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Using a three-dimensional microscopic lattice model of a strong topological insulator (TI) we study potential
impurities and vacancies in surface, subsurface, and bulk positions. For all impurity locations we find impurity-
induced resonance states with energy proportional to the inverse of the impurity strength, although the impurity
strength needed for a low-energy resonance state increases with the depth of the impurity. For strong impurities
and vacancies as deep as 15 layers into the material, resonance peaks will appear at and around the Dirac point
in the surface energy spectrum, splitting the original Dirac point into two nodes located off-center. Furthermore,
we study vacancy clusters buried deep inside the bulk and find zero-energy resonance states for both single and
multiple-site vacancies. Only fully symmetric multiple-site vacancy clusters show resonance states expelled from
the bulk gap.
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I. INTRODUCTION

Topological insulators (TIs) are a new class of quantum
matter, where strong spin-orbit coupling results in a bulk
energy gap but gapless metallic surface states.1,2 In strong
TIs, a topological invariant associated with the bulk band
structure guarantees the existence of a single (or odd number)
surface state with characteristic linear Dirac energy dispersion,
where the electron spin is locked to the momentum.3 The
surface state is topologically protected against any time-
reversal invariant perturbations. This is intimately connected
with the absence of backscattering for nonmagnetic impurities
since a spin flip is required for 180◦ backscattering. The
lack of backscattering was established theoretically early on
within a two-dimensional (2D) continuum model for the
surface state4–6 and later also confirmed in experiments.7–9

The same 2D surface continuum model finds that, while a
local impurity-induced resonance state exists for a potential
impurity, its weight diminish as the energy approaches the
Dirac point for unitary scatterers and the Dirac point is left
unperturbed.10

Surface-only models, however, ignore the finite bulk gap,
thus neglecting bulk-assisted processes. Using a microscopic
3D lattice model for a strong TI we recently established that a
strong impurity on the surface gives rise to a large resonance
peak in the local density of states (LDOS) at and around the
Dirac point.11 Consequently, the topological protection of the
Dirac point is destroyed close to the impurity and it splits into
two nodes that move off-center. Recent scanning tunneling
spectroscopy (STS) results12 on Bi2Si3 have confirmed the
existence of such strong resonance peaks at and around the
Dirac point. Other experimental data has also shown how
localized bound states at defects13 and steps14 do not agree
with results from a purely 2D surface continuum model.

These recent experiments warrant a close investigation of
impurities which might give rise to surface resonance states.
In particular, since the surface state extends many layers into
the material,11 even subsurface impurities might significantly

affect the LDOS measured on the surface. In the opposite
limit, the properties of deep subsurface impurities ought to be
closely connected to those of bulk impurities. Both potential
impurities15 and finite sized holes16 in the bulk of a 3D TI have
previously been treated within a continuum theory focusing
on in-gap bound states. In the case of a finite sized hole, it
constitutes an interior surface and will thus necessarily host a
surface state in a TI. As the hole radius shrinks, the surface
state is transformed into bound states, which are expelled
towards the bulk bands due to the finite hole size. This is in
striking contrast to surface single-site vacancies which produce
impurity-bound states at the Dirac point.

In this article we present a comprehensive microscopic
study of impurities positioned all the way from the surface to
the bulk. In particular, we address the influence of subsurface
impurities on the surface LDOS, how bulk impurities behave
on a microscopic scale, and we show how the behavior of
impurities in these two opposite limits are intimately con-
nected. More specifically we find that (i) subsurface impurities
and vacancies as far as 15 layers into the material create a
nondispersive resonance peak in the surface LDOS. Thus, even
deep subsurface impurities will affect the low-energy region of
the surface state spectrum and be visible in STS measurements.
(ii) The resonance energy Eres is always inversely proportional
to the impurity strength U . However, for the resonance state
to enter the low-energy region, the impurity strength needs
to be stronger the deeper down the impurity is buried. (iii)
Both impurities and vacancies in the bulk produce in-gap
resonance states, connecting smoothly with the behavior of
surface impurities and vacancies. These low-energy states will
give rise to noninsulating bulk transport. (iv) Fully symmetric
multiple-site vacancy clusters have no in-gap resonance peaks,
in agreement with continuum results.16 However, any small
deviation from full symmetry produces low-lying resonance
peaks. Any realistic microscopically created hole in a 3D TI
will therefore have a resonance peak around E = 0, mimicking
the results of a single vacancy instead of that of a finite size
continuum hole.
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FIG. 1. (Color online) (a) Stacking structure for the (111)
direction in the diamond lattice. First and second A layers (filled
circles), third and fourth B layers (crosses), fifth and sixth C
layers (squares). In-plane nearest neighbor distance is a = 1. Layer
separations are

√
3a/

√
8 for AA layers and a/

√
24 for AB layers. (b)

Five-site nearest neighbor cluster with center site (black) and nearest
neighbor sites (blue). (c) Eleven-site nearest neighbor and in-plane
next-nearest neighbor cluster with next-nearest neighbor sites (cyan).
(d) Seventeen-site next-nearest neighbor cluster.

The rest of the article is organized as follows. In Sec. II
we introduce a general microscopic lattice model for studying
defects and vacancies in a strong 3D TI. In Sec. III A we
discuss the surface LDOS and impurity-induced resonance
peaks for surface and subsurface impurities and vacancies.
In particular, we focus on the dependence of the resonance
energy on layer position and impurity strength. In Sec. III B
we discuss multiple-site bulk vacancy clusters. We conclude in
Sec. IV by summarizing our results and discussing experimen-
tal consequences.

II. MODEL

We create a strong TI by using a four band s-orbital
tight-binding scheme on the diamond lattice with spin-orbit
coupling:3

H0 = t
∑

〈i,j〉
c
†
i cj + μ

∑

i

c
†
i cj

+ 4iλ

a2

∑

〈〈i,j〉〉
c
†
i s · (

d
1
ij

× d2
ij

)
cj . (1)

Here ci is the annihilation operator on site i where we, for
simplicity, have suppressed the spin index. Furthermore, t is
the nearest neighbor hopping, μ = 0 is the chemical potential,
λ = 0.3t is the next-nearest neighbor spin-orbit coupling,

√
2a

is the cubic cell size, s is the Pauli spin matrices, and d1,2
ij are

the two bond vectors connecting next-nearest neighbor sites
i and j . By further distorting the hopping amplitude to 1.25t

along one of the nearest neighbor directions not parallel to the
(111) direction, this system becomes a strong TI, with a single
surface Dirac cone.3 In order to access a surface we create a
slab of Eq. (1) along the (111) direction, see Fig. 1(a). We
are mainly studying slabs with ABBCC...AABBC stacking
terminations, hereafter labeled AB termination, but will also
compare these results with AABBCC...AABBCC terminated
slabs, labeled AA termination, in order to generalize our
results. We choose an energy scale such that the slope of the
surface Dirac cone h̄vF � 1 for an AB slab, which is achieved
by setting t = 2 throughout this work. We find that for slabs

with r � 5 lateral unit cells, where each lateral cell contains
six atomic layers, there is only a minimal amount of cross
talk between the two slab surfaces, resulting in a negligible
surface energy gap. We label the different layers in the slab
starting with layer 1 for the surface layer. Around layer 15, the
remnant DOS of the surface state is becoming negligible and
also located close to the bulk gap11 and we are thus approaching
bulk conditions at this depth.

In order to study the effect of potential impurities we create
a rectangular-shaped surface supercell with n sites along each
direction. This gives a supercell surface area of

√
3n2a2/2,

where we use a = 1 (the nearest neighbor distance on the
surface) as the unit of length. We add impurities to our model
by adding the term

Himp = U
∑

i

c
†
i ci (2)

to the Hamiltonian in Eq. (1). Here U � 0 is the impurity
strength and the summation is over all impurity sites in the
supercell. We note that by adding Himp we break particle-hole
symmetry and thus our model, even with μ = 0, corresponds
to a rather general situation.

We solve H = H0 + Himp = X†HX, where XT =
(ci↑,ci↓), in the supercell using exact diagonalization. From the
eigenvalues Eν

k and eigenvectors Uν
k of H, the LDOS resolved

at every site i is calculated as

Di(E) =
∑

k,ν

[∣∣Uν
k (i)

∣∣2 + ∣∣Uν
k (N + i)

∣∣2]
δ
(
E − Eν

k

)
, (3)

where N is the total number of sites and the summation is over
all k points in the supercell Brillouin zone and all eigenvalues
indexed by ν. The two different terms in Eq. (3) are for spin-
up and spin-down electrons, respectively. We will mainly be
concerned with the layer-resolved LDOS on nearest neighbor
sites to the impurity, which is the average of the site-resolved
LDOS in Eq. (3) on nearest neighbor sites in each layer. We find
that a 50 × 50 supercell k-point grid gives sufficient resolution,
while at the same time using a Gaussian broadening of σ =
0.005 when calculating the LDOS.

III. RESULTS

A. Subsurface impurities

We start by studying single-site, isolated, potential impu-
rities with varying impurity strength U including the case
of a single vacancy (U → ∞), which represents the unitary
scattering limit. Here we study impurities located from the
surface all the way down to the bulk. Figure 2 shows
nearest neighbor layer-resolved LDOS for both a vacancy (left
column) and a U = 40 impurity (right column), positioned in
different layers. Starting with a surface layer vacancy (topmost
left), there is a wide, double-peak resonance roughly centered
at the Dirac point at E = 0. As carefully analyzed in Ref. 11, a
surface vacancy creates a resonance peak firmly situated on top
of the original Dirac point, which splits into two Dirac points
situated on either side of the resonance peak. These two Dirac
points are the termination points of the valence and conduction
Dirac surface states, respectively. The local destruction of
the topologically protected low-energy Dirac surface state

115433-2



SUBSURFACE IMPURITIES AND VACANCIES IN A . . . PHYSICAL REVIEW B 86, 115433 (2012)

E
(a)

−0.5

0

0.5 (g)

E
(b)

−0.5

0

0.5 (h)

E
(c)

−0.5

0

0.5 (i)

E
(d)

−0.5

0

0.5 (j)

E
(e)

−0.5

0

0.5 (k)

E

Layer

(f)

10 20 30 40

−0.5

0

0.5

Layer

(l)

10 20 30 40

FIG. 2. (Color online) Layer-resolved LDOS averaged over in-
plane nearest neighbor sites to a vacancy (a)–(f) and an U = 40
impurity (g)–(l) positioned in layer 1, 2, 3, 4, 7, and 20 (counted
from the top) plotted for each layer across a r = 7 lateral unit cell
wide slab with AB termination with a supercell size of n = 10. Zero
(white), 0.1 (black) states per energy and area unit. Red/gray dashed
vertical lines mark impurity layer, whereas horizontal dotted lines
mark E = 0.

spectrum, and its Dirac point, is due to surface-bulk interaction
always present in TIs with a finite bulk band gap. The width of
the resonance peak decreases as the impurity-impurity distance
increases with supercell size n. However, the total weight
of the peak approaches a constant value as n increases,11

corroborating the existence of a finite resonance peak even
in the limit of a fully isolated impurity. The double-peak
structure is also less visible as the impurity-impurity overlap
decreases and the center of the peak remains fixed. In fact, the

resonance peak is nondispersive throughout the whole slab for
all impurity concentrations and positions.

Since the surface state penetrates relatively deep into
the material, by reciprocity argument, impurities positioned
in subsurface layers might also have a profound effect on
the surface LDOS. Figures 2(b)–2(f) show single vacancies
positioned in layer 2, 3, 4, 7, and 20, respectively. There is
some oscillation in the energy of the peak as function of layer
position, but for all subsurface layer positions �15, there is
still a finite sized resonance peak located at or around E = 0 in
the surface LDOS. Thus, the original single Dirac point on the
surface is destroyed even for vacancies positioned deep into
the TI. We also find a single-double peak oscillation where
double peaks only appear for vacancies in every other layer,
but this layer position difference diminishes with increasing
impurity-impurity distance. When approaching the bulk layers,
the resonance peak centers firmly at E = 0, and its impact
on the surface state diminishes as the distance to the surface
increases. In Fig. 2(f) the vacancy is positioned deep within the
bulk, and there is a narrow, but tall, impurity resonance peak
at E = 0, but it does not penetrate to the surface. This result
can be understood rather straightforwardly by applying the
T -matrix formalism to an idealized, but normal, insulator. In
the presence of a scattering potential V̂ , the Green’s function
Ĝ is determined by

Ĝ = Ĝ0 + Ĝ0T̂ Ĝ0, (4)

where Ĝ0 is the bare Green’s function and the T matrix is
given by

T̂ = (1 − V̂ Ĝ0)−1Û . (5)

Since the poles of the Green’s function give the energy
spectrum for single-particle excitations, we can find the energy
Eres of any impurity-induced resonance state by searching
for poles in the T matrix. For an atomically sharp impurity,
described by the δ-function potential 〈x|Û |x〉 = Uδ(x), the
resonance energy is given by

1

U
= Re[G0(Eres)], (6)

as long as Im[G0(Eres)] is sufficiently small.17 Using an ide-
alized insulator with k-independent valence and conductions
bands separated by a band gap Eg , the bare Green’s function is
G0(ω,k) = (ω − Eg/2 + iη)−1 + (ω + Eg/2 − iη)−1, with η

infinitesimal small. Thus Eq. (6) gives Eres → 0 as V → ∞. If,
on the other hand, the TI has a finite doping such that the Fermi
energy EF = ED + x ≡ 0, where ED is the energy of the Dirac
point and |x| < Eg/2 for EF to still be inside the bulk gap, the
same argument gives Eres = −x = ED . That is, the resonance
will always be situated at the Dirac point for a unitary impurity,
independent of the doping of the system. We have confirmed
this result numerically by including a finite chemical potential
in Eq. (1). The above derivation is dependent on the valence
and conduction bands being mirror symmetric with respect to
ED for all k values. While this is true in our model TI, it is in
general not true in a real material. However, as long as valence
and conduction bands are approximately mirror symmetric
in ED in the part of the Brillouin zone where the band gap
is smallest, we expect our results to still be qualitatively
correct. If on the other hand, the energy difference Ec between
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FIG. 3. (Color online) (a) Impurity resonance peak position as
function of layer position for AB surface termination (thick lines, ×)
and AA surface termination (thin lines, ◦) for a vacancy (U = ∞)
(solid black), U = 80 (solid red), U = 30 (dashed black), and U = 14
(dashed red) impurities, where the last set of results are only displayed
within the bulk gap Eg ≈ 0.6. (b) Impurity resonance peak position
as function of the inverse impurity strength 1/U for AB surface
termination (thick lines, ×) and AA surface termination (thin lines,
◦) for impurity layer position 1 (solid black), 2 (solid red), 3 (dashed
black), 4 (dashed red), and bulk (thickest black).

conduction band and Dirac point, and Ev between valence band
and Dirac point are different, the resonance energy is instead
Eres = −x + (Ec − Ev)/2, which is located away from the
Dirac point. This T -matrix calculation is also important as it
shows that our results are independent of the particular lattice
model.

The LDOS for a finite U impurity are very similar to
those of a single vacancy. The main difference is that the
resonance peak in general does not appear at or around E = 0,
unless U is large, and thus does not destroy the low-energy
features of the Dirac surface state. There is also a clear
trend that the deeper the impurity, the larger the U needed
for a low-energy resonance peak. This is clearly seen in
Figs. 2(g)–2(l), where a U = 40 surface impurity is seen to
destroy the original Dirac point, but where the same impurity
in subsurface layers produces an impurity-induced resonance
away from E = 0. Figure 2 shows how a bulk U = 40 impurity
clearly produces an in-gap resonance peak, associated with a
state tightly bound to the impurity site. It was recently argued,
based on results from a continuum model, that a nonmagnetic
δ-function impurity cannot produce in-gap bound states in a
3D TI.15 Our results, however, show that the closest lattice
equivalent of a δ-function, that is, the single-site impurity,
clearly produces in-gap bound states. This result is true as long
as the impurity strength is large enough to put the resonance
peak within the bulk gap. In our model system that means
U � 20. For smaller U there is still a resonance state but it is
located at energies above the bulk gap.

In Fig. 3 we analyze in more detail the resonance energy
peak position Eres, extracted from the layer-resolved LDOS
surface spectra, as function of both impurity layer position

(a) and impurity strength (b). Since the resonance peak is
nondispersive, the peak energy position is the same in all
layers. As clearly seen in Fig. 3(a), the resonance peak
appear at larger (negative) energies, that is, farther from the
low-energy region, for subsurface impurity positions. Thus
for an impurity to influence the low-energy region of the
surface Dirac spectrum it needs to be stronger the farther it
is from the surface. It is also clear that the resonance peak
moves toward the low-energy region from larger (negative)
energies as U increases. This is equally true for both surface
and subsurface positions. Apart from these trends, there is
also a layer oscillation in the peak position but it quickly
dies out as the impurity position approaches the bulk. We
have here also included results for an AA terminated surface
(thin lines, ◦) alongside the AB surface results (thick lines,
×). We note that the specifics of the layer oscillations are
somewhat surface dependent as the AA surface termination
produces slightly different results, but, in general, both surface
terminations display remarkably similar results. In Fig. 3(b)
we plot the peak position as function of the inverse impurity
strength 1/U . For all impurity layer positions, including both
the surface and the bulk, the peak position is proportional to
1/U , with Eres = k/U + m. For AB surface termination, the
slope k is approximately constant between different impurity
layer positions but the off-set m varies for impurities close
to the surface. For AA surface termination there is also some
variation of the slope k between layer positions. However,
already for impurities in layer 4, the peak position is largely
set by the bulk behavior (thickest line). The 1/U dependence
for the resonance peak position in the bulk follow directly
from the same T -matrix argument given above and the 1/U

dependence for surface impurities has been established using
a 2D continuum model for the surface state.10 However, the
resonance peak was in the latter case found to disappear at
unitary scattering, something we most notably do not see in
our microscopic lattice model. To summarize this section, we
conclude that subsurface and bulk impurities behave very
similar to surface impurities, with a 1/U resonance peak
energy dependence, although a stronger impurity is needed
in subsurface positions in order to observe in-gap resonances.
The nondispersiveness of the resonance peak means that for
any finite impurity-surface coupling, a resonance peak will
also be present in the surface energy spectrum. We find that
resonance peak traces are clearly present in the surface LDOS
for impurities as far down as ∼15 layers below the surface.
Moreover, both finite strength impurities and vacancies in
the bulk produce low-energy resonance states, a result which
connects smoothly with the behavior of impurities close to the
surface.

B. Bulk vacancy clusters

The E = 0 resonance peak present for a single-site bulk
vacancy is associated with a very tightly bound state around
the vacancy site. As Eq. (6) showed, the Eres = 0 peak is the
same as that of a vacancy in an idealized normal insulator, and
is thus a very robust result. On the other hand, Shan et al.16

recently used a continuum model to demonstrate the existence
of bound states for a finite sized hole in a TI. In that case
the bound states are simply a manifestation of the fact that a
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FIG. 4. (Color online) LDOS averaged over in-plane nearest
neighbor sites in layer 17 [(a) and (b)] and layer 1 [(c) and (d)]
for different highly symmetric vacancy clusters centered at layer 17.
[(a) and (c)] Five-site nearest neighbor vacancy cluster with radius√

3a/
√

8 (thick black), five-site nearest neighbor cluster with one
next-nearest neighbor substitution (thin black), and two next-nearest
neighbor substitutions (red), one-site single impurity (dashed). [(b)
and (d)] Seventeen-site next-nearest neighbor vacancy cluster with
radius a (thick black), 17-site next-nearest neighbor cluster with two
different one next-next-nearest neighbor substitutions (thin black and
red), 11-site cluster consisting of the four nearest neighbors and the six
in-plane next-nearest neighbors (dashed). Small finite gap at E = 0 in
the surface state is due to the finite width of the slab (r = 6). Surface
termination is AB and the supercell size is n = 10.

finite sized hole creates an interior surface in the TI. Holes
with a very large radius R possess a surface state very similar
to that of a planar surface, although, technically, the surface
state will have to obey periodic boundary conditions around
the hole. As the radius R becomes finite, the surface state
turns into bound states with an energy separation which gets
larger with decreasing R. Finally, for small enough holes the
bound states are expelled to the bulk bands. Most notably, this
continuum model do not produce E = 0 bound states for any
size holes, unless R → ∞. Clearly this result is at odds with
our microscopic result for a single-site vacancy. To further shed
light on this discrepancy we have studied highly symmetric
bulk vacancy clusters, involving as many as 17 sites, in order
to increase the effective radius of our microscopically created
hole. Figure 4(a) shows the LDOS on nearest neighbor sites
to both a single-site vacancy (dashed line) and three different
five-site vacancy clusters. The diamond lattice has four nearest
neighbors situated at the corners of a tetrahedron, a distance√

3a/
√

8 ≈ 0.6a from the center site, see Fig. 1(b). For such a
five-site nearest neighbor vacancy cluster, the resonance peak
move up close to the bulk band gap at E ≈ 0.6 (thick line).
However, if we replace one of the nearest neighbors with
a next-nearest neighbor, the impurity-bound state reappears

close to E = 0 (black line). Further distortion by replacing two
nearest neighbors with next-nearest neighbors creates a reso-
nance state at E = 0 (red/gray line), the same result as for the
single-site vacancy. We see in Fig. 4(c) how these peaks also
show up as extremely small impurity resonances in the surface
LDOS at the same energies when these vacancies are centered
around layer 17. In Figs. 4(b) and 4(d) we show the same
result for even larger vacancy clusters. The diamond (111)
slab has six in-plane next-nearest neighbors and an additional
six next-nearest neighbors out-of-plane, situated a distance
a from the center site, see Figs. 1(c) and 1(d). An 11-site
cluster including the four nearest neighbors and the six in-plane
next-nearest neighbors creates a resonance around E = 0
(dashed line). When including all next-nearest neighbors into
a fully symmetric 17-site cluster, the resonance peaks move
up to around E = 0.4 (thick line). However, distorting this
17-site cluster by exchanging only one next-nearest neighbor
for a next-next-nearest neighbor again produces peaks in the
very low-energy part of the spectrum (black and red/gray
lines). We thus find that fully symmetric vacancy clusters
involving all nearest and next-nearest neighbor sites expels
the impurity-bound states to high energies, in accordance with
earlier continuum model results. Also, when increasing the
radius from 0.6a for the nearest neighbor cluster to a for
the next-nearest neighbor cluster, the resonance peak moves
to slightly lower energies, in agreement with the continuum
results. However, even the smallest possible distortion of either
of these two clusters produces results more resembling those
of a single-site vacancy, where the resonance peak sits firmly
at E = 0. Thus, despite the topological origin of the surface
state in a TI, there is a surprisingly large sensitivity to small
deviations in the cluster shape. Since any microscopically sized
hole in a TI will likely have some asymmetry, we conclude that
even for fairly large such holes, the continuum limit will not
be reached, but a resonance peak will be present at or around
E = 0.

IV. CONCLUDING REMARKS

Using a 3D microscopic lattice model of a strong TI we
have shown that strong potential impurities and vacancies
create low-lying impurity-bound resonance peaks, with an
1/U dependence for the resonance peak energy for impurities
in any layer, including the bulk. Impurities as far as 15 layers
below the surface have resonance peaks visible in the surface
LDOS. This is also approximately the penetration depth of
the surface state into the interior of the TI. Thus any vacancy
or unitary impurity, within the penetration depth of the TI
surface state, produces a peak in the LDOS at or very near the
Dirac point, which is subsequently destroyed and split into two
nodes that move off-center. Recent STS data12 on nonmagnetic
unitary impurities in Bi2Se3 has shown sharp energy resonance
peaks at the Dirac point, with diverging strength as the
Fermi level approaches the Dirac point. Our results show
that the impurities do not necessarily have to be located on
the surface, but also subsurface impurities can generate such
surface resonance peaks. The experimental presence of strong
resonance states at the Dirac point confirms the need for a
3D model, which explicitly includes bulk states, since 2D
continuum results do not find any strong resonance peaks near
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the Dirac point.10 For surface impurities the resonance peak
decays quickly, approximately as 1/R3 with distance on the
surface,11 and we find a similar dependence for subsurface
impurities in the surface LDOS. This fast decay should be
contrasted with a rather extended spread perpendicular to the
surface. Experimentally, the resonance peaks were found to
decay within as little as 2 Å, which is in qualitative agreement
with our results. Such fast decay signals a quick healing
of the single Dirac point spectrum, as would be expected
for a topologically protected surface. The impurity-induced
resonance peaks in the surface state in a TI are, in fact,
similar to impurity resonances in graphene17 and d-wave
high-temperature superconductors,18 two other materials with
Dirac-like low-energy spectra. Thus, once any topological
protection is lost due to strong scattering, there is a strong
argument for a unified local response to impurities for all
“Dirac” materials.19 This unified response corroborates the
model independence of our numerical results, as it is only the
Dirac-like surface state, in combination with a finite bulk gap,
that is important.

Closely connected to the behavior of near-surface impu-
rities are that of bulk impurities, where we find Eres = 0
peaks for single-site vacancies in the bulk. This result does
not agree with continuum model results for finite holes in a
TI.16 To expand on this discrepancy we have studied extended
bulk vacancy clusters. We find that, while fully symmetric
5- and 17-site clusters do not have any low-energy resonance
states in agreement with continuum results, any asymmetry in
the clusters produces Eres ≈ 0 resonance peaks. Since any
vacancy cluster of microscopic origin is likely to not be
fully symmetric, we conclude that a microscopic approach
is required for such holes. For a finite strength bulk impurity,

we similarly find contradictions with continuum model results.
The 1/U dependence for the resonance energy produces in-gap
resonances for strong impurities, in contrast to the absence of
in-gap states for δ-potential impurities in continuum models.15

In fact, both the bulk vacancy Eres = 0 resonance state and the
1/U bulk impurity energy dependence are independent of the
topological index and also present in a trivial band insulator, as
we show by a simple T -matrix calculation. As a consequence,
these conclusions for bulk impurities are independent on the
specifics of the lattice model. The low-energy resonance peaks
for deep subsurface and bulk impurities can have a profound
effect on the conductivity, as they can give rise to gapless bulk
conductivity, thus masking the surface transport properties.
Moreover, in the presence of a finite overlap between surface
and bulk vacancy states, the surface electrons can be scattered
by these zero-energy resonance states. In the limit of dense
vacancy concentration, vacancy-band formation will allow
edge-edge transitions, thus opening a gap in the topologically
protected surface state.
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