ′ = 0). (25)

Now the free bulk Green’s function, with zigzag edge boundary
conditions, may be evaluated for a semi-infinite system,
giving, at small kx (measured from a Dirac point) and
small ω

G(ω,kx,y = y ′ = 0) ≈ 2iv2
F

∫
dky

2π

k2
y

(vF k)2

ω

ω2 + (vF k)2
.

(26)

By using this green function, the Jintra of Eq. (25) is ultraviolet
divergence and the integral should be cut off at some point
�. Although the resulting Jintra(q,ω) is ultra-violet cut-off

dependent, we obtain a universal correction to the exciton dis-
persion relation at small q, ignoring the weak retardation, pro-
portional to Jintra(0,q) − Jintra(0,0) ∝ −(U 2/t)q2 ln q2, more
singular than the O(U ) term by a logarithmic factor.

As mentioned above, Eq. (25) only includes the effect of
low-energy bulk excitations; it is still possible that the high-
energy bulk excitations could wipe out this singularity of the
exciton dispersion relation. By using the exact form of the
bulk wavefunctions, one can determine the exact intra-edge
interaction of O(U 2). This has a more complicated form than
Eq. (25). Nonetheless, it can be shown that the only part of
this interaction that contributes to this ln q singular correction
to the excition dispersion relation is the contribution from
low-energy bulk excitations of the form of Eq. (25).

We leave a more detailed study of these effects of O(U 2)
and higher for the future. A reasonable approach might be
to ignore the bulk interactions, since they are irrelevant,
but analyze the bulk-edge Hubbard interactions using the
renormalization group. This corresponds to a novel type of
boundary-critical phenomena in which the bulk is a massless
(2 + 1)-dimensional Dirac liquid and the edge is a one-
dimensional spin-polarized semimetal. The arguments based
on Lieb’s theorem imply that the edge magnetic moment
remains stable against weak interactions.
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