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Charged-phonon theory and Fano effect in the optical spectroscopy of bilayer graphene
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Since their discovery, graphene-based systems represent an exceptional playground to explore the emergence
of peculiar quantum effects. The present paper focuses on the anomalous appearance of strong infrared phonon
resonances in the optical spectroscopy of bilayer graphene and on their pronounced Fano-like asymmetry, both
tunable in gated devices. By developing a full microscopic many-body approach for the optical-phonon response
we explain how both effects can be quantitatively accounted for by the quantum interference of electronic
and phononic excitations. We show that the phonon modes borrow a large dipole intensity from the electronic
background, the so-called charged-phonon effect, and at the same time interfere with it, leading to a typical Fano
response. Our approach allows one to disentangle the correct selection rules that control the relative importance
of the two (symmetric and antisymmetric) relevant phonon modes for different values of the doping and/or of
the gap in bilayer graphene. Finally, we discuss the extension of the same theoretical scheme to the Raman
spectroscopy, to explain the lack of the same features on the Raman phononic spectra. Besides its remarkable
success in explaining the existing experimental data in graphene-based systems, the present theoretical approach
offers a general scheme for the microscopic understanding of Fano-like features in a wide variety of other systems.
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I. INTRODUCTION

The peculiar properties of single and multilayer graphenes
make these systems the promising basis for the future gener-
ation of electronic devices. Within this context, the analysis
of the spectral properties of the phonon anomalies observed
by means of different optical probes has provided a powerful
tool not only for the characterization of the samples but also
for the investigation of the underlying scattering mechanisms
related to the electron-lattice interaction. A large part of
the investigation along this line has been based on Raman
spectroscopy.1–10 Typical main features under investigation
within this context were the frequency and the linewidth of the
phonon anomalies, whose trend as a function of doping was
found to be in good agreement with what is expected from
the theoretical calculations of the phonon self-energy.11,12 As
an alternative route, phonon peak anomalies at ω ≈ 0.2 eV
were detected also in the midinfrared optical conductivity of
bilayer graphene.13,14 Quite interestingly, unlike in the Raman
spectroscopy, in this case a strong dependence of the phonon
peak intensity as well as of its line-shape asymmetry on the gate
voltage was reported. Understanding and controlling the mech-
anisms responsible for these features at relatively small doping
and perpendicular electric fields is of fundamental importance.

From a theoretical point of view, the very evidence of a
strong infrared (IR) phonon activity, such as the one reported
in Refs. 13 and 14, can be considered puzzling in graphenes
which, having atoms of only one specie (carbon), present a
very small intrinsic dipole. In bilayer graphene, for instance,
there are four carbon atoms in the unit cell, as depicted in
Fig. 1, where atoms B1 and A2 are connected by the vertical
hopping γ1. There are two in-plane optical modes: an infrared-
active antisymmetric (A) Eu mode, which corresponds to (out-
of-phase) lattice displacements in the two layers [Fig. 1(a)];

and a symmetric (S) Eg mode, which is associated with in-
phase displacements and is Raman active [Fig. 1(b)]. If the
two layers were completely decoupled, all the atoms would
be exactly equivalent to each other. It is thus clear by direct
inspection that, although allowed by symmetry, the Eu mode
would not induce any dipole and hence it would have no IR
intensity. Beyond this simple model of decoupled layers, in
real systems, the interlayer hopping would induce a slight
inequivalence between the atoms (A1, B2) and atoms (A2,
B1) and hence a finite electrical dipole under the Eu lattice
displacements. The static dipole associated with such physics
is however three orders of magnitude smaller than what is
experimentally observed,13 so that this effect alone cannot
account for the huge increase of the phonon intensity upon
gate-induced doping reported in Ref. 13.

A guideline to understanding the origin of this huge
enhancement comes from the comparison with other carbon-
based compounds, like fullerenes, where also a similar increase
of the phonon intensity upon (chemical) doping was observed.
This effect was explained in those materials in terms of a
charged-phonon theory.15,16

The basic idea of the charged-phonon model can be
understood by considering the electronic current (j ) response
function,

χjj (ω) = −
∫

dt〈Ttj (t)j (0)〉 exp[iωt], (1)

which is related, within the Kubo approach, to the optical
conductivity as

σ (ω) ≈ −χjj (ω)

ih̄ω
. (2)
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FIG. 1. (Color online) Atomic structure of bilayer graphene and
lattice displacements for the Eu antisymmetric (A) phonon mode and
for the Eg symmetric (S) mode. Labels denote the A and B sublattice
in each plane. Solid links between atoms represent the in-plane γ0

hopping, vertical dashed links the interplane hopping γ1.

A typical diagram contributing to the electronic background
at the lowest order is depicted in Fig. 2(a), corresponding to the
single-bubble approximation. Effects of the electron-phonon
interaction on the electronic background are commonly taken
into account by replacing the noninteracting Green’s functions
in Fig. 2(a) with the Green’s functions evaluated in the presence
of electron-phonon interaction.17,18 These processes lead to a
smearing of the optical features and to a redistribution of the
optical spectral weight. They are however not associated with
the onset of resonances at the characteristic phonon energies
in the optical conductivity.

A most interesting class of diagrams, analyzed by
M. J. Rice in the context of the charged-phonon effect, is
depicted in Fig. 2(b). Their contribution to the resulting optical
conductivity can be described as15,16

�χjj (ω) = |χjph(ω)|2Dph(ω), (3)

where Dph(ω) is the phonon propagator of the IR active
phonon mode considered, and χjph(ω) is the “mixed” response
function between the current and the electron-phonon scat-
tering operators (see Sec. II for a more detailed definition).
The resulting optical conductivity of this contribution is thus
proportional to the phonon propagator of the optically coupled
lattice vibrations, and it presents typical resonances at the
corresponding phonon frequencies.

It is worth stressing that the phonon becomes here op-
tically visible thanks to an intermediate process [χjph(ω)]
where the light couples to particle-hole electronic excitations.
The function χjph acts therefore as a prefactor of the magnitude
of the electronically induced phonon resonances. Pristine
fullerenes and organic materials, for which the charged-
phonon theory was originally proposed,15,16 in the absence of
doping, are semiconductors with a band gap significantly larger
than the phonon energies. In this case the complex function
χjph can be reasonably assumed to be real and proportional to

(b)(a)

FIG. 2. (a) Lowest-order contribution to the current-current
response function. (b) Diagrams involved in the charged-phonon
effect. Solid and wavy lines are electronic and phonon propagators,
respectively, white circles are the electron-phonon scattering operator
while black squares represent here the current operator that couples
light (dashed lines) to the particle-hole excitations.

the charge concentrations n,

�χjj (ω) ∝ nDph(ω). (4)

Equation (4) summarizes in a nutshell the essence of the
charged-phonon effect, where the infrared phonon activity
is triggered in by the coupling of a lattice mode ν with the
optically allowed electronic particle-hole excitations.15,16 As
it was shown in Ref. 19, the physics underlying the charged-
phonon effects is intimately related to the onset of Fano-like
line-shape asymmetries.20 Such unified charged-phonon-Fano
theory was also employed to analyze the spectral properties of
infrared optical phonon in pristine graphite21 and in multilayer
graphenes with different stacking orders.22

The purpose of the present paper is to provide a detailed
microscopic derivation of the charged-phonon effect in the
optical spectroscopy of graphenes. To this aim we focus
on bilayer graphene as the simplest and paradigmatical
example. We will show how all the information related to
the phonon intensity and Fano asymmetry can be evaluated
in terms of a unique quantity: the current/electron-phonon
response function χjν . Within this context we evaluate the
dependence of the optical properties of the phonon resonance
on microscopical parameters tunable by means of external
gating. The correspondence between the Fano theory and
the charged-phonon effect is derived microscopically, and a
generalization of the charged-phonon effect to the Raman
response is also provided.

The structure of the paper is the following. In Sec. II we
summarize the main concepts of the charged-phonon theory
and introduce the mathematical tools employed. In Sec. III
we present an analytical discussion about the correspondence
between the Fano and the charged-phonon theories, and a
suitable quantification of the optical properties of the phonon
resonances is introduced. The detailed evaluation of the
infrared properties in the specific case of ungapped bilayer
graphene is presented in Sec. IV, which is generalized in
Sec. V to the case of gapped bilayer graphene in the presence
of external gate voltage. The role of the electronic structure
and of the breaking of particle-hole symmetry in the band
structure is discussed in Sec. VI in bilayer graphene and
compared with bulk graphite. A generalization of the charged-
phonon theory and of the Fano interference analysis for the
Raman spectroscopy, within an effective-mass approximation,
is finally presented in Sec. VII. A summary of the present
work and conclusion can be found in Sec. VIII. Appendixes A
and B provide all the details of the analytical evaluation of the
charge-phonon theory for IR spectroscopy of the ungapped
bilayer graphene in the clean limit, and details about a suitable
generalization for the Raman response.

II. CHARGED-PHONON THEORY
IN BILAYER GRAPHENE

In order to apply at a quantitative level the concepts of the
charged-phonon theory in graphenes, in this section we in-
troduce the electronic band structure and the electron-phonon
Hamiltonians as well as the relevant response functions which
will provide the analytical tools to investigate the properties of
the phonon peaks in the optical conductivity and in the Raman
response. We focus here on the bilayer system as the most
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simple and representative since the single-layer graphene does
not present any IR phonon mode. We work in the 4 × 4 basis of
the atomic orbitals, as depicted in Fig. 1(a). We introduce the
four-vector defined as �

†
k,σ = (a†

1k,σ ,b
†
1k,σ ,a

†
2kσ ,b

†
2k,σ ), where

a
†
ik,σ and b

†
ik,σ operators create an electron with spin σ in the

layer i and on the sublattice A or B, respectively.
Considering for simplicity a simple γ0-γ1 model, and

including a possible asymmetry between the upper and lower
layer induced by a gate voltage, we can write the noninteracting
electronic Hamiltonian as

H0 =
∑
p,σ

�†
p,σ Ĥp�p,σ , (5)

where

Ĥp =

⎛
⎜⎜⎜⎝

�/2 γ0fp 0 0

γ0f
∗
p �/2 γ1 0

0 γ1 −�/2 γ0fp

0 0 γ0f
∗
p −�/2

⎞
⎟⎟⎟⎠ , (6)

γ0, γ1 are the nearest-neighbor in-plane and interplane
tight-binding hopping parameters, respectively, and fp =
e−ipxa/

√
3 + 2eipxa/2

√
3 cos(pya/2).

Close to the K = (4π/3a,0) point, writing p = K + k, and
linearizing around the K point, we can also write

Ĥk =

⎛
⎜⎜⎜⎝

�/2 vπ− 0 0

vπ+ �/2 γ1 0

0 γ1 −�/2 vπ−
0 0 vπ+ −�/2

⎞
⎟⎟⎟⎠ . (7)

Here v = 106 m/s is the Fermi velocity for single-layer
graphene, γ1 = 0.39 eV is the interlayer hopping, � is the
electrostatic energy difference between the layers and π± =
h̄(kx ± iky). The electronic Green’s function in the imaginary
space is thus expressed as a 4 × 4 matrix, Ĝ(k,iωn) =
1/[(ih̄ωn + μ)Î − Ĥk], where μ is the chemical potential and
h̄ωn = πT (2n + 1) are fermionic Matsubara frequencies. The
electronic bands Ek,n are obtained from the diagonalization of
Eq. (7),

E2
k = γ 2

2
+ �2

4
+ (h̄vk)2 ±

√
γ 4

4
+ (h̄vk)2(γ 2 + �2), (8)

and are labeled according to Fig. 3.
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FIG. 3. Scheme of the band structure close to the K point.
The interlayer hopping parameter γ1 determines the splitting at
high energy of bands 3 and 4. The interlayer different potential �

determines the size of the energy gap at the K (k = 0) point.

We can also define the current operator jα =
(1/N)

∑
k,σ �

†
k,σ ĵk,α�k,σ , where α = x,y, N is the total

number of unit cells, and where

ĵk,α = − e

h̄

d

dkα

Ĥk. (9)

In particular, focusing on the current operator along the y axis,
from Eqs. (5)–(7) we get

ĵk,y = −evÎ (σ̂y), (10)

where Â(B̂) ≡ Â ⊗ B̂.
The electron-phonon Hamiltonian describing electrons

interacting with the optical modes has also been discussed
by several authors.12,23,24 As mentioned above, in bilayer
graphene there are two optical in-plane phonons at q = 0 (see
Fig. 1): the Eg symmetric (S) mode and the antisymmetric
(A) Eu one. In the absence of a potential difference between
the two layers, the first one is Raman active while the second
one is infrared active. The relative displacement of the two
sublattice atoms A and B in the first layer is given for example
by

uν(r) =
∑
q,μ

√
h̄2

4Mh̄ω0
(cq,μ + c

†
−q,μ)eμ(q)eiq·r. (11)

M is the mass of a carbon atom, ω0 is the phonon fre-
quency at the � point, μ = t,l denotes the polarization
(transverse or longitudinal), and cq,μ and c

†
q,μ are the

phonon creation and annihilation operators, respectively.
Using qx = q cos φ(q) and qy = q sin φ(q) the polarization
vectors eμ(q) are given by el(q) = i( cos φ(q), sin φ(q)) and
et (q) = i(− sin φ(q), cos φ(q)). Following Ref. 12 the inter-
action between the optical phonons and the electrons at the K

point can be written as

Hint = −
√

2
βh̄v

b2
σ (±) × uν(r), (12)

where σ (+) = Î (σ̂ ), σ (−) = σ̂z(σ̂ ), b = 1.42 Å is the in-
plane carbon-carbon nearest-neighbor distance, and β is a
dimensionless parameter related to the deformation potential,
whose typical value is β = 2.88.25,26 In the following we shall
consider the case of an electric field along the y axis, so that
only the lattice vibrations along the y direction will couple to
the light. Since for q → 0 the result is independent on φ(q),
we take φ(q) = 0, so that only the et polarization vector has a
component along y. As a consequence we can write, close to
the K point, the electron-phonon interaction for the ν = A,S
mode as

Hν =
∑
k,σ

�
†
k+q,σ V̂ν(q)�k,σ eiq·r(cq,μ + c

†
−q,μ), (13)

where

V̂A(q → 0) = igσ̂z(σ̂x), (14)

V̂S(q → 0) = igÎ (σ̂x), (15)

and where g = (βh̄v/b2)
√

h̄2/2Mh̄ω0 = 0.27 eV. Note that,
since et (q) = −et (−q), one has that limq→0 V̂ν(−q) =
− limq→0 V̂ν(q).
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We have now all the tools to investigate the full optical
properties. In this regard it is convenient to define the generic
propagator for bosonic operators A and B as

χAB(iωm) = −
∫ 1/T

0
dτ 〈TτA(τ )B(0)〉 exp[iωmτ ], (16)

where τ is the imaginary time, Tτ is the time-ordering operator,
and h̄ωm = 2πmT is the bosonic Matsubara frequency.

The complex electronic optical conductivity per layer σ (ω)
is obtained from the analytical continuation of χjj (iωm) to the
real axis (iωm → ω + i0+):

σ (ω) = − h̄

V 3D

χjj (ω + i0+)

ih̄ω
, (17)

where V 3D = 2dS2D
cell with d = 3.35 Å being the interlayer

distance and S2D
cell = √

3a2/2 the two-dimensional area of the
graphene unit cell, with a = 2.46 Å.

At the lowest noninteracting order, the current-current
response function χjj (iωm) reduces to the single-bubble
approximation depicted in Fig. 2(a):

χjj (iωm) = NsNv

T

N

∑
k,n

Tr[ĵyĜ0(k,iωn + iωm)

× ĵyĜ0(k,iωn)], (18)

where Ns = Nv = 2 are the spin and valley degeneracies, re-
spectively, and Ĝ0(k,iωn) is the 4 × 4 noninteracting electron
Green’s function which, in the orbital basis, is not diagonal. As
a consequence, the retarded response function χjj (ω) will have
contributions coming from both the interband and intraband
electronic excitations. In general it can be decomposed as

χjj (ω) =
4∑

α,β=1

χ
αβ

jj (ω), (19)

where α,β are the band indexes and χ
αβ

jj (ω) describes the
intraband (α = β) or interband (α �= β) particle-hole excita-
tions contributing to the total χjj . The properties of the optical
conductivity in gated bilayer graphene has been theoretically
investigated in detail in Ref. 27 and experimentally confirmed
in Refs. 28–31. One can see that, at the phonon energies
ω ≈ 0.2 eV, only the 2–3 interband transitions contribute to
χ ′′

jj (ω) (and therefore to the optical electronic background).27

Such background could be modulated by the charge doping
(and therefore by the applied gate voltage) so that it drastically
vanishes for 2|μ| � 0.2 eV. Within the commonly widespread
idea, one would expect that this is the electronic background
that controls the q Fano parameter and then the asymmetry of
the phonon peak. However, as we shall see below, a correct
application of Fano theory to graphene leads to a different
characteristic electronic response function related to the Fano
effect seen in several experiments.

Optical properties of the phonon resonances can be in-
vestigated with the charged-phonon theory by analyzing the
diagrams in Fig. 2(b). In ungated samples, only one phonon,
the Eu antisymmetric mode, is expected to be IR active. We
can write thus

�χjj (ω) = χjA(ω)DAA(ω)χA†j (ω), (20)

where χjA is the mixed response function between the current
operator jy and the electron-phonon scattering operator VA.

However, in the most general case of gated samples with
� �= 0, also the symmetric Eg mode acquires a finite IR
activity.13,14 We can write then

�χjj (ω) = χjA(ω)DAA(ω)χA†j (ω) + χjS(ω)DSS(ω)χS†j (ω)

+ [χjA(ω)DAS(ω)χS†j (ω) + H.c.], (21)

where ν =A, S.
Equations (21) can be completed with the Dyson’s equation

for the phonon Green’s functions Dνν ′ :23,24

[D−1(ω)]νν ′ = δν,ν ′
[
D−1

0 (ω)
] − χν†ν ′ (ω), (22)

where D0(ω) = −2h̄ω0/[h̄2ω2
0 − (h̄ω + i0+)2] is the phonon

propagator in the absence of electron-phonon interaction and
χν†ν ′(ω) provides the matrix components of the phonon self-
energy. The quantity ω0 represents the bare phonon frequencies
for a generic mode ν in the absence of electron-phonon
interaction, and it is assumed here to be degenerate ω0A =
ω0S = ω0. As has been discussed in detail in Refs. 23, 24,
and 32, the mixing between the A and S modes (mediated
by the self-energy χAS) is only active when � �= 0. In
this case the phonon eigenmodes do not correspond any
more to symmetric/antisymmetric vibrations of the atoms in
neighboring layers, so that each A and S propagator has a
double-pole structure, centered at the values ω± of the phonon
eigenfrequencies.

Equations (21) and (22) provide the theoretical tools needed
to evaluate microscopically the onset and the properties of
phonon peaks in the optical conductivity. In general, all the
information about frequencies and lifetimes of phonons is
encoded in the phonon self-energy χν†ν ′ whereas the mixed
(current/electron-phonon interaction) response functions χjν

are related to the intensity and to the possible Fano asymmetry
of the phonon peaks, as we shall discuss in the next section.

III. CORRESPONDENCE WITH THE STANDARD
FANO THEORY

In order to better clarify the connection between Eq. (21)
and the standard Fano theory let us consider first the case
� = 0, where only the A mode is optically active and the
expression (21) reduces to Eq. (20). In addition, for � = 0
the mixed phonon self-energy χA†S vanishes, which means
that the A and S modes coincide with the eigenmodes for
the lattice vibrations. In particular, this implies that the
phonon propagator DAA has a single resonance, and the main
effect of the phonon self-energy is to induce a shift of the
phonon frequency h̄ωA = h̄ω0 + ReχA†A(ωA) and a finite line
broadening �A = −ImχA†A(ωA). Therefore for ω ≈ ωA we
can approximate the phonon propagator as

DAA(ω) = 1

h̄(ω − ωA) + i�A
. (23)

Using the relation χA†j (ω) = χjA(ω), the optical conductivity
can be expressed in terms of the real and imaginary part of
the mixed response function χjA and of the propagator (23).
In particular, introducing the variable z = h̄[ω − ωA]/�A we
have ReDAA = D′

AA = z/�A(1 + z2) and ImDAA = D′′
AA =
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−1/�A(1 + z2), so that

Im�χjj = D′′
AA[(χ ′

jA)2 − (χ ′′
jA)2] + 2D′

AAχ ′
jAχ ′′

jA

= − (χ ′
jA)2 − (χ ′′

jA)2 − 2zχ ′
jAχ ′′

jA

�A(1 + z2)
. (24)

As a consequence, the real part of the optical conductivity (17)
close to the resonance frequency ωA can be written as19

Re�σ (ω)|ω≈ωA ≈ IA

[
q2

A − 1 + 2qAz

q2
A(1 + z2)

]
, (25)

where we defined the Fano parameter q as

qA = −χ ′
jA(ωA)

χ ′′
jA(ωA)

, (26)

while the prefactor is given by

IA = [χ ′
jA(ωA)]2

ωA�AV
. (27)

As one can see, Eq. (25) reproduces the Fano formula, where
the q parameter controls the asymmetry of the peak with
respect to a standard Lorentzian profile, that is recovered in
the limit of q → ∞. As observed already in Ref. 19, the
derivation of Eqs. (25) and (26) shows that the Fano effect
stems from a correct implementation of the charged-phonon
theory. Therefore, for the sake of simplicity, in the following
we shall regard the phonon properties (intensity and line-shape
asymmetry) arising from this common nature as the “Fano-
Rice” effect. Moreover, the above set of equations provides
a general scheme to calculate microscopically the relevant
parameters that control the shape and the intensity of the
phonon peak, in particular qA and IA, that are fully determined
once that the mixed response function χjA is computed.

Before showing explicitly the calculation of χjA we would
like to make a more direct comparison with the standard Fano
formalism20 that is often quoted in the literature. Following
the original work by Fano,20 the asymmetry parameter q that
measures the interference effect between a discrete phonon
state |φ〉 of energy ω0 and a continuum of electronic states
|ψω〉 can be written as

q =
〈φ|T |i〉 + P

∫
dω′ Vω′ 〈ψω′ |T |i〉

ω0 − ω′

〈ψω0 |T |i〉πVω0

, (28)

where P denotes the principal part of the integral, and
Vω measures the hybridization between the phonon and the
electronic states at the energy ω, Vω = 〈ψω|H |φ〉. Here
〈f |T |i〉 denotes in general the transition amplitude from an
initial state |i〉 and a final state |f 〉. The first term in the
numerator of Eq. (28) represents the response of the bare
phonon state, i.e., the bare dipole of the system under the
lattice distortion, while the second one gives the contribution
coming from the electronic excitations. Note that the relevant
electronic excitations are not restricted to the vicinity of
the phonon frequency ω0 but they involve higher energy
states ω′ as well. In contrast, the denominator depends
solely on the processes at ω = ω0 and it vanishes if there
is no electronic continuum at the phonon energy, so that in
this case q = ∞ and no Fano asymmetry is expected. In
ordinary systems the bare phonon intensity 〈φ|T |i〉 is large,

so that q becomes appreciably small only in the presence
of a considerable electron-phonon coupling Vω0 , and the
observation of a pronounced Fano asymmetry is considered as
a signature of large electron-phonon interactions.33 However,
the case of graphene is radically different: since here the
bare phonon activity is negligible, the main phonon intensity
comes from the particle-hole excitations (Rice effect), and the
Fano asymmetry can be pronounced even in the presence of
a relatively small electron-phonon coupling. In order to show
this more explicitly, we introduce the complex function:

χ (ω) =
∫

dω′ C(ω′)
ω − ω′ + iη

, (29)

where we defined

C(ω) = Vω〈ψω|T |i〉. (30)

For 〈φ|T |i〉 ≈ 0, Eq. (28) can be written as

q = − χ ′(ω0)

χ ′′(ω0)
, (31)

which reduces to Eq. (26) derived above from the charged-
phonon theory. Note that both χ ′ and χ ′′ are proportional
to the electron-phonon matrix element Vω (i.e., g in our
previous notation), so that the strength of the electron-phonon
interaction cancels out in Eq. (31) as well as in (26). As we
shall see below, the response function χjA has exactly the
form of Eq. (29), and we will be able to compute explicitly the
function C(ω).

A few more final observations are in order concerning
Eqs. (25)–(33). First, in contrast to the ordinary case where also
the bare dipole charge of the phonon must be considered, in the
case of graphene the two quantities qA, IA are not independent.
This is again a consequence of a correct implementation of
the charged-phonon effect, i.e., of the fact that in graphene
the optical activity of the phonon is fully borrowed from the
electronic excitations. This also permits us to quantify the
“strength” of a phonon resonance in the optical conductivity
on a more rigorous ground. To this aim, for a given phonon
mode ν, two typical quantities are considered in the literature:
the integrated spectral area

W ′
ν =

∫
dωRe�σ (ω), (32)

and the phonon intensity Wν , as obtained from the Fano-like
fit in Eq. (25) as

Wν = π�νIν. (33)

The quantity Wν is considered to be the “bare” spectral
intensity that the mode would have in the absence of the
Fano interference. It is straightforward to show that these two
quantities are related by the formula

W ′
ν =

(
1 − 1

q2
ν

)
Wν, (34)

so that W ′ → Wν when |qν | → ∞ for a symmetric Lorentzian
profile [Fig. 4(a)].

Both Wν and W ′
ν can be expressed in the common

Fano-charged-phonon framework via the mixed response
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FIG. 4. Sketch of the optical properties of a phonon reso-
nance in different characteristic regimes: (a) positive symmetric
Lorentzian peak [|q| = ∞; |χ ′′

jν(ων)| = 0], where W = W ′; (b) weak
asymmetric Fano profile [ex.: |q| = 5; |χ ′

jν(ων)| = 5|χ ′′
jν(ων)|];

(c) highly asymmetric case [|q| = 1; |χ ′
jν(ων)| = |χ ′′

jν(ων)|], where
the integrated area W ′ = 0 because of the cancellation of positive
and negative spectral regions; (d) negative phonon peak (|q| = 0;
χ ′ ≈ 0), where the “bare” intensity vanishes, W = 0, although a
phonon anomaly is visible in the imaginary part of χ . The total
phonon strength P is the same in all the cases.

function χjν :

Wν = πχ ′2
jν(ων)

ων

(35)

and

W ′
ν = π

[
χ ′2

jν(ων) − χ ′′2
jν (ων)

]
ων

. (36)

It should be however stressed that none of these two
quantities, W , W ′, can provide a satisfactory quantification
of the magnitude of the phonon optical anomaly. For instance,
in the case |qν | ≈ 1, where the phonon peak asymmetry is
strongest and which corresponds to |χ ′

jν(ων)| = |χ ′′
jν(ων)|, we

get W ′
ν = 0 due to the cancellation of positive and negative

spectral regions [Fig. 4(c)]. On the other hand, when χ ′
jν (ων) ≈

0, the spectral properties are characterized by a sizable negative
Lorentzian peak whose intensity is driven by χ ′′

jν(ων) whereas
the estimated bare intensity is vanishingly small, Wν ≈ 0
[Fig. 4(d)].

Both definitions W and W ′ thus fail to describe the actual
magnitude of the optical-phonon resonance independently
of its Fano-like properties. This problem can be solved
however thanks to the microscopical identification of the
optical properties in terms of the mixed response function
χjν . The simple identification of W and W ′ as Wν ∝ χ ′2

jν ,
W ′

ν ∝ χ ′2
jν − χ ′′2

jν suggests us to introduce a strictly positively
defined quantity,

Pν = π
[
χ ′2

jν(ων) + χ ′′2
jν (ων)

]
ων

, (37)

which we refer to as phonon strength. Note that P → 0 only
when both χ ′

jν,χ
′′
jν → 0, i.e., when the phonon features are

indeed vanishingly small. In the following, when discussing
the magnitude of an optical-phonon resonance, we shall
therefore refer to this quantity Pν , which permits us to describe
the actual visibility of a phonon structure independently of its
Fano shape. The robustness of the parameter Pν to characterize
the magnitude of the phonon resonance independently of its
line shape and its Fano properties is demonstrated in Fig. 4
where all the panels were evaluated for fixed phonon strength.

As a last point we would like to stress that it is the mixed
response function χjA, and not the electronic background χjj ,
as was considered in Refs. 15 and 16, that determines the
phonon strength and the asymmetry. As we shall see, this
makes a crucial difference. Indeed, while all the possible
electronic excitations contribute to χjj , only a subset of them
enters into the mixed response function χjA (and χjS in the
case � �= 0), determining in this way the exact selection rules
for the phonon activity in bilayer graphene.

IV. FANO-RICE PROPERTIES IN UNGAPPED BILAYER
GRAPHENE (� = 0)

In the case of unbiased graphene the mixed response
function χjA can be computed analytically in the bare-bubble
approximation, namely,

χjν(iωm) = NsNv

T

N

∑
k,n

Tr[ĵyĜ(k,iωn + iωm)V̂νĜ(k,iωn)],

(38)

where we use in Eq. (38) the bare electronic Green’s functions.
Some additional details of the calculation are given in
Appendix A. Due to the multiband structure of the system, χjA

has the typical structure of a particle-hole Lindhard response
function, with proper coherence factors Cnm

jA weighting the
contributions of the various excitations between the n and m

bands. In particular, using the explicit matrix expressions of
the ĵ and V̂A operators, one gets

χjA(ω) = χ12
jA(ω) + χ13

jA(ω) − χ24
jA(ω) − χ34

jA(ω). (39)

Here n,m are the band indexes and χnm
jA (ω) = πnm

jA (ω) −
πmn

jA (ω), where

πnm
jA (ω) = 1

N

∑
k

Cnm
jA,k

f (Ek,n − μ) − f (Ek,m − μ)

Ek,n − Ek,m + h̄ω + iη
, (40)

and where

Cnm
jA,k = gevNsNv

γ1

4
√

(h̄vk)2 + γ 2
1

(41)

for (n,m) = (1,2),(1,3),(2,4),(3.4), and zero otherwise. In
Eq. (40) μ represents the chemical potential, and η is a
phenomenological parameter that accounts for the damping
in the electronic states, so that the clean limit corresponds to
η → 0.34 Note that, once we identify

C(ω) = 1

N

∑
m,n

∑
k

Cnm
jA,kδ(Ek,n − Ek,m + h̄ω)

× [f (Ek,n − μ) − f (Ek,m − μ)], (42)

the function χjA(ω) can be written exactly as in Eq. (29) above,
with the particle-hole energy difference ω′ = Ek,n − Ek,m
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playing the role of the electronic continuum in the Fano theory.
Thus our approach allows one to identify the optical intensity
of the phonon peaks and their Fano parameters in terms of the
real and imaginary parts of a specific response function, that
can be calculated using the standard diagrammatic theory. This
means in particular that we can determine (i) which phonon
is coupled to the current, and (ii) which electronic excitations
couple to each phonon mode.

All these elements can be quantified in an analytical way
for the A phonon in the case of no gap. First of all, note that
for μ = 0 the term χ13

jA cancels precisely with χ24
jA, whereas

χ12
jA, χ34

jA are both vanishing because particle-hole excitations
between completely full or empty bands are not allowed. As
a consequence χjA(ω) = 0, implying that the intensity of the
A mode, although it has the correct symmetry, vanishes in
undoped bilayer graphene.35 As we shall see, this property
holds true even in the presence of an interlayer difference
potential �.

The total mixed response function χjA(ω) as well as its
single contributions χnm

jA (ω) can be easily evaluated in the
clean limit, η = 0, and in the linear approximation for the band
dispersion, corresponding to the Hamiltonian given by Eq. (7).
Details of the computation are also reported in Appendix A. It
is convenient to introduce the dimensionless quantity ξ (ω),

χjA(ω) = Aξ (ω),

where A = geγ S2D
cell/4πh̄2v. At T = 0 we obtain the analytical

expressions

ξ ′(ω) = ln

[
(γ1 + h̄ω)(γ1 − h̄ω + 2|μ|)
(γ1 − h̄ω)(γ1 + h̄ω + 2|μ|)

]

− θ (|μ| − γ1) ln

[
(γ1 + h̄ω)(γ1 + h̄ω − 2|μ|)
(γ1 − h̄ω)(γ1 − h̄ω − 2|μ|)

]

+ 4h̄ω[|μ|θ (γ1 − |μ|) + θ (|μ| − γ1)](
γ 2

1 − h̄2ω2
) , (43)

ξ ′′(ω) = π{θ (h̄|ω| − γ1)θ (h̄|ω| − 2|μ| + γ1)

− θ (h̄|ω| − 2|μ| − γ1) + 2[|μ|θ (γ1 − |μ|)
+ θ (|μ| − γ1)]δ(h̄|ω| − γ1)}. (44)

The real and imaginary parts of χjA(ω) for a representative
case n = 5 × 1012 cm−2 (μ = 0.13 eV) are shown in Fig. 5(a),
whereas in panels (b)–(d) the contribution of the single
interband transitions is also shown. It is interesting to remark
that for |ω| � γ1 + 2|μ| the term Imχ13

jA(ω) cancels exactly
with Imχ24

jA(ω), so that only a limited low-frequency energy
window γ1 � |ω| � γ1 + 2|μ| contributes to the imaginary
part (and hence, via Kramers-Kronig relations, to the real part)
of the mixed response function χjA. This fact guarantees that
the result is valid even if the calculation has been done using
the linearized graphene bands instead of the full periodic band
structure.

According to Eq. (25), the computation of the optical-
phonon spectra requires the evaluation of the quantities (43)
and (44) at the phonon frequency ωA. In order to determine
ωA, one should in principle solve the phonon Dyson’s
equation (22). However, the shift of the renormalized phonon
frequencies ων is only a few meV, which is much smaller than
ω0 ≈ 200 meV, so that we can replace ωA with ω0. In any case,
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the dimensionless response functions ξ (ω) for n = 5 × 1012 cm−2
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spectral weight 2|μ|; see Eq. (44). (b)–(d) Contributions of the single
interband transitions to the total ξ ′′(ω). (e) Sketch of the allowed
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as one can see in Eq. (39), since the low-energy 2–3 interband
transitions are not allowed in χjA, the lowest threshold for the
particle-hole excitations is determined in the clean limit η = 0
by the 1–3 interband transitions with ω > γ1 = 0.39 eV, so
that ImχjA(ωA) = 0. According to Eq. (26) this implies that
the A phonon peak in the clean limit has no Fano asymmetry
(|qA| = ∞), and the bare phonon peak intensity WA (33)
coincides with the integrated area (WA = W ′

A) [see Eq. (32)].
From Eq. (33) we get

WA = πA2

ωAV 3D
ξ ′2(ωA) = λσ0

γ 2
1

h̄ωA
ξ ′2(ωA), (45)

where σ0 = e2/4h̄d ≈ 1816 �−1 cm−1 and λ = (
√

3/π )g2/

(h̄v/a)2 is the dimensionless phonon coupling which, using
the value g = 0.27 eV estimated in Sec. II, results in λ = 6 ×
10−3,12 in agreement with the experimental estimates given in
Refs. 5 and 13. Finally, we obtain that πA2/ωAV 3D = 4.35 ×
103�−1 cm−2.

To elucidate the doping dependence of the optical properties
of the A mode, we show in Fig. 6 the quantities ξ ′(ωA), ξ ′′(ωA)
as functions of the charge doping n, along with the parameters
WA, W ′

A, PA, and qA. As mentioned above, due to the absence
of 2–3 interband transitions, the imaginary part ξ (ω) is zero
at ω = ωA in the clean limit η = 0 and relatively small for
finite η [Fig. 6(b)], so that the spectral weight is dominated
by the real part ξ (ωA). In this context the small contribution
at ω = ωA for finite η coming from the gapped 2–4 and
3–4 interband excitations gives rise to a finite Fano factor
|qA| < ∞ [Fig. 6(f)] but it does not affect sensibly the spectral
weights WA, W ′

A and the spectral strength PA. In particular,
the doping dependence of these latter quantities, in the range n

here considered, is dominated by the 3–4 interband transitions
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[the third term in Eq. (43)], where ξ ′(ωA) ∝ |μ|, so that, for
ξ ′′(ωA) � ξ ′(ωA), WA = W ′

A = PA ∝ [ξ ′(ωA)]2 ∝ |μ|2 ≈ n.
Note also that, although the imaginary part ξ ′′(ωA) does

not contribute to the spectral weights WA, W ′
A, and PA, it

determines the magnitude of the Fano asymmetry factor, as
shown in Fig. 6(f). As mentioned above, this is triggered by
the finite spectral weight in ξ ′′(ωA) due to the broadening
η of the higher-energy transitions. Increasing the charge
concentration n, and hence the chemical potential |μ|, leads to
an overall increase of ξ ′′(ωA) and, since ξ ′(ωA) is related by
the Kramers-Kronig relations to the low-energy part of ξ ′′(ω),
to a similar increase of ξ ′(ωA). The charge-doping dependence
of the magnitude of ξ ′(ωA) and ξ ′′(ωA) is thus similar, making
the Fano factor qA almost independent of n. As we are going
to see in the next section, the situation is different for the
symmetric S mode, when its infrared activity is triggered by a
finite-energy difference � �= 0.

V. FANO-RICE PROPERTIES IN GAPPED (� �= 0)
BILAYER GRAPHENE

In the above section we have addressed the optical proper-
ties of the antisymmetric Eu mode in bilayer graphene in the
absence of any electrostatic potential gradient � between the
two layers. However, in most cases, the gating of the samples
as well as the influence of the substrate give rise to a finite
potential difference between the two layers. In this case, the
antisymmetric A and symmetric S modes depicted in Fig. 1 are
no more eigenvectors of the lattice dynamics although they still
represent a suitable basis to investigate the optical properties
of bilayer graphene. According to Eq. (21) we can distinguish
three different channels responsible for the onset of phonon
peaks in the infrared conductivity: the direct coupling of the

electron current with the A mode, which is already present for
� = 0 [first term of Eq. (21)]; the direct coupling with the
S mode, which is induced by the presence of the gap � and
vanishes for � → 0 [second term of Eq. (21)]; the mixed A-S
mode optical coupling where the incoming light first excites
the A lattice vibrations, which develop a S component due to
the hybridized A-S phonon self-energy, and finally the light is
re-emitted through the coupling of the A mode to the current
[third term of Eq. (21)].

A. Undoped case n = 0, � �= 0

An interesting case to elucidate the role of the gap in
triggering on the S-channel is the undoped case (μ = 0)
where the antisymmetric mode Eu is not involved [χ irr

jA(ω) =
0],35 and the only coupled lattice mode is the symmetric
Eg one induced by the finite �. Such condition has been
experimentally realized in Ref. 14. In Fig. 7(a) we show,
for different values of �, the real and imaginary part of
the dimensionless quantity ξS(ω) = χjS(ω)/A, which rules
the optical properties of the phonon resonance. An important
difference here is that the low-energy interband transitions 2–3,
that were forbidden in χjA, are allowed in the response function
χjS. The imaginary part of ξS(ω) is thus finite at low energies
(limited only by the opening of the optical gap �̃) providing a
finite Fano interference as long as ωS � �̃. The sharp features
in ξ ′′

S (ω) are reflected in peaked structures in the real part ξ ′
S(ω).

In particular, the structure at ω = 0.4–0.5 eV can be associated
with the transitions between bands 2 and 4, with lowest
characteristic energy at ≈ γ1 + �̃/2, whereas the structure at
low energies ω = 0.05–0.2 eV reflects the opening of the
band gap on the transitions 2–3. It is worthwhile to note that,
due to the mexican hat shape of the electronic dispersion, the
lowest energy threshold is not determined by the gap � at the
K point but by the actual optical gap �̃ = �γ1/

√
γ 2

1 + �2

that lies at a finite momentum k at the bottom of the mexican
hat [Fig. 7(b)]. The reduced dimensionality of the electronic
dispersion in these points gives rise to a singular behavior in the
density of states, which is reflected in a corresponding behavior
in the particle-hole excitations in ξ ′′

S (ω). Such peaked structure
in ξ ′′

S (ω) has important consequences also on the real part of
ξS(ω), resulting in a strong peak at ω ≈ �̃. When �̃ ≈ 0.2 eV
(� ≈ 0.233 eV) both ξ ′

S(ω) and ξ ′′
S (ω) are peaked at ω ≈ ωS

and the phonon strength is expected to be strongly enhanced.
This trend, as well as the dependence on � of all the

optical properties of the S phonon peak, is shown in Fig. 8.
For �̃ � ωS ≈ 0.2 eV the phonon strength PS is increasing
with � signalizing the switch on of the symmetric Eg mode.
Such increase of the strength is mainly driven by ξ ′′(ωS) while
ξ ′(ωS) ≈ 0. This results in a negative peak where WS ≈ 0 and
a negative integrate area W ′

S < 0. The vanishing of ξ ′(ωS)
results also in a Fano factor qS ≈ 0, which indeed corresponds
to a negative symmetric shape.

B. Doped case n �= 0, � �= 0

Unless using a double-gate device,14 where the top and
bottom gates are tuned to set the doping or the gap to zero, in
single gated devices the gating induces at the same time as an
inversion symmetry breaking and a finite doping. In this most
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common case, both the Eu and Eg modes are simultaneously
IR active. In order to investigate theoretically the optical
properties of the phonon resonances, one has to employ the full
Eq. (21), where both modes are present. The phonon spectral
properties are then much more complex than in the � = 0 case.
Not only so we have different phonon channels contributing
to the total features, but also the phonon propagator of
each channel [e.g., the DSS(ω) propagator], under particular
conditions, can develop a double-pole structure, as discussed
in Refs. 5, 23, 24, and 32 in the context of the Raman
spectroscopy.

In general, we can attribute a different role to the several
quantities appearing in Eq. (21). Here the mixed response
functions χjν are mainly responsible for the magnitude and
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the Fano line shape of the phonon features, while the pole
structure of the phonon propagators Dνν ′ is associated with the
frequencies of the phonon resonances and to their linewidth.
Keeping in mind this distinction, and since the frequency
structure of χjν(ω) varies over electronic energy scales while
the phonon self-energy gives rise to a splitting of the S
and A mode frequencies of a few cm−1, we can in a very
good approximation evaluate the functions χjν(ω) at the bare
phonon frequency ω ≈ ω0. In this context, the relevance of
each phonon mode in the infrared spectroscopy is ruled by the
characteristic phonon strength of the corresponding channel,
i.e., PA = π |χjA(ω0)|2/ω0V for the antisymmetric Eu mode,
associated with the first term on the right-hand side (rhs) of
Eq. (21), and PS = π |χjS(ω0)|2/ω0V for the symmetric Eg

mode, associated with the second term on the rhs of Eq. (21).
It is also possible to define a mixed channel, related with the
third term on the rhs of Eq. (21), characterized by a phonon
strength PAS = π

√|χjA(ω0)χS†j (ω0)|/ω0V . This channel is
however quite weak in most cases,19 and we neglect it in the
following discussion.

The comparison of the phonon strengths associated with
different A and S phonon modes is shown in Fig. 9, where we
plot the relative intensity RAS = (PA − PS)/(PA + PS) as a
function of the chemical potential μ (doping) and the band gap
� induced by the vertical electric field. As discussed above,
PA is essentially driven by the doping, whereas PS is induced
by the gap �. According to the relative position in the μ vs �

phase diagram, we can thus predict one mode to be dominant
with respect to the other one. A “phonon switching,’ namely
the switch from the dominance of one phonon mode to another
mode, is possible as a function of the gate voltage. In Fig. 9 we
also show the location in the μ-� space of the experimental
available data from Refs. 13 and 14. While the data of Ref. 14,
in the double-gated device, were mainly collected along the
neutral line μ = 0, the optical conductivity measurements
of Ref. 13 in the single-gate geometry span a much wider
region, going from regions where the antisymmetric mode Eu

is expected to dominate to regions where the optical features
can be attributed mainly to the symmetric mode Eg . The actual
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evidence of such theoretically predicted phonon switching in
the experimental data was discussed in Ref. 19, where we refer
the reader for more details.

One should underline that the phonon switching is not
directly related to the appearing of a double-peak struc-
ture in the optical conductivity, as observed in Raman
spectroscopy.5,23,24,32 What we are describing here is the
dominant intensity of one phonon with respect to the other
one, in other words, which phonon mode is most coupled to
the light. This information is encoded in the mixed response
function χjν which describes the coupling of the light with
the mode ν. In this respect, as shown in Fig. 9, in bilayer
graphene the two channels are to a good extent mutually
exclusive. A different matter is the possibility, within a given
phonon channel, to develop a two-peak phenomenology. This
issue is related to the presence of a large off-diagonal phonon
self-energy χA,S of the same order of the diagonal phonon
self-energies χA,A, χS,S in the 2 × 2 space of the phonon modes
ν = A, S. In this respect, since the phonon self-energy is a
quantity which is shared in both Raman and IR spectroscopy,
we expect that phonon features in optical conductivity can
develop double-peak structures in the same regions where
the Raman spectroscopy sees them. Things are however more
complicated in the optical conductivity case since, as we show
in Sec. VII, Raman spectroscopy in bilayer graphene is
dominated only by the S channel. On the other hand, in the
optical conductivity, we expect that the condition χA,S �= 0,
ruling the double-peak features would arise in the same phase
space where the mixed channel PAS [second line in Eq. (21)]
is of the order of PA, PS. In this situation spectral interferences
between the different channels can occur making the scenario
more complex than in Raman spectroscopy.

VI. FULL TIGHT-BINDING MODEL

The simplified model considering only the leading tight-
binding terms γ0 and γ1 has some significant limitations. For
example, within this model the intensity of the IR active
Eu drops exactly to zero in the undoped limit μ → 0. The
generalization of this model to bulk graphite would predict

thus no IR activity at all, despite the clear evidence of a phonon
resonance reported already in the 1970s.36,37 As a matter of
fact, the evidence of such phonon intensity in graphite was
reconciled with the charged-phonon theory in Ref. 21 where it
was shown that the inclusion of higher-order tight-binding
terms, in particular of the ones breaking the particle-hole
symmetry, is responsible for the observed phonon activity.
It is thus interesting to investigate to which extent these
higher-order tight-binding terms can affect the results for the
bilayer graphene.

We address this issue by including explicitly in the
Hamiltonian of bilayer graphene the higher-order tight-binding
hoppings γ3, γ4 as well as the crystal field δ which differentiate
the atoms B1, A2 from the atoms A1, B2. Close to the K point,
we can write

Ĥk =

⎛
⎜⎜⎜⎝

�/2 vπ− v4π− v3π+
vπ+ δ + �/2 γ1 v4π−
v4π+ γ1 δ − �/2 vπ−
v3π− v4π+ vπ+ −�/2

⎞
⎟⎟⎟⎠ , (46)

where vi = γi/γ0. We consider here typical values of γ3 =
0.29 eV, γ4 = −0.13 eV, and δ = 0.022 eV.38 We evaluate
consequently also the current operator

ĵk,y = − e

h̄

d

dky

Ĥk

= −evÎ (σ̂y) − ev4σ̂y(Î ) + ev3
σ̂x(σ̂y) + σ̂y(σ̂x)

2
, (47)

and the electron-phonon scattering matrices

V̂A = igσ̂z(σ̂x) + ig4σ̂x(σ̂z), (48)

V̂S = igÎ (σ̂x) − ig3
σ̂x(σ̂x) − σ̂y(σ̂y)

2
. (49)

The terms g3, g4 represent the electron-phonon coupling
associated respectively with the hopping terms γ3 and γ4 and
they can be related to the corresponding deformation potentials
which have been recently evaluated by DFT calculations.39 We
get namely g3 = 0.033 eV and g4 = 0.018 eV.

As two representative limits, we show in Figs. 10(a) and
10(b) the phonon strength PA and the Fano parameter qA for
the Eu mode in the ungapped case as functions of the doping
n, and in Figs. 10(c) and 10(d) the phonon strength PS and
the Fano parameter qS for the Eg mode in the undoped case
as functions of the electric field parametrized by the gap �

at the K point. As found for bulk graphite in Ref. 21, a
finite phonon strength PA ≈ 0.62 × 103 �−1 cm−2 [weakly
visible on the scale of Fig. 10(a)] is now triggered by the
higher-order tight-binding terms at the neutral point. However,
apart from a slight asymmetry for electron and hole doping,
the inclusion of such tight-binding terms does not change
qualitatively the results at finite doping, with a roughly linear
increasing of the phonon strength PA as function of |n|. In
addition, such residual phonon strength PA at the neutrality
point is easily overwhelmed in gated systems by the presence
of the symmetric Eg mode with PS � PA [Fig. 10(c)]. The
� dependence of the optical properties of such mode (phonon
strength PS, Fano parameter qS) is also barely affected by the
presence of the higher-order tight-binding terms, so that we
can conclude that the scenario presented in Secs. IV and V is
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FIG. 10. (Color online) Phonon strength PA (a) and Fano param-
eter qA (b) for the Eu mode as functions of doping n for � = 0
including all the relevant tight-binding parameters (black solid line)
and using the simple γ0-γ1 model of Sec. IV (red dashed line), with
T = 10 K and η = 20 meV. (c),(d) Same quantities PS, qS for the Eg

mode at n = 0 as functions of the gap �.

generally robust in realistic materials against the inclusion
of higher-order tight-binding terms, except in the case of
ungated and undoped bilayer graphene, as it could be relevant
in suspended samples.

VII. CHARGED PHONON THEORY FOR THE
RAMAN RESPONSE

In the previous sections we have outlined in detail how
a quantitative implementation of the charged-phonon theory
gives rise in the infrared optical spectroscopy of bilayer
graphene to a phonon intensity and to an asymmetric Fano-like
shape for the A mode as well as for the S mode once this latter
is turned on by the interlayer potential. In particular, such
analysis shows that for gate potential Vg close to the charged
neutrality point, the negative phonon peak can been attributed
to the S mode with a phonon activity strongly dependent on the
gate voltage Vg and with a strong Fano character with qS ≈ 0,
induced by the interference with the low-energy 2–3 interband
particle-hole excitations.

One can wonder why the same S mode, under the same con-
ditions (namely tuning charge concentration and band gap �),
does not present in the Raman response any significant Fano
asymmetry and strong dependence of the phonon intensity
upon Vg .6,7,9 In this section we show that this different behavior
for the infrared and Raman spectroscopy can be naturally
explained within the context of the charged-phonon theory.

In our analysis we focus on the possible changes in the
Raman features of the phonon resonances at ∼1590 cm−1 as
functions the charge doping and the band gap, i.e., quantities
that typically affect only the low-energy excitations close to
the Fermi level. We do not address the possible dependence
of the phonon intensity on the external laser energy.40,41 We
also assume a relatively small gate-induced doping, so that
the chemical potential is much less than the laser energy, in a
region where the absolute Raman intensity of the phonon peak
at ∼1590 cm−1 is constant.10 Within this context, we employ
the effective-mass approximation,42 when the only relevant

quantity is the Raman shift ω = ωin − ωout, of the order of
the phonon energy, ω ≈ ω0. References 40 and 41 showed
also how the main electronic transitions responsible for the
phonon intensity were associated with high-energy processes,
of the order of the laser energy ωin ≈ 1 eV or of the order of
the π bandwidth W ≈ 6–7 eV, in any case much larger than
the phonon energy scale. As we shall see, we will recover this
result in our simplified scheme and we will show how it can
explain the different phenomenology of Raman spectroscopy
with respect to the infrared spectroscopy. For simplicity we
consider unpolarized isotropic Raman scattering. The Raman
intensity I (ω) can be related to the imaginary part of the Raman
response function,42 namely

I (ω) = − 1

π
[1 + b(ω/T )]ImχRM(ω), (50)

where b(x) = 1/[exp(x) − 1] is the Bose-Einstein function
and χRM(ω) is the analytical continuation to the real frequency
axis of the Raman response function χRM(iωm), whose explicit
definition and derivation are given in Appendix B. Just as in
the case of the optical conductivity, the irreducible part of
χRM(ω) provides the electronic Raman background, which is
proportional to the current-current response function involved
in the optical conductivity. In a similar way, within the charged-
phonon theory, the bubble diagrams mediated by a phonon
propagator, as in Fig. 2(b), are associated with the onset of the
phonon peaks in the Raman response. In particular, we can
write, for � �= 0,

�χRM(ω) = χγ S(ω)DSS(ω)χS†γ (ω)

+χγ A(ω)DAA(ω)χA†γ (ω)

+ [χγ S(ω)DSA(ω)χA†γ (ω) + H.c.], (51)

where χγν(ω) are Raman mixed response functions involving
one Raman vertex γ , described by the effective-mass approxi-
mation, and one electron-phonon scattering operator. Explicit
expressions for the Raman vertices for different polarizations
are given in Appendix B. It is worthwhile to point out that
close to the K point the Raman vertex scattering operator for
the xx polarization involved in Eq. (51) reads

γ̂ xx
k ∝ Î (σ̂x) ∝ iV̂S. (52)

This observation permits us to relate the Raman spectroscopy
in the effective-mass approximation to the response functions
previously discussed. In particular, using the relation (52),
we can relate the Raman mixed response functions to the
phonon self-energy. We obtain for instance χγ S(ω) ∝ χSS(ω)
and χγ A(ω) ∝ χSA(ω). Just as in the infrared response, also
in this case the Raman spectral strength of each mode will be
P Raman

ν ∝ |χγν(ων)|2 and the Fano asymmetry factor qRaman
ν =

−χ ′
γ ν(ων)/χ ′′

γ ν(ων).
A crucial difference with respect to the infrared spec-

troscopy is the different dependence of the Raman mixed
response functions χγν on the high-energy interband transi-
tions when compared to the infrared response functions χjν .
One should keep in mind that the linear Dirac-like dispersion
ε = h̄v|k| of the single-layer graphene extends only up to
3–5 eV. However, as we saw in Sec. IV, in the clean limit and
in the absence of the gap � the imaginary part of χjA(ω), and
hence also the real part due to the Kramers-Kronig relations,
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are uniquely determined by low-energy interband transitions
γ � |ω| � γ + 2|μ|, so that the high-energy cutoff Ec does
not play any role. One can see that such results hold true also
for χjS(ω) and for generic finite η and �, in a sense that that
the imaginary part of the infrared mixed response functions
χjν(ω) is not divergent for ω → ∞ so that the high-energy
cutoff Ec can be safely set to infinity.

The situation is different when the Raman response function
is considered. In this case, using Eq. (52), we get χγ S ∝ χSS

and χγ A ∝ χSA. The function χSS(ω), which corresponds to
the phonon self-energy for the symmetric Eg mode, has
been widely analyzed in the literature.12,23,24 In particular, its
imaginary part increases linearly at high energy, χ ′′

SS(ω) ∼ ω.
As a consequence, from the Kramers-Kronig relations, the
magnitude of the real part of χSS(ω) is dominated by the high-
energy processes, i.e., by high-energy cutoff Ec, χ ′

SS(ω) ∼ Ec.
On a physical ground, this cutoff Ec can be identified with the
π bandwidth W or with the highest energy ωin above which
the effective-mass approximation breaks down.

From a careful inspection, one can see that both the
real and imaginary parts of almost all the mixed response
functions χγ,ν are only weakly dependent on the high-
energy cutoff Ec. The only exception is the real part of the
Raman coupling with the S mode, Reχγ,S, which scales with
Ec. Since this is the highest energy scale involved in the
system, we have χ ′

γ S � χ ′′
γ S, χ ′

γ A, χ ′′
γ A. As a consequence

we see that the phonon Raman spectroscopy is dominated
by direct coupling of the Raman scattering operator with the
Eg symmetric mode [first line of Eq. (51)], whereas other
channels involving the Eu are marginal, independent of the
charge doping level or of the interlayer potential difference
�. Other interesting consequences: (i) since χ ′

γ S � χ ′′
γ S, the

Fano factor for the dominant S channel results in |qRaman
S | =

|χ ′
γ S(ωS)/χ ′′

γ S(ωS)| � 1 and the Raman phonon peaks are
expected to be positive and symmetric, in agreement with the
experiments; (ii) the magnitude of the Raman phonon strength
P Raman

S ∝ [χ ′
γ S]2 is mainly dominated by the energy cutoff

Ec, so that it does not depend significantly on the low-energy
features related to the charge doping or to the opening of the
gap �, also in agreement with the experimental observations.

Note that the fact that the phonon Raman response is
dominated by the direct coupling of polarizability to the S
mode does not exclude that a double-peak structure could
be observed. Indeed, as we saw in Sec. V, under suitable
conditions the phonon propagator DSS(ω) itself, as well as
DAA(ω), can develop a double-peak structure as a consequence
of the phonon-modes hybridization triggered by the mixed
phonon self-energy χAS.5,23,24,32

VIII. CONCLUSIONS

In this paper we have provided a comprehensive derivation
of the charged-phonon theory applied to investigate the optical
properties of the phonon peaks in the optical conductivity
of bilayer graphene. The origin of the phonon activity and
its relation with the occurrence of a Fano effect have been
elucidated. The dependence of these properties on the tunable
microscopical parameters, i.e., the doping and the band gap
induced by an external gate voltage, has been discussed in
detail. We have also compared the charged-phonon theory

in the infrared and Raman spectroscopy, accounting for the
different phenomenology of the phonon peaks in these two
different optical probes.

The theory presented here provides a suitable tool to charac-
terize quantitatively bilayer graphene in terms of the intensity
and Fano asymmetry of the infrared phonon peaks. Further fu-
ture developments of the present analysis could investigate the
dependence of the phonon optical properties on the different
symmetry breakings,43–50 in order to provide a fingerprint for
the possible underlying instabilities. The microscopical char-
acterization of the phonon optical properties also sheds light
on the underlying physics of the electron-phonon interaction.
While the present work was focused on bilayer graphene, as
the simplest graphitic system with infrared-active modes, the
theory presented here can be generalized in a straightforward
way to multilayer graphene22 and to bulk graphite.21

The general scheme discussed in this work to investigate
within a microscopic many-body approach the Fano effect
can be applied, with the due modifications, also to different
classes of materials. One remarkable example is provided by
layered systems with different atomic species in the units
cell, for instance MoS2, Bi2Se3, where phonon anomalies
have been detected in infrared and Raman spectroscopy.51,52 A
second interesting case is the As phonon mode in the pnictide
Ba(Fe1−xCox)2As2, which displays a concomitant presence
of intensity variation and asymmetry as a function of doping
and/or temperature, in particular across the magnetostructural
transition.53 In all these cases the understanding of the
phonon anomalies can shed new light on the underlying
bulk electronic structure. In this sense phonon spectroscopy
can represent a powerful and alternative tool to investigate
electronic excitations also in correlated materials, provided
that a correct implementation of the Fano-Rice theory is used to
relate the phonon and electronic response, taking into account
the microscopic selection rules.
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APPENDIX A: ANALYTICAL RESULTS FOR THE
CHARGED-PHONON THEORY OF IR RESPONSE

IN UNGAPPED BILAYER GRAPHENE

In this appendix we provide the analytical derivation of the
optical properties of the A mode in the absence of electrostatic
bias between the layers, � = 0. To this aim it is convenient,
for the simple tight-binding model with γ0-γ1 considered, and
in the linear expansion close to the K point, to employ the
cylindric coordinates, where the Hamiltonian reads

Ĥk =

⎛
⎜⎜⎜⎝

�/2 ε−
k 0 0

ε+
k �/2 γ1 0

0 γ1 −�/2 ε−
k

0 0 ε+
k −�/2

⎞
⎟⎟⎟⎠ , (A1)

where ε±
k = εke±iθk ε = h̄v|k|, and θk = arctan(ky/kx).
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The Hamiltonian is diagonalized by the transformation

˜̂Hk = M̂−1
k ĤkM̂k = Êk, (A2)

where

Êk =

⎛
⎜⎜⎜⎝

E1k 0 0 0

0 E2k 0 0

0 0 E3k 0

0 0 0 E4k

⎞
⎟⎟⎟⎠ (A3)

[band labels according Fig. 1(b)],

M̂k = R̂−1
θk

F̂k, (A4)

R̂θ =

⎛
⎜⎜⎜⎝

eiθk 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e−iθk

⎞
⎟⎟⎟⎠ , (A5)

F̂k = 1√
2

⎛
⎜⎜⎜⎝

−sk −ck ck sk

ck sk sk ck

−ck sk −sk ck

sk −ck −ck sk

⎞
⎟⎟⎟⎠ . (A6)

Here

sk = 1√
2

√√√√1 − γ1

2
√

γ 2
1 /4 + ε2

k

, (A7)

ck = 1√
2

√√√√1 + γ1

2
√

γ 2
1 /4 + ε2

k

, (A8)

so that

2skck = |εk|√
γ 2

1 /4 + ε2
k

. (A9)

In the diagonalized basis we have

˜̂jk,y = M̂−1
k ĵk,yM̂k

= −ev

⎛
⎜⎜⎜⎝

−Sksθ −iCkcθ Cksθ iSkcθ

iCkcθ −Sksθ iSkcθ −Cksθ

Cksθ −iSkcθ Sksθ −iCkcθ

−iSkcθ −Cksθ iCkcθ Sksθ

⎞
⎟⎟⎟⎠ , (A10)

where Sk = 2skck , Ck = c2
k − s2

k , sθ = sin θ , cθ = cos θ .
In a similar way we obtain

˜̂Vk,A = ig

⎛
⎜⎜⎜⎝

0 −cθ −isθ 0

−cθ 0 0 −isθ

isθ 0 0 cθ

0 isθ cθ 0

⎞
⎟⎟⎟⎠ , (A11)

˜̂Vk,S = ig

⎛
⎜⎜⎜⎝

−Skcθ iCksθ Ckcθ −iSksθ

−iCksθ −Skcθ −iSksθ −Ckcθ

Ckcθ iSksθ Sk cθ iCksθ

iSksθ −Ckcθ −iCksθ Skcθ

⎞
⎟⎟⎟⎠ . (A12)

Note that the interband transitions between bands 1–4 and
2–3 are missing in the electron-phonon matrix (A11) for the A

mode, so that these interband transitions will not be operative
in any response function involving such electron-phonon
coupling, like for instance the mixed response function for
the infrared activity as well as the phonon self-energy.

The mixed response function reads in the diagonalized basis
as

χjν(iωm) = NsNv

T

N

∑
k,n

Tr[ ˜̂jk,y ĝ(k,iωn + iωm)

× ˜̂Vk,ν ĝ(k,iωn)], (A13)

where ĝ(k,iωn) = 1/[(ih̄ωn + μ)Î − ˜̂Hk], is the electronic
Green’s function in the diagonalized basis.

Using now Eqs. (A3), (A10), (A11), (A12), we can easily
obtain

χjν(iωm) = 1

N

∑
k,α,β

C
αβ

jν,k�
αβ

k (iωm), (A14)

where

C
αβ

jν,k = NsNv( ˜̂jk,y)αβ( ˜̂Vk,ν)βα, (A15)

and

�
αβ

k (iωm) = f (Ek,α − μ) − f (Ek,β − μ)

Ek,α − Ek,β + h̄iωm

. (A16)

Note that the function π
αβ

k (iωm) does not depend, in cylindrical
coordinates, on the angle θk but only on the momentum mod-
ulus k = |k|. Writing

∑
k = ∫

2πkdk
∫

dθk/2π , the quantity
C

αβ

jν,k can be replaced thus with its average over the angle

θk , C
αβ

jν,k → C
αβ

jν,k = 〈Cαβ

jν,k〉θk
. Using (A11), (A12), it is

now easy to see that C
αβ

jS,k averages out, whereas |Cαβ

jA,k| =
gevNsNvγ1/4

√
(h̄vk)2 + γ 2

1 , which recovers Eq. (41). The
relative change of sign between different interband contribu-
tions stems from ( ˜̂jk,y)αβ( ˜̂Vk,ν)βα = −( ˜̂jk,y)βα( ˜̂Vk,ν)αβ .

APPENDIX B: CHARGED-PHONON THEORY FOR
RAMAN SPECTROSCOPY

In this appendix we provide a brief derivation of the
charged-phonon theory as applied to the case of Raman
spectroscopy within the effective-mass approximation. To this
end it is useful to recall the tight-binding Hamiltonian which
can be written as

Ĥp =

⎛
⎜⎜⎜⎝

�/2 γ0f
∗
p 0 0

γ0fp �/2 γ1 0

0 γ1 −�/2 γ0f
∗
p

0 0 γ0fp −�/2

⎞
⎟⎟⎟⎠ , (B1)

where

fp = e−ipxa/
√

3 + 2eipxa/2
√

3 cos(pya/2). (B2)

Close to the K = (4π/3a,0) point we can write p = K + k,
and by expanding for small k we obtain (7). The Raman vertex
γ̂ (φ,φ′) for a particular polarization geometry can be now
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defined as γ (φ,φ′) = (1/N)
∑

k,σ �
†
k,σ γ̂k(φ,φ′)�k,σ where

γ̂k = (ei · ∇k)(eo · ∇k)Ĥk

= cos φ cos φ′γ̂ xx
k + sin φ sin φ′γ̂ yy

k

+ cos φ sin φ′γ̂ yx

k + cos φ sin φ′γ̂ xy

k , (B3)

where ei = (cos φ, sin φ) and eo = (cos φ′, sin φ′) are the
directions of the incoming and outcoming photon, respectively,
and γ̂

ij

k = ∂2Ĥk/∂ki∂kj . Using Eq. (B1) we obtain, close to
the K point,

γ̂ xx
k (K) = −γ̂

yy

k (K) = Î (σ̂x)/4a2, (B4)

γ̂
xy

k (K) = γ̂
yx

k (K) = −Î (σ̂y)/4a2, (B5)

while, at the K ′ point,

γ̂ xx
k (K′) = −γ̂

yy

k (K′) = Î (σ̂x)/4a2, (B6)

γ̂
xy

k (K′) = γ̂
yx

k (K′) = Î (σ̂y)/4a2. (B7)

We can write the Raman (RM) response function in the
Matsubara imaginary time for generic polarization as

χRM(τ,φ,φ′) = −〈Tτγ (τ,φ,φ′)γ (φ,φ′)〉. (B8)

For unpolarized Raman scattering we have to average over φ

and φ′, χRM(iωm) = ∫
dφ/(2π )dφ′/(2π )χRM(iωm,φ,φ′). We

get then

χRM(iωm) = χγ xxγ xx (iωm) + χγ yyγ yy (iωm)

+χγ xyγ xy (iωm) + χγ yxγ yx (iωm)

=
∑
i=x,y

χγ iiγ ii (iωm) +
∑
i=x,y

χγ iī γ iī (iωm), (B9)

where we used the shorthand notation x̄ = y, ȳ = x.
For the electronic Raman scattering, taking also in account

the different K and K ′ points, these four contributions are

degenerate and we get on the real frequency axis

χRM(ω) = 4χγ xxγ xx (ω). (B10)

Note that, since γ̂ xx
k ∝ Î (σ̂x) ∝ ĵk,x , this result explicitly

shows also that the electronic Raman background is directly
related to the electronic optical conductivity.

Let us focus now on the onset of phononic peaks within
the framework of the Fano-Rice theory. For a generic case,
for finite charge concentration n and finite gap �, we can
write

�χRM(ω) =
∑
i=x,y

∑
νν ′

χγ iiν(ω)Dνν ′(ω)χν ′γ ii (ω)

+
∑
i=x,y

χγ iī ν(ω)Dνν ′(ω)χν ′γ iī (ω), (B11)

where the label ν specifies at the same time the A vs S phonon
branch and the x vs y direction of the lattice displacement.
The notation ī denotes in addition ī = y if i = x and ī = x if
i = y.

Expanding explicitly the sums over i, ī, ν, and ν ′ in
Eq. (B11), as well as the summation over the different K

and K ′ points of the Brillouin zone, and taking into account
the degeneracies γ̂ xx

k = −γ̂
yy

k , γ̂
xy

k = γ̂
yx

k , DSxSx
= DSySy

,
DAxAx

= DAyAy
, DAxSx

= DAySy
, DSxAx

= DSyAy
, after a few

straightforward steps, we end up with

�χRM(ω) = χγ S(ω)DSS(ω)χS†γ (ω)

+χγ A(ω)DAA(ω)χA†γ (ω)

+χγ S(ω)DSA(ω)χA†γ (ω)

+χγ A(ω)DAS(ω)χS†γ (ω), (B12)

where, due to the degeneracies of the systems, the Raman
vertex operators and the electron-phonon vertex operators have
been chosen for simplicity in Eq. (B12) as γ ≡ γ xx , S = Sx ,
A = Ax .
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