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We study the interplay between superconductivity and spin-density-wave order in graphene doped to 3/8 or
5/8 filling (a van Hove doping). At this doping level, the system is known to exhibit weak-coupling instabilities
to both chiral d + id superconductivity and to a uniaxial spin density wave. Right at van Hove doping, the
superconducting instability is strongest and emerges at the highest Tc, but slightly away from van Hove doping,
a spin density wave likely emerges first. We investigate whether at some lower temperature superconductivity
and spin density waves coexist. We derive the Landau-Ginzburg functional describing interplay of the two order
parameters. Our calculations show that superconductivity and spin-density-wave order do not coexist and are
separated by first-order transitions, either as a function of doping or as a function of T .
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I. INTRODUCTION

Two-dimensional electron systems provide an ideal envi-
ronment for exploration of many-body physics. Graphene, as
a new two-dimensional electron system, may allow us to access
new many-body phases that have not been hitherto observed.
Unfortunately, undoped single-layer graphene seems to be
well described by a noninteracting model,1 with the vanishing
density of states suppressing interaction effects. In order to
access many-body physics in graphene, one must sidestep
the vanishing density of states. One way to do this is by
doping. When graphene is doped to the M point of the
Brillouin zone, a doping level that corresponds to 3/8 (or
5/8) filling (undoped graphene corresponds to 1/2 filling),
the Fermi surface undergoes a topological transition from
a two-piece to a one-piece Fermi surface.2 Associated with
this topological transition is a divergent density of states,
which gives rise to weak-coupling instabilities to unusual
many-body states. Doped graphene thus provides a promising
playground for exploration of new quantum many-body
states.

The recent success of experimental efforts to dope graphene
to the M point3 has inspired a flurry of theoretical works
studying many-body physics in doped graphene.4–14 It has
been established4 that the principal weak-coupling insta-
bilities are to chiral d + id superconductivity and to a
uniaxial spin density wave (SDW). The superconductivity
arises from spin fluctuation exchange in a model that starts
with weak, purely repulsive electronic interactions. This
is in contrast to studies of graphene at half-filling, where
superconductivity arises either due to phonons15 or due
to strong interelectron interactions.16,17 It is known from
a renormalization-group analysis4 that the superconducting
instability is leading at van Hove doping,4 and the SDW is
leading somewhat away from van Hove doping.11 However, it
is not known whether these two orders are mutually exclusive,
or whether they coexist in some range of temperatures and
dopings.

In this paper, we demonstrate that for graphene near the M

point, superconductivity and SDW magnetism are mutually
exclusive orders. We derive Landau-Ginzburg action for

two order parameters and show that the interplay between
quartic terms is such that the minimum of the action is when
only one order parameter is nonzero. This result stands in
stark contrast to pnictide materials, where Landau-Ginzburg
analysis shows that superconducting and SDW orders do
coexist.18,19 In doped graphene, one expects to observe pure
chiral superconductivity at van Hove doping, with a first-order
transition to pure spin-density-wave order upon doping away
from the van Hove point. Our conclusions apply also to
doped triangular lattice systems,20 which have an identical
low-energy description near 3/4 filling.

II. THE MODEL

Our point of departure is the tight-binding model2 with the
nearest-neighbor dispersion

εk = ±t
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where the overall sign is + or − depending on whether
we are above or below half-filling. For definiteness, we
take a plus sign. The van Hove doping then corresponds
to μ = t , at which point the Fermi surface has the form
shown in Fig. 1. The Fermi velocity vanishes near the
hexagon corners M1 = (2π/3,0), M2 = (π/3,π/

√
3), M3 =

(−π/3,π/
√

3), which are saddle points of the dispersion:
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εk≈M3 = 3t
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Each time, k is a deviation from a saddle point. Saddle points
give rise to a logarithmic singularity in the density of states
(DOS) and control physics at weak coupling. There are three
inequivalent nesting vectors Qab connecting inequivalent pairs
of saddle points Ma and Mb (see Fig. 1):

Q1 = Q23 = (π,π/
√

3), Q2 = Q31 = (π, − π/
√

3),
(3)

Q3 = Q12 = (0,2π/
√

3).
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FIG. 1. (Color online) The Fermi surface at van Hove doping
is a perfect hexagon inscribed within the hexagonal Brillouin zone.
The hexagon has three inequivalent corners, labeled M1,2,3, which
are saddle points of the dispersion and give rise to a divergent
density of states. Each saddle point is perfectly nested with each
other saddle point. The perfect nesting of the Fermi surface is
broken only by third and higher neighbor hoppings, which are
generally quite small. Meanwhile, the existence of saddle points
is fully robust, being a consequence of a topological transition
from a Fermi surface with two inequivalent pieces to a one-piece
Fermi surface.

Each Qi is physically the same as −Qi because Qi is half of a
reciprocal lattice vector.

There are four different interactions between fermions near
saddle points gi , i = 1 − 4, with momentum transfer near zero
and near Qi .4,7–12,14 For our purposes, relevant interactions are
density-density interaction within one patch (g4) and between
patches (g2) and the interaction which describes hopping of a
pair of fermions from one patch to the other (g3). The fourth
interaction g1 is the exchange interaction between patches.
Interactions g2 and g3 renormalize particle-hole vertices and
control the SDW instability, while interactions g3 and g4 renor-
malize particle-particle vertices and control the superconduct-
ing instability (note that g3 contributes to both instabilities).

The partition function Z of the model can be written
as a functional integral over Grassmann valued (fermionic)
fields ψ . We have Z = ∫

D[ψ̄,ψ] exp[−S(ψ̄,ψ)
]
, where

S = ∫ 1/T

0 L(k,τ ) (T is the temperature) and

L =
∑
aα

[
ψ̄a,α(∂τ + εk − μ − g4ψ̄a,ᾱψa,ᾱ)ψa,α

−
∑
b �=a

∑
β

g1ψ̄a,αψ̄b,βψa,βψb,α + g2ψ̄a,αψ̄b,βψb,βψa,α

+ g3ψ̄a,αψ̄a,βψb,βψb,α

]
. (4)

Here, a,b = 1,2,3 label which saddle point we are closest to,
α and β are spin labels, and ᾱ is the opposite spin state to
α. We have retained only those states that are close to the
saddle points; this “patch model” is exact in the limit of weak
coupling.4

III. THE SUPERCONDUCTING AND SDW ORDERS

This action displays instabilities towards d-wave supercon-
ductivity and SDW. We therefore decouple the interactions
in the d-wave superconducting and SDW channels simultane-

ously by means of two Hubbard-Stratanovich transformations.
We introduce the Hubbard-Stratanovich superconducting
fields 	a = (g3 − g4)〈ψa,↑ψa,↓〉. Since the superconduc-
tivity is known to be d + id4, we set (	1,	2,	3) =
	(1,e2iπ/3,e−2iπ/3) and describe superconducting fields by a
single complex order parameter 	. We also introduce the three
SDW order parameters Mab = (g2 + g3)〈ψ̄a,↑ψb,↓〉. Since the
SDW order is known to be uniaxial,11 we can replace the three
vector order parameters M12,M23,M31 by a single scalar SDW
order parameter M , which represents the magnetic order along
the SDW axis.

Since the system has O(3) spin rotation symmetry, the
SDW axis can be chosen to coincide with the z axis
without loss of generality. Finally, we introduce the Nambu
spinor χa , a four-component spinor defined according to
χa = (ψa,↑,ψa,↓,ψ̄a,↓, − ψ̄a,↑). The action after Hubbard-
Stratanovich transformation can be written in the Nambu
spinor basis as

L = M2

g2 + g3
+ |	|2

g3 − g4
+

∑
ab

χ̄aG−1
ab χb, (5)

G−1
aa = [∂τ 12 + (εk − μ)σ3 + 	σ+ + 	∗σ−] ⊗ 12,

(6)
G−1

a �=b = M(12 ⊗ η3).

Here, the σi are Pauli matrices acting in the particle-hole
space, the ηi are Pauli matrices acting in the spin space, 12

is a two-dimensional identity matrix, and σ± = σ1 ± σ2. The
notation we have used is borrowed from Ref. 21. We emphasize
that this expression for the Ginzburg-Landau functional in
terms of superconducting (SC) and SDW order parameters is
unique because the superconducting and SDW channels are
orthogonal.

We can now integrate out the fermions exactly to obtain
an action purely in terms of the superconducting and SDW
order-parameter fields

L = M2

g2 + g3
+ |	|2

g3 − g4
− Tr lnG−1(	,M), (7)

where the trace goes over Nambu spinor indices, and also
over imaginary time and over momentum. We now de-
fine G to be the “bare” (matrix) Green’s function evalu-
ated at 	 = 0,M = 0, and define matrix order parameters
� and M, such that G−1 = G−1 + � + M. We can then
write

Tr lnG−1 = Tr ln(G−1[1 + G(� + M)])

= constant + Tr ln[1 + G(� + M)]. (8)

It is convenient to explicitly write out the expres-
sions for G,�, and M. We adopt the shorthand
F±(ωn,k) = 1/[iωn ± (εk − μ)], where ωn = (2n + 1)πT

are fermionic Matsubara frequencies. Using the shorthand,
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we can define the various matrices as

G =

⎛
⎜⎜⎜⎜⎜⎝

F+(ωn,k) 0 0 0 0 0
0 F−(ωn,k) 0 0 0 0
0 0 F+(ωn,k + Q1) 0 0 0
0 0 0 F−(ωn,k + Q1) 0 0
0 0 0 0 F+(ωn,k + Q2) 0
0 0 0 0 0 F−(ωnk + Q2)

⎞
⎟⎟⎟⎟⎟⎠ ⊗ 12,

(9)

� =

⎛
⎜⎜⎜⎜⎜⎝

0 	 0 0 0 0
	∗ 0 0 0 0 0
0 0 0 	e2iπ/3 0 0
0 0 	∗e−2iπ/3 0 0 0
0 0 0 0 0 	e−2iπ/3

0 0 0 0 	∗e2iπ/3 0

⎞
⎟⎟⎟⎟⎟⎠ ⊗ 12, M = M

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0
0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠ ⊗ σ3.

IV. LANDAU-GINZBURG ANALYSIS

Thus far, everything we have done has been exact. We now work close to Tc and perform a double expansion of (8) in small |	|
and small M . We terminate the expansion at quartic order in both fields and drop all terms that are odd in powers of M or � as
they vanish upon taking the trace. We then obtain for the Tr ln term the expression

Tr
[ − 1

2 (G�G� + GMGM) − 1
4 (G�G�G�G� + GMGMGMGM + 4GMGM�G� + 2GMG�GMG�)

]
.

We have made use of the fact that the trace of a product of
matrices is invariant under a cyclic permutation of the matrices.
Evaluating the traces and substituting back into (7) leads to the
expression

L = α1(T − Tc)|	|2 + α2(T − TN )M2 + K1|	|4
+K2M

4 + 2K3|	|2M2, (10)

where we have defined the expansion coefficients

K1 = 3T
∑
ωn

∫
d2k

(2π )2
[F+(ωn,k)F−(ωn,k)]2,

K2 = 3T
∑
ωn

∫
d2k

(2π )2
F+(ωn,k)2F+(ωn,k + Q1)2

+ 2F+(ωn,k)2F+(ωn,k + Q1)F+(ωn,k + Q2)

+ (F+ → F−),

K3 = 6T
∑
ωn

∫
d2k

(2π )2
F+(ωn,k)F−(ωn,k)F+(ωn,k + Q1)

×F−(ωn,k + Q1) cos
2π

3
+ F+(ωn,k)2F−(ωn,k)

×F+(ωn,k + Q1) + (F+ ↔ F−). (11)

Terminating the expansion at quartic order in both order param-
eters is justified if the quadratic terms for superconducting and
SDW order change sign at about the same critical temperature
Tc ≈ TN .23 Renormalization-group analysis shows that the
couplings which determine both superconducting and SDW
instabilities diverge at the onset of the first instability upon
lowering T .4,7,9 The critical temperatures, however, are deter-
mined by superconducting and SDW susceptibilities, which
generally have different exponents (different anomalous di-

mensions). It has been demonstrated on general grounds22 that
different orders emerge simultaneously when their anomalous
dimensions ηi > 1. In our case, the anomalous exponents
for superconducting and SDW susceptibilities have been
calculated in Ref. 4. Using results from that work, we find that
ηSC = 1.48 > 1, while ηSDW = 0.97 (the results are for perfect
nesting). Because ηSDW < 1, TN < Tc. However, since ηSDW

is very close to one, we expect that TN in (10) is only slightly
lower than Tc, in which case the expansion up to quartic order
in 	 and M is justified. For dopings slightly away from the van
Hove one, we expect SDW to be the leading instability.7,9,11,12

In this case, TN � Tc; again, we assume that the difference
between the two critical temperatures is small.

It was shown in the context of pnictides18,19 that a free
energy of the form (10) leads to coexistence of the two order
parameters if K1K2 − K2

3 > 0. We computed the coefficients
K1, K2, and K3 in our case by explicitly integrating over
fermionic momenta and summing over fermionic frequencies
in (12) (for details, see the Appendix). We obtain, with
logarithmic accuracy

K1 = 1.05√
3π4T 2

c t
ln

t

Tc

+ subleading,

K2 = 1.05√
3π4T 2

c t
ln

t

Tc

+ subleading = K1,

K3 = 1.05
[

cos
(

2π
3

) + 2
]

√
3π4tT 2

c

ln
t

Tc

+ subleading

= K1

[
cos

(
2π

3

)
+ 2

]
. (12)

Note that there are two processes which contribute to the co-
efficient K3. The processes are represented diagrammatically
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(a) (b)

FIG. 2. Diagrammatic representation of the two processes that
couple superconductivity and magnetism at quartic order in the
Landau-Ginsburg expansion. Lines with arrows represent fermion
propagators, dotted lines represent SDW order parameter M , dashed
lines represent superconducting order parameter 	.

in Fig. 2. The process shown in Fig. 2(a) is sensitive to the
chirality of the superconducting order parameter because of
the dependence on the phase difference between different
saddle points, and gives rise to the cos( 2π

3 ) term. Because
cos(2π/3) = −1/2, this process gives rise to an effective
attraction between superconductivity and spin density waves.
This effective attraction is, however, outweighed by a larger
(chirality-independent) repulsion between the two order pa-
rameters, coming from the processes shown in Fig. 2(b). The
prefactors in our case are such that K3 = 3

2K1 > 0. Comparing
K1K2 and K2

3 , we see that in the case of doped graphene
K1K2 − K2

3 < 0, so that coexistence is disfavored. The system
only allows one order parameter to exist, even when Tc = TN .
A direct second-order transition between superconducting and
SDW orders is Landau forbidden since the symmetry group
of one ordered phase is not a subgroup of the symmetry
group of the other ordered phase, and as a result the transition
separating the region when 	 �= 0,M = 0 from the region
where 	 = 0,M �= 0 is expected to be first order (although we
can not exclude a non-Landau continuous transition between
the two ordered states).

The fact that Tc �= TN makes coexistence even less likely.
We therefore conclude that there is no coexistence of super-
conducting and SDW order in doped graphene.

In pnictides, the structure of K1,K2,K3 is quite similar19

(modulo that there is no ln t/Tc term), but the argument of cos
in K3 is the phase difference between the gaps on hole and
electron FSs. For s+− superconductivity, the argument is π , in
which case K3 = K1 = K2. Then, K1K2 = K2

3 , and one has
to include subleading terms to verify whether the two orders
can coexist. The subleading terms are those which break the
nesting between hole and electron pockets, and the analysis
shows18,19 that s+− superconducting and SDW orders coexist
in some range of parameters. In graphene, the argument of cos
is 2π/3, and such coexistence does not occur.

V. CONCLUSIONS

To conclude, we have demonstrated that superconductiv-
ity and spin-density-wave order are mutually exclusive in
graphene doped near the M point of the Brillouin zone
(a van Hove doping). Sufficiently close to the van Hove
point, we expect to see pure chiral superconductivity, and
somewhat away from the van Hove point, we expect to see pure
spin-density-wave order. The results stand in stark contrast to

pnictides, where there can be coexistence between spin density
waves and superconductivity.
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APPENDIX

1. Evaluating K1

We start with the expression

K1 = 3Tc

∑
ωn

∫
d2k

(2π )2
[F+(ωn,k)F−(ωn,k)]2

= 3Tc

∑
ωn

∫
d2k

(2π )2

1[
ω2

n + 9t2

16

(
3k2

x − ky

)2]2 , (A1)

where the sum goes over all Matsubara frequencies, and the
integral goes over all wave vectors k up to a UV cutoff of |k| ∼
O(1), at which point the dispersion relation changes. The UV
cutoff must be retained in the integrals because the integrals are
log divergent in the UV if we ignore the cutoff (the integrals
are convergent in the infrared at nonzero temperature). We
now scale out ωn, and define the rescaled coordinates x =√

3t/(4ωn)kx , y = √
3t/(4ωn)ky . The expression for K1 can

then be recast as

K1 = 3Tc

∑
ωn

1

3π2t |ωn|3
∫ √

t/Tc

−√
t/Tc

dx dy

[1 + (3x2 − y2)2]2
. (A2)

We now integrate first over −∞ < y < ∞, and then over
−√

t/Tc < x <
√

t/Tc, and expand the resulting expression
to leading order in large t/Tc (the manipulations are all done
on MATHEMATICA). We obtain the result

K1 = Tc

∑
ωn

1

π2t |ωn|3
(

π

2
√

3
ln

t

Tc

+ subleading

)
. (A3)

The same result is obtained, with logarithmic accuracy, if we
first integrate over −∞ < x < ∞, and then over −√

t/Tc <

y <
√

t/Tc. We now recall that ωn = (2n + 1)πTc, and that∑
n

1
|n+1/2|3 = 14ζ (3) ≈ 16.8 (the sum may again be evalu-

ated on MATHEMATICA). Thus, we obtain, with logarithmic
accuracy, the result quoted in the main text, i.e.,

K1 = 14ζ (3)

16
√

3π4tT 2
c

ln
t

Tc

≈ 1.05√
3π4tT 2

c

ln
t

Tc

. (A4)

2. Evaluating K2

The coefficient K2 was evaluated already in Ref. 11. We can
write K2 = 6Z1 + 12Z2, where Z1 and Z2 are coefficients that
were defined in Ref. 11 and calculated in the supplement to
Ref. 11. (Note that there is an overall factor of 2 relative to
Ref. 11, which comes about because we have doubled the
number of degrees of freedom in going to the Nambu spinor
representation. However, this overall factor of 2 multiplies all
terms in our free energy, and thus has no physical significance.)
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In Ref. 11, it was shown that the term Z1 was larger than Z2 by
a factor of ln t/Tc, which is a large number at weak coupling.
Thus, we can neglect Z2 with logarithmic accuracy, and say
K2 = 6Z1. The coefficient Z1 was calculated in Ref. 11,
however, the calculation there had a factor of 2 error, which
was unimportant for the physics considered in Ref. 11 but is
important here. Therefore, we redo the calculation of Z1.

We wish to evaluate

Z1 = T
∑
ωn

∫
d2k

(2π )2
F+(k,ωn)2F+(k + Q,ωn)2. (A5)

The integral over the Brillouin zone is dominated by those
values of k where both Green’s functions correspond to states
near a saddle point. Expanding the energy about the saddle
points, we rewrite the integral as

Z1 ≈ T
∑
ωn

∫
d2k

(2π )2

× 1[
iωn − 3t1

4

(
3k2

x − k2
y

)]2[
iωn − 3t1

4 2ky(ky − √
3kx)

]2 ,

(A6)

where the integral is understood to have a UV cutoff for k
of order 1. We now define a = √

3t1/4(ky − √
3kx) and b =√

3t1/4(ky + √
3kx), and rewrite the above integral as

Z1 = T
∑
ωn

2

3
√

3t1

∫ √
t1

−√
t1

da db

(2π )2

× 1

(iωn + ab)2[iωn − a(a + b)]2
. (A7)

We now define x = ab and rewrite the integral as

Z1 = T
∑
ωn

2

3
√

3t1

∫ √
t1

−√
t1

da

2π

1

|a|

×
∫ √

t1a

−√
t1a

dx

2π

1

(iωn + x)2(iωn − a2 − x)2
. (A8)

We now assume TN � t1 (which should certainly be the case
for weak/moderate coupling). In this limit, we can perform
the integral over x approximately, using the Cauchy integral
formula, to get

Z1 = T
∑
ωn

2

3
√

3t1

∫ √
t1

−√
t1

da

2π

1

|a|
2i signωn

(a2 − 2iωn)3

= T
∑
ωn

4

3
√

3t1

∫ √
t1

−√
t1

da

2π

1

|a|
i signωn(a2 + 2iωn)3(

a4 + 4ω2
n

)3 . (A9)

The imaginary part of the above integral is odd in ω and
hence vanishes upon performing the Matsubara sum to leave
an integral that is purely real:

Z1 = T
∑
ωn

8|ωn|
3
√

3t1

∫ √
t1

−√
t1

da

2π

1

|a|
4ω2

n − 3a4(
a4 + 4ω2

n

)3

≈ T
∑
ωn

8|ωn|
3
√

3t1

∫ √
t1

−√
t1

da

2π

1

|a|
4ω2

n(
a4 + 4ω2

n

)3 (A10)

with logarithmic accuracy. Performing the integral over a

(again with logarithmic accuracy) gives

Z1 ≈ T
∑
ωn

1

12π
√

3t1

1

|ωn|3 ln
t1

ωn

= 1

96π4
√

3T 2
Nt1

(
16.8 ln

t1

2πT
+ 10.5

)

≈
16.8 ln t1

TN

96π4
√

3T 2
Nt1

, (A11)

where we take ωn = 2π (n + 1/2)TN , T = TN , and perform
the discrete sum on MATHEMATICA. The error in the supplement
to Ref. 11 was in the last line of the calculation.

3. Evaluating K3

There are two distinct contributions to K3, and we evaluate
both in turn. We can write K3 = Ka

3 + Kb
3 , where

Ka
3 = 6T

∑
ωn

∫
d2k

(2π )2
F+(ωn,k)F−(ωn,k)F+(ωn,k + Q1)

×F−(ωn,k + Q1) cos(θk − θk+Q),

Kb
3 = 6T

∑
ωn

∫
d2k

(2π )2
F+(ωn,k)2F−(ωn,k)F+(ωn,k + Q1)

+ (F+ ↔ F−). (A12)

The first contribution Ka
3 comes from processes of the form

shown in Fig. 2(a), and is sensitive to the chirality of the
superconducting order parameter (it depends on the difference
in the phase of the superconducting order parameter at different
points on the Fermi surface). This process leads to an attraction
between chiral superconductivity and spin density waves. The
second contribution Kb

3 comes from processes of the form
shown in Fig. 2(b), and is insensitive to the chirality of
the superconducting order parameter. This process leads to
a repulsion between any kind of superconductivity and spin
density waves. The second process dominates (because of
purely numerical prefactors), so superconductivity and spin
density waves do repel, but the repulsion is too weak to prevent
coexistence.

Let us first calculate Ka
3 . For d + id pairing, we have θk −

θk+Q = 4π/3. Thus, we have

Ka
3 = 6Tc

∑
ωn

∫
d2k

(2π )2
F+(ωn,k)F−(ωn,k)F+(ωn,k + Q1)

×F−(ωn,k + Q1) cos
4π

3

= 6Tc cos
4π

3

∑
ωn

∫
d2k

(2π )2

× 1[
ω2

n + 9t2

16

(
3k2

x − k2
y

)2][
ω2

n + 9t2

16 4k2
y(ky − √

3kx)2
] .

(A13)

We scale out ωn and define rescaled variables x =√
3t/(4ωn)kx , y = √

3t/(4ωn)ky . The expression for Ka
3 can
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then be recast as

Ka
3 = cos

(
4π

3

) ∑
ωn

2Tc

π2t |ωn|3

×
∫ √

t/Tc

−√
t/Tc

dx dy

[1 + (3x2 − y2)2][1 + 4y2(y − √
3x)2]

.

(A14)

We define the new coordinates a = y − √
3x, b = y + √

3x,
and hence reexpress the above integral (with logarithmic
accuracy) as

Ka
3 = cos

(
4π

3

) ∑
ωn

Tc√
3π2t |ωn|3

×
∫ √

t/Tc

−√
t/Tc

da db

(1 + a2b2)[1 + a2(a + b)2]
. (A15)

We integrate over −√
t/Tc < b <

√
t/Tc (on MATHEMATICA),

and expand the resulting expression to leading order in large

t/Tc. This leads to the expression

Ka
3 = cos

(
4π

3

) ∑
ωn

Tc√
3π2t |ωn|3

(∫
da

π

2|a|(1 + a4/4)

)
.

(A16)

It should be remembered that the expansion in large t/Tc is
valid only for a2t/Tc � 1, thus, the above integral implicitly
carries an infrared cutoff on the scale a ≈ √

t/Tc. Performing
the integral with this infrared cutoff, we obtain the expression

Ka
3 = cos

(
4π

3

) ∑
ωn

Tc

2
√

3πt |ωn|3
ln

t

Tc

. (A17)

Performing the summation over n on MATHEMATICA, as before,
we obtain

Ka
3 = cos

(
4π

3

)
14ζ3

16
√

3π4tT 2
c

ln
t

Tc

≈ −1

2

16.8

16
√

3π4tT 2
c

ln
t

Tc

= −1.05

2
√

3π4tT 2
c

ln
t

Tc

= −1

2
K1. (A18)

Note the crucial minus sign that comes from the chirality sensitive cos factor: this particular term represents an attraction between
magnetism and chiral superconductivity.

We now turn our attention to the second term Kb
3 . We have

Kb
3 = 6Tc

∑
ωn

∫
d2k

(2π )2
F+(ωn,k)2F−(ωn,k)F+(ωn,k + Q1) + (F+ ↔ F−)

= 6Tc

∑
ωn

∫
d2k

(2π )2

−([
iωn + 3t

4

(
3k2

x − k2
y

)][
iωn + 3t

4 2ky(ky − √
3kx)

] + (ωn → −ωn)
)

[
ω2

n + 9t2

16

(
3k2

x − k2
y

)2]2[
ω2

n + 9t2

16 4k2
y(ky − √

3kx)2
]

= 12Tc

∑
ωn

∫
d2k

(2π )2

ω2
n − 9t2

16

(
3k2

x − k2
y

)
2ky(ky − √

3kx)[
ω2

n + 9t2

16

(
3k2

x − k2
y

)2]2[
ω2

n + 9t2

16 4k2
y(ky − √

3kx)2
] . (A19)

Again, we scale out ωn and define the rescaled variables x =√
3t/(4ωn)kx , y = √

3t/(4ωn)ky . The expression for Kb
3 can

then be recast as

Kb
3 =

∑
ωn

4Tc

π2t |ωn|3
∫ √

t/Tc

−√
t/Tc

dx dy

× 1 − (3x2 − y2)2y(y − √
3x)

[1 + (3x2 − y2)2]2[1 + 4y2(y − √
3x)2]

. (A20)

We define the new coordinates a = y − √
3x, b = y + √

3x,
and hence reexpress the above integral (with logarithmic
accuracy) as

Kb
3 =

∑
ωn

2Tc√
3π2t |ωn|3

∫ √
t/Tc

−√
t/Tc

da db

× 1 + a2b(a + b)

(1 + a2b2)2[1 + a2(a + b)2]
. (A21)

We integrate over −√
t/Tc < b <

√
t/Tc (on MATHEMATICA),

and expand the resulting expression to leading order in large

t/Tc. This leads to the expression

Kb
3 =

∑
ωn

2Tc√
3π2t |ωn|3

( ∫
da

π

2|a|(1 + a4/4)2

)
. (A22)

It should be remembered that the expansion in large t/Tc is
valid only for a2t/Tc � 1, thus, the above integral implicitly
carries an infrared cutoff on the scale a ≈ √

t/Tc. Performing
the integral with this infrared cutoff, we obtain the expression

Kb
3 =

∑
ωn

Tc√
3πt |ωn|3

ln
t

Tc

= 2.01√
3π4tT 2

c

ln
t

Tc

= 2K1.

(A23)

Putting things together, we have

K3 = Ka
3 + Kb

3 = K1

(
cos

2π

3
+ 2

)

= K1

(
−1

2
+ 2

)
= 3

2
K1 (A24)

quoted in the main text.
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