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We theoretically investigate the frictional drag induced by the Coulomb interaction between spatially separated
massless and massive fermions in the Boltzmann regime and at low temperatures. As a model system, we use
a double-layer structure composed of a two-dimensional electron gas (2DEG) and an n-doped graphene layer.
We analyze this system numerically and also present analytical formulas for the drag resistivity in the limit
of large and small interlayer separation. Both, the temperature and density dependence are investigated and
compared to 2DEG-2DEG and graphene-graphene double-layer structures. Whereas the density dependence of
the transresistivity for small interlayer separation differs already in the leading order for each of those three
structures, we find the leading order contribution of the density dependence in the large interlayer separation
limit to exhibit the same density dependence in each case. In order to distinguish between the different systems
in the large interlayer separation limit, we also investigate the subleading contribution to the transresistivity.
Furthermore, we study the Coulomb drag in a double-layer structure consisting of n-doped bilayer and monolayer
graphene, which we find to possess the same qualitative behavior as the 2DEG-graphene system.
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I. INTRODUCTION

The transport properties of double-layer systems, in which
carriers are confined to nearby parallel planes, have received
considerable attention since the earlier proposal by Pogre-
binskiı̆1 of employing a bilayer system for measuring the
frictional drag. Drag measurements are performed by driving
a current ja through one of the layers (the active layer) and
measuring the electric field Ep induced in the other layer (the
passive layer) due to interlayer momentum transfer. The drag
transresistivity (also called drag coefficient, or simply, drag)
is defined as ρD = Ep/ja . The measurement of the frictional
drag can provide valuable information about the density and
temperature dependence of the carrier-carrier interaction in
two-dimensional (2D) systems. In particular, the frictional
drag due to the interlayer carrier-carrier Coulomb interaction
in double-layer semiconductor systems has been investigated
in great detail.2–10

With the recent progress in the physics of graphene,
much attention has been devoted to the investigation and
understanding of the frictional drag in spatially separated
double-layer graphene systems11–19 as well as in structures
comprising two bilayer graphene (BLG) sheets isolated from
each other by a spacer.16 Moreover, in the limit of low
temperatures and large interlayer distances, a generic formula
has been derived for the leading order of the asymptotic
behavior in the limit of large interlayer separation for systems
where each layer l is described by an energy dispersion of
the form εl

k ∝ k2−ξl (ξl is a layer specific constant) and a
momentum-dependent relaxation time τl (k).19

There is a fundamental difference between the carriers in
graphene and those in a two-dimensional electron gas (2DEG)
or in BLG. While in graphene the carriers can be interpreted
as massless fermions with a linear dispersion, in the 2DEG
and BLG the carriers exhibit a parabolic dispersion and have
a finite effective mass. Thus, most of the previously reported
investigations of the frictional drag have been limited to the
case of interaction between massive fermions (in the case of

2DEG-2DEG or BLG-BLG double-layer systems) or between
massless fermions (in the case of graphene-graphene double-
layer structures). In what follows, we will refer to the former
and later cases as massive-massive and massless-massless
systems, respectively. By assembling a double-layer structure
consisting of a graphene layer and a 2DEG layer, it might also
be possible to create a setup where the carrier densities are
significantly different in both layers, a case difficult to achieve
if both layers consist of the same material.

In the present paper, we investigate massless-massive
systems in which the frictional drag is induced by the Coulomb
interaction between massless and massive fermions, a case
that until now has remained largely unexplored. Here, we
restrict ourselves to the discussion of low temperatures and
the case where both layers are in the ballistic/Boltzmann
regime. As a prototype system, we consider first a double-layer
structure consisting of a 2DEG formed in a GaAs quantum
well and a closely located n-doped graphene layer. We then
compute the transresistivity for such a system and investigate
its dependence on temperature and carrier concentrations. We
also provide analytical formulas describing the asymptotic
behavior of the transresistivity in the large and small interlayer
separation limits and compare our results with those corre-
sponding to 2DEG-2DEG, graphene-graphene, and BLG-BLG
double-layer structures. We show that in the small interlayer
separation limit, already at the leading order the transresistivity
scales with the carrier densities differently for all the three
massive-massive, massless-massless, and massless-massive
systems. However, in the large interlayer separation limit the
three kinds of systems exhibit the same asymptotic behavior
in the leading order and differences appear only when the
subleading correction is taken into account. As an alternative
to the 2DEG-graphene structure, we also investigate the
drag transresistivity in a double-layer structure consisting of
n-doped bilayer and monolayer graphene isolated from each
other by a spacer. Such a massless-massive system exhibits the
same qualitative behavior as the 2DEG-graphene structure.
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The manuscript is organized as follows: In Sec. II, fol-
lowing the introduction of the model and the theoretical
framework, the Coulomb drag in 2DEG/(monolayer) graphene
systems is discussed. This discussion is extended to a
bilayer graphene/(monolayer) graphene system in Sec. III.
Corrections to the asymptotic behavior in the limit of large
interlayer distances are considered in Sec. IV. A short
summary concludes the manuscript.

II. DRAG RESISTIVITY IN 2DEG/MONOLAYER
GRAPHENE SYSTEMS

A. Model

In this section, we investigate a double-layer structure
consisting of a 2DEG, located within a quantum well of
width w, and one n-doped layer of graphene. Both electronic
systems are separated by a spacer of width d and embedded
in a larger structure. The relative dielectric constants in the
different regions of the structure are denoted by κ1, κ2D, κ2,
and κ3 (see Fig. 1).

Throughout this manuscript, we consider the case where
both layers are within the Boltzmann regime (that is, the
regime in which the Fermi wave vector is much larger than
the inverse mean free path) and have the same temperature
T . Furthermore, these temperatures are assumed to be low,
that is,

kBT � ε
2D/g
F , (1)

where kB and ε
2D/g
F denote the Boltzmann constant and the

Fermi energies of the 2DEG and graphene layers, respectively.
In what follows, graphene is assumed to be the active layer,
while the 2DEG is taken as the passive one.

A peculiar property of the considered double-layer structure
is the presence of interactions between two kinds of carriers,

FIG. 1. (Color online) Schematic illustration of the geometry
considered. The 2DEG is located within a quantum well of width
w and its localization along the z direction is described by χ2D(z),
whereas the location of the graphene sheet is given by χg(z). The
relative dielectric constants of the structure are given by κ1, κ2, κ3,
and κ2D.

massive and massless fermions. Indeed, the carriers in the
2DEG are massive fermions with effective mass m∗ and a
parabolic dispersion relation,

ε2D
k = h̄2k2

2m∗ , (2)

while the carriers in the graphene layer are massless fermions
with Fermi velocity v

g
F ≈ 106m/s and a linear dispersion,

ε
g
k = h̄v

g
F|k|. (3)

For most practical situations, the interlayer distance (d) is
such that the interlayer Coulomb interaction is weak. Thus,
a lowest-order perturbation theory in the interlayer potential
suffices and the transresistivity ρ

ij

D is found to be given by5,6

ρ
ij

D = −1

16πSkBT σ2Dσg

×
∑

q

∫ ∞

−∞
dω

�i
2D(q,ω)�j

g (q,ω)|U2Dg(q,ω)|2
sinh2(h̄ω/2kBT )

, (4)

where S is the cross section area of the layers, U2Dg (q,ω) is the
screened interlayer potential between the 2DEG and graphene
layers, and σ2D/g and �i

2D/g (q,ω) denote the Drude conduc-
tivity and the ith component of the nonlinear susceptibility
in the 2DEG and graphene layers, respectively. The Drude
conductivities are given by σ2D/g = e2ε

2D/g
F τ2D/g/(πh̄2), where

the momentum relaxation times (at the Fermi energy), τ2D/g,
are defined below. Furthermore, we assume that there is no
electron tunneling between both layers, so the Fermi energies
ε

2D/g
F can be set independently from each other in each layer.

Due to the factor 1/ sinh2 (h̄ω/2kBT ), only small values of ω

contribute to the transresistivity at low temperatures, while
the screened interlayer potential (see below) restricts the
momentum integration to small values of q. Therefore, we can
approximate the nonlinear susceptibilities by their respective
expressions in the limit of low energies and long wavelengths.

B. Nonlinear susceptibilities

Before we continue with those expressions, we briefly
mention the general expression for the nonlinear susceptibility
within the Boltzman limit, that is, the regime of kFl � 1 or
ωτ � 1 with τ , l = vFτ , kF, and vF being the scattering time at
the Fermi level, the mean free path, and the Fermi wave vector
and velocity, respectively (for brevity, we suppress the index
label denoting the system here and in the following). In this
limit, the nonlinear susceptibilities of monolayer and bilayer
graphene as well as 2DEGs can be written as

�(q,ω) = −2egsgv

Sh̄

∑
k,λ,λ′

Im

[
λ
(
f λ

k − f λ′
k+q

)
μ

λ,λ′
k,k+qF

λ,λ′
k,k+q

h̄ω + ελ,k − ελ′,k+q + i0+

]
,

(5)

where e = |e| denotes the absolute value of the electron charge,
λ and λ′ band labels, ελ,k = λεk the energy in a given band
with εk being the dispersion of the system investigated [that
is, Eq. (2) for 2DEGs and bilayer graphene and Eq. (3) for
monolayer graphene], and f λ

k the Fermi-Dirac distribution
function for the energy ελ,k. For monolayer and bilayer
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graphene, λ = ±1 describes the valence and conduction bands,
while for 2DEGs λ = 1. The spin degeneracy is described
by the factor gs = 2 for 2DEGs as well as monolayer and
bilayer graphene, whereas gv describes the valley degeneracy
factor, which is gv = 1 in 2DEGs and gv = 2 in monolayer
and bilayer graphene. The factor F

λ,λ′
k,k+q, which arises due to

the overlap of the wave functions, is unity for 2DEGs, but

F
λ,λ′
k,k+q = 1 + λλ′ cos(
k+q − 
k)

2
, (6)

and

F
λ,λ′
k,k+q = 1 + λλ′

2
− λλ′q2 sin2(
k − 
q)

|k + q|2 , (7)

for monolayer and bilayer graphene, respectively.16 Here, 
k
is the azimuthal angle of k in momentum space. We have also
introduced the quantity μ

λ,λ′
k,k+q, which reads as

μ
λ,λ′
k,k+q = h̄2

m
[τ (k)k − λλ′τ (k + q)(k + q)], (8)

for 2DEGs and bilayer graphene and

μ
λ,λ′
k,k+q = h̄vF

[
τ (k)

k
|k| − λλ′τ (k + q)

k + q
|k + q|

]
, (9)

for monolayer graphene. Equations (8) and (9) contain the
scattering time τ (k), which in general can be momentum
dependent. Since we are interested in the limit of low
temperatures, we will use the expressions obtained from
Eq. (5) for T → 0 and low energies and long wavelengths
for the rest of the manuscript (from here on, we also restore
the index label denoting the system).

In 2DEGs, the main effects of both short-range and screened
Coulomb impurities can be properly described by considering
the relaxation time τ2D to be momentum independent. Here,
τ2D denotes the relaxation time at the Fermi level—a con-
sequence of the fact that at low temperatures the nonlinear
susceptibility is determined by electrons at the Fermi surface.
In this case, the nonlinear susceptibility in the limit of low
energies and long wavelengths reads as5,6,20

�i
2D(q,ω) = −2eωτ2D

h̄πv2D
F

qi

q
�2D(q), (10)

where

�2D(q) = 

(
2k2D

F − q
)

√
1 − (

q

2k2D
F

)2
, (11)

and v2D
F and k2D

F are the Fermi velocity and wave vector in the
2DEG layer.

Contrary to the case of the 2DEG, the relaxation time
describing electron-impurity scattering in graphene, which is
proportional to the momentum, that is, τg(k) = τ0k, with τ0

being a constant of proportionality,15,21–25 is widely used as
a model for the relaxation time in graphene. In this case, the
nonlinear susceptibility in the limit of low energies can be
written as17–19

�i
g(q,ω) = −4eωτg

h̄πv
g
F

qi

q
�g(q), (12)

where

�g(q) =
√

1 −
(

q

2k
g
F

)2



(
2k

g
F − q

)
. (13)

Here, v
g
F and k

g
F denote the Fermi velocity and wave vector in

graphene and the relaxation time at the Fermi level is given by
τg = τ0k

g
F. We note that Eqs. (12) and (13) are the same results

one would have obtained if the relaxation time in graphene
had been assumed as constant [that is, τg (k) = τg = const.].12

Indeed, it has been shown in Refs. 17–19 that—if isotropic
relaxation times are assumed—the form of τg (|k|) as a function
of the momentum does not affect the low-temperature limit
of the nonlinear susceptibility, Eq. (12), and one can replace
the momentum-dependent relaxation time by its value at the
Fermi level. Moreover, one can notice that, within the limit of
Eqs. (10) and (12), the momentum integration is cut off for
q > 2k

2D/g
F .

C. Interlayer potential and transresistivity

The screened interlayer potential can be found by
solving the corresponding Dyson equation and can be
written as

U2Dg(q,ω) = U
(0)
2Dg(q)

ε2Dg(q,ω)
, (14)

with

ε2Dg(q,ω) = [
1 + U

(0)
2D (q)�2D(q,ω)

][
1 + Ug(0) (q)�g(q,ω)

]
− ∣∣U (0)

2Dg(q)
∣∣2�2D(q,ω)�g(q,ω), (15)

where �2D/g (q,ω) are the polarization functions of the individ-
ual layers, for each of which we use the respective expressions
obtained from the random phase approximation (RPA) at zero
temperature. The bare intralayer and interlayer Coulomb po-
tentials can be written as U

(0)
2D/g (q) = (4πe2/q)f2D/g (qd,qw)

and U
(0)
2Dg (q) = (8πe2/q)f2Dg (qd,qw), respectively, where

the form factors f2D/g (qd,qw) and f2Dg (qd,qw) are deter-
mined by solving the Poisson equation of the system (see
Appendix A). Since at low temperatures only small values of
ω contribute to Eq. (4), we approximate the dynamic by the
static polarization functions, that is, we replace U2Dg (q,ω) by
the static interlayer potential U2Dg (q,0).

Within the above approximations, the transresistivity is di-
agonal because the nonlinear susceptibilities and the screened
interlayer potential are isotropic, and it is therefore enough to
calculate ρD = ρxx

D . Thus, we obtain the transresistivity at low
temperatures,

ρD = − h

e2

4π

3

(kBT )2F
(
Q2D

TFd,Q
g
TFd,w/d

)
ε2D

F ε
g
F

(
k2D

F d
)(

k
g
Fd
)(

Q2D
TFd

)(
Q

g
TFd
) , (16)

where Q
2D/g
TF = 2πe2ν2D/g and ν2D/g denote the bare Thomas-

Fermi wave vector and the (total) density of states at the Fermi
level in each individual layer. The function F (y2D,yg,r) is
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given by the integral,

F (y2D,yg,r) =
∫ ∞

0
dx

[y2Dygf2Dg(x,xr)]2 x3 �2D(x/d)�g(x/d){
[x + 2y2Df2D(x,xr)�̃2D(x)][x + 2ygfg(x,xr)�̃g(x)] − 16y2Dygf

2
2Dg(x,xr)�̃2D(x)�̃g(x)

}2 , (17)

where y2D/g = Q
2D/g
TF d, r = w/d, x = qd, and

�̃2D(x) = �2D(x/d,0)

ν2D
= 1 − 


(
x

2k2D
F d

− 1

)√
1 −

(
2k2D

F d

x

)2

, (18)

and

�̃g(x) = �g(x/d,0)

νg
= 1 + 


(
x

2k
g
Fd

− 1

)
x

4k
g
Fd

[
arccos

(
2k

g
Fd

x

)
− 2k

g
Fd

x

√
1 −

(
2k

g
Fd

x

)2]
(19)

are the static, dimensionless polarization functions of the
2DEG20,26 and graphene,27,28 respectively.

D. Asymptotic behavior

In general, the integration in Eq. (17), and therefore the
transresistivity in Eq. (16), have to be computed numerically.
However, simplified analytical expressions describing the
asymptotic behavior of the drag resistivity as described by
Eqs. (16) and (17) can be obtained in the limits of large and
small interlayer distances by replacing each of the different
relative dielectric constants κ1, κ2, κ3, and κ2D by an average
relative dielectric constant of the entire structure κ . Then,
we can introduce the screened Thomas-Fermi wave vectors,
q

2D/g
TF = Q

2D/g
TF /κ . Moreover, the form factors reduce to

f2D = 1

2κ

32π4(e−xr − 1 + xr) + 20π2(xr)3 + 3(xr)5

(xr)2[4π2 + (xr)2]2
, (20)

fg = 1

2κ
, (21)

and

f2Dg = e−x

4κ

4π2(1 − e−xr )

xr[4π2 + (xr)2]
. (22)

Since the upper boundary of the integral given by Eq. (17)
is restricted by the minimum of the Fermi wave vectors
[min(2k2D

F d,2k
g
Fd)], the polarization functions can be replaced

by their long wavelength limits, that is, �̃2D/g(x) → 1.
Below, we study the asymptotic behavior of Eqs. (16)

and (17) in three different limits corresponding to small and
large values of q

2D/g
TF d. Here, we note that Eqs. (16) and (17)

have been derived under the assumption that the nonlinear
susceptibilities can be approximated by Eqs. (10) and (12).
As shown in Ref. 17, however, this is not the case for the
limit d = 0, where the Fermi energy is no longer the largest
scale of the system and Eq. (12) is not a good approximation
for the nonlinear susceptibility in graphene [the same is also
true for the nonlinear susceptibility of the 2DEG given by
Eq. (10)]. Only for weak interaction strength, Eq. (12) can
describe the nonlinear susceptibility for small, but finite d

reasonably well [for d = 0, the transformation in the integral of
Eq. (17) cannot be used].18,19 Thus, the limit of small interlayer
separation presented in the following should be understood in
this way.

1. Small interlayer separation limit (q2D/g
TF d,k2D/g

F d � 1)

In this case, the integration in Eq. (17) is restricted by the
upper boundary x0 = min(2k2D

F d,2k
g
Fd) and we obtain

ρD = − h

e2

(kBT )2

ε2D
F ε

g
F

q2D
TF q

g
TF

k2D
F k

g
F

π

12

[
f
(
k2D

F ,k
g
F,q

2D
TF + q

g
TF

)− g
(
k2D

F ,k
g
F,q

2D
TF ,q

g
TF

)√
k2D

F k
g
Fw + O

(
k2D

F k
g
Fw

2
)]

, (23)

where

f
(
k2D

F ,k
g
F,qTF

) =
∫ y0

0

y[
y + qTF/

(
2
√

k2D
F k

g
F

)]2
√

1 − (
k2D

F /k
g
F

)
y2

1 − (
k

g
F/k2D

F

)
y2

, (24)

and

g
(
k2D

F ,k
g
F,q

2D
TF ,q

g
TF

) =
∫ y0

0

y{24π2y2 + 2[6π2rg + (2π2 + 15)r2D]y + (8π2 + 15)r2Drg}
12π2[y + (r2D + rg)/2]3

√
1 − (

k2D
F /k

g
F

)
y2

1 − (
k

g
F/k2D

F

)
y2

, (25)
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with y0 = min(
√

k2D
F /k

g
F,

√
k

g
F/k2D

F ) and r2D/g = q
2D/g
TF /√

k2D
F k

g
F. Equation (23) shows that in the small interlayer

separation limit the transresistivity does not depend on d.
Such a behavior has also been found in graphene-graphene
double-layer structures.18,19 Moreover, g(k2D

F ,k
g
F,q

2D
TF ,q

g
TF) >

0 and thus the transresistivity is reduced for finite widths of the
quantum well. Equations (24) and (25) have—in general—to
be computed numerically. However, for certain limiting cases
analytical formulas can be derived for which we refer to
Appendix B. In particular, when the particle densities are
such that n = ng = 2n2D we obtain, in the leading order
of 1/n, ρD ∝ 1/n2. This dependence can be seen as an
intermediate behavior when compared to the results expected

for 2DEG-2DEG (ρD ∝ 1/n3) and graphene-graphene (ρD ∝
1/n) double-layer structures when the particle density is equal
in both layers.17–19

2. Intermediate limit (q2D/g
TF d � 1 � k2D/g

F d)

Whereas the limit considered above requires small in-
terlayer distances, d must not be too small for the limit
q

2D/g
TF d � 1,k

2D/g
F d � 1. It is difficult, however, to reach this

limit experimentally because in graphene q
g
TF ∝ k

g
F/κ . Thus,

this limit can only be reached if κ is very large.
Since k

2D/g
F d � 1, the integral in Eq. (17) is practically

restricted by the Coulomb interaction with the main contri-
bution arising from values x = qd � 1. Therefore, we can
approximate �2D/g(x/d) by �2D/g(x/d) → 1 and find

ρD = − h

e2

(kBT )2

ε2D
F ε

g
F

q2D
TF q

g
TF

k2D
F k

g
F

π

12

{
ln

[
1 + (

q2D
TF + q

g
TF

)
d(

q2D
TF + q

g
TF

)
d

]
− w

d
+ O[(w/d)2]

}
, (26)

which has been expanded in powers of w/d. From Eq. (26), we obtain ρD ∼ ln[(α
√

πng + q2D
TF )d]/

√
n3

2Dng for the dependence

of ρD on the carrier densities, with α = 4e2/(κh̄v
g
F).

3. Large interlayer separation limit (q2D/g
TF d,k2D/g

F d � 1)

As for the limit of intermediate interlayer separation above, the main contribution to Eq. (17) arises for x � 1 and we can
approximate �2D/g(x/d) → 1. In this case, the values contributing to Eq. (17) satisfy x � y2D/g/κ and we obtain

ρD = − h

e2

(kBT )2

ε2D
F ε

g
F

(
k2D

F d
)(

k
g
Fd
)(

q2D
TF d

)(
q

g
TFd
) πζ (3)

32

{
1 − (720π2 + 1350)ζ (3) − π4(4π2 − 15)

540π2ζ (3)

w

d
+ O[(w/d)2]

}
. (27)

Consequently, the dependence of ρD on the carrier densities is
given by ρD ∼ 1/[(n2Dng)3/2d4], which is the same asymptotic
behavior as one would expect in a double-layer structure
consisting of two 2DEGs or one consisting of two graphene
layers. Only when higher-order terms in the series expansion of
�2D/g(x/d) [see Eqs. (11) and (13)] are taken into account, one
can find a difference in the asymptotic behavior (see Sec. IV).

The asymptotic behavior of the transresistivity as a function
of the carrier densities is summarized in Table I, where, for
comparison, the results corresponding to massive-massive and
massless-massless systems have also been included.

E. Numerical calculations

We have performed numerical calculations using Eqs. (16)
and (17) for two different structures, air/graphene/Al2O3/
GaAs/AlGaAs and air/graphene/SiO2/GaAs/AlGaAs, in
which graphene plays the role of the active layer and the 2DEG
formed in the GaAs quantum well constitutes the passive
one. The two structures differ in the materials conforming
the spacer, Al2O3 in the former and SiO2 in the later case,
which possess different dielectric constants, κ2 = 9.1 and
κ2 = 3.9, respectively. The remaining system parameters used
in the evaluation of the transresistivity are κ1 = 12.9, κ3 = 1,

κ2D = 12.9, and the electron effective mass in GaAs, m∗
GaAs =

0.063 m0. Here, m0 represents the bare electron mass.
The temperature dependence of the transresistivity in the

two considered structures is shown in Fig. 2 for different
widths of the GaAs quantum well. The interlayer distance
is d = 20 nm and the densities nGaAs = 1.0 × 1011 cm−2

and ng = 1.0 × 1012 cm−2. Here, the densities chosen for
each layer reflect the possibility that for double-layer systems
consisting of 2DEGs and graphene one might be able to
have a combination of rather different densities in both
layers, a case difficult to achieve if both layers consist of
the same material. As can be seen from Eq. (16) and Fig. 2,
−ρD ∼ T 2. This is the same temperature dependence found
for the transresistivity in ballistic 2DEG-2DEG bilayers.2–6

One can also appreciate in Fig. 2 that, for a given temper-
ature, the smaller the well width, the larger the size of the
resistivity. This is a general behavior, which, according to
Eqs. (23), (26), and (27), occurs in both the q

2D/g
TF d � 1

and the q
2D/g
TF d � 1 limits. Note, however, that for the set

of parameters considered in Fig. 2, which corresponds more
to the limit q

2D/g
TF d � 1, both −ρD and its changes with the

well width are larger in the air/graphene/Al2O3/GaAs/AlGaAs
system than in air/graphene/SiO2/GaAs/AlGaAs. This can
be qualitatively understood by noting that in such a
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FIG. 2. (Color online) Dependence of the transresistivity on
the temperature T for air/graphene/Al2O3/GaAs/AlGaAs and
air/graphene/SiO2/GaAs/AlGaAs structures with an interlayer dis-
tance of d = 20 nm for different widths of the GaAs quantum well
(w = 0,5,10 nm). The electronic densities of graphene and GaAs
have been set to the values ng = 1.0 × 1012 cm−2 and nGaAs =
1.0 × 1011 cm−2, respectively.

limit both −ρD and −∂ρD/∂w are proportional to κ2

[see Eq. (27), where κ enters via the screened Thomas-
Fermi wave vectors]. Consequently, since κ2 (and therefore
κ) is larger in air/graphene/Al2O3/GaAs/AlGaAs than in
air/graphene/SiO2/GaAs/AlGaAs, both the absolute size of the
transresistivity and its changes with w are expected to be larger
in the former structure compared to the later one, as is indeed
seen in Fig. 2.

The dependence of the transresistivity on the density in the
graphene layer at T = 100 K is shown in Fig. 3 for graphene/
Al2O3/GaAs/AlGaAs and graphene/SiO2/GaAs/AlGaAs
structures. Here, the interlayer distance is set at d = 20 nm
and the density in the GaAs layer at nGaAs = 1.0 × 1011

cm−2. We can fit the curves in Fig. 3 to −ρD ∝ n
β
g and extract

values between β ≈ −1.19 and β ≈ −1.30, which are closer
to −3/2 than to −1/2. This is consistent with the fact that,
for the parameters chosen, we are approaching the limit of
q

2D/g
TF d � 1.

011 15
ng [1011cm-2]

0.1

1

10

100

-ρ
D

 [Ω
]

w = 0 nm
w = 5 nm
w = 10 nm

air / graphene / Al2O3 / GaAs / AlGaAs

air / graphene / SiO2 / GaAs / AlGaAs

FIG. 3. (Color online) Dependence of the transresistivity on
the electronic density in graphene, ng, at T = 100 K for air/
graphene/Al2O3/GaAs/AlGaAs and air/graphene/SiO2/GaAs/
AlGaAs structures with an interlayer distance of d = 20 nm
and for different widths of the GaAs quantum well (w = 0,5,10
nm). The electronic density of GaAs has been set to the value
nGaAs = 1.0 × 1011 cm−2.

Regarding the dependence of −ρD on the well width,
both Figs. 2 and 3 exhibit the same qualitative behavior: the
smaller the well width, the larger the absolute value of the
transresistivity.

III. DRAG RESISTIVITY IN BILAYER
GRAPHENE/MONOLAYER GRAPHENE SYSTEMS

Apart from the 2DEG-graphene system considered in
the previous section, the Coulomb drag between massless
and massive fermions may also be realized in a double-
layer structure consisting of bilayer and monolayer graphene
isolated from each other by a spacer. Compared to the system
investigated in Sec. II, the quantum well of width w containing
the 2DEG is replaced by a sheet (w = 0) of bilayer graphene.
As before, monolayer graphene is assumed to be the active
layer, while bilayer graphene is taken as the passive one.
Likewise, the ballistic case is assumed for both layers and only

TABLE I. Asymptotic behavior of the transresistivity ρD as a function of the densities and interlayer distance for different systems. In the
limit q

a/p
TF d � 1, the three systems exhibit identical behavior in the leading order and one needs to consider the subleading correction �ρD in

order to see differences in the transresistivity (see Sec. IV). The subscript a (p) refers to the active (passive) layer. The screened Thomas-Fermi
wave vectors, particle densities, interlayer distance, and average dielectric constant are denoted, respectively, by q

a/p
TF , n

a/p
, d , and κ . We have

also introduced the constant α = 4e2/(κh̄v0
F) with v0

F denoting the Fermi velocity of the massless particles. Since there is no general analytical
formula for the small interlayer separation limit, q

a/p
TF d � 1 and k

a/p
F d � 1 (first column), we provide formulas for the case of high densities

and ka
F = k

p
F, that is, na = 2np for a 2DEG-graphene system and na = np for a BLG-graphene system (see Appendix B).

System ρD ρD ρD

(active-passive)
(
q

a/p
TF d � 1, k

a/p
F d � 1

) (
q

a/p
TF d � 1, k

a/p
F d � 1

) (
q

a/p
TF d � 1, k

a/p
F d � 1

)

Massive-massive ∝ 1
n3

a
∝ ln[(qa

TF+q
p
TF)d]

(na np )3/2 ∝1/[(n
a
n

p
)3/2d4]

Massless-massless ∝ 1
na

∝ ln[(
√

na +√
np )d/κ]√

na np
∝1/[(n

a
n

p
)3/2d4]

Massless-massive ∝ 1
n2

a
∝ ln[(α

√
πna +q

p
TF)d]√

na n3
p

∝1/[(n
a
n

p
)3/2d4]
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low temperatures are considered. We restrict our analysis to
the case in which both layers are electron doped. In such a case,
bilayer graphene consists of an electron band with a parabolic
dispersion as in Eq. (2), but with the BLG effective mass
m∗

bg = 0.033 m0. With the relaxation time in bilayer graphene
at the Fermi level given by τbg, for T → 0 one obtains

�i
bg(q,ω) = −4eωτbg

h̄πv
bg
F

qi

q
�bg(q) (28)

for the nonlinear susceptibility in the limit of low energies and
long wavelengths, where

�bg(q) =

⎡
⎢⎢⎣ 1√

1 − (
q

2k
bg
F

)2
−
(

q

k
bg
F

)2
√√√√1 −

(
q

2k
bg
F

)2

⎤
⎥⎥⎦



(
2k

bg
F − q

)
, (29)

and k
bg
F and v

bg
F denote the Fermi wave vector and velocity in

bilayer graphene.
We can replace the quantities describing the 2DEG layer

by the respective quantities of bilayer graphene and use the
results from Sec. II. This means that, aside from setting w = 0,
replacing the Fermi energy, the Fermi velocity, the Fermi and
Thomas-Fermi wave vectors, as well as �2D, the polarization
function of the 2DEG in Eq. (17) has to be replaced by the
polarization function of bilayer graphene calculated in Ref.
29. However, in contrast to a 2DEG, one has to take into
account the valley degeneracy of bilayer graphene, the net
effect of which is an additional factor of 1/2 in Eqs. (16), (26),
and (27).

Whereas the limiting cases of intermediate and large
interlayer separation from Sec. II D do not depend on the exact
form of �2D/bg because of k

2D/bg

F d � 1 and can therefore
be described by Eqs. (26) and (27), respectively (and taking
into account the additional factor of 1/2 for bilayer graphene-
graphene systems as well as setting w = 0), this cannot be
done in the small interlayer separation limit. For this limit, we
obtain

ρD = − h

e2

(kBT )2

ε
bg
F ε

g
F

q
bg
TFq

g
TF

k
bg
F k

g
F

π

24

[
f
(
k

bg
F ,k

g
F,q

bg
TF + q

g
TF

)
− f1

(
k

bg
F ,k

g
F,q

bg
TF + q

g
TF

)]
, (30)

where f (kbg
F ,k

g
F,qTF) is given by Eq. (24) and

f1
(
k

bg
F ,k

g
F,qTF

)

= 4k
g
F

k
bg
F

∫ y0

0

y3
√[

1 − (
k

bg
F /k

g
F

)
y2
][

1 − (
k

g
F/k

bg
F

)
y2
]

[
y + qTF/

(
2
√

k
bg
F k

g
F

)]2 , (31)

with y0 = min(
√

k
bg
F /k

g
F,

√
k

g
F/k

bg
F ). In general, Eq. (31) has to

be computed numerically, but it is possible to derive analytical
formulas for certain limiting cases (see Appendix B).

Thus, the transresistivity due to the Coulomb drag between
massive and massless fermions in 2DEG graphene and
BLG-MLG structures is characterized by the same generic
expressions for the intermediate and large interlayer separation

011 15
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FIG. 4. (Color online) (a) Dependence of the transresistivity of an
air/graphene/Al2O3/bilayer graphene/SiO2 structure on the electronic
density of graphene (ng), for different electronic densities in bilayer
graphene (nbg) at T = 100 K. (b) Temperature dependence of the
transresistivity for the same structure as in (a) at fixed graphene
electronic density, ng = 5 × 1011 cm−2. In both cases, (a) and (b), the
interlayer distance is d = 20 nm.

limits. For small interlayer distances on the other hand, there
is an additional contribution in the case of the BLG-graphene
system compared to the 2DEG-graphene system (see the
massless-massive system in Table I).

Figure 4 shows the dependence of the transresistivity in
an air/graphene/Al2O3/bilayer graphene/SiO2 structure on the
electronic density of graphene (ng) at T = 100 K [Fig. 4(a)] as
well as on the temperature [Fig. 4(b)] for ng = 5 × 1011 cm−2

and different densities in bilayer graphene (nbg). As anticipated
above, the qualitative trends displayed in Fig. 4 are similar to
those shown in Figs. 2 and 3. However, for the set parameters
taken in Fig. 4, the system starts to approach the large interlayer
separation limit and the absolute value of the drag resistivity
in the air/graphene/Al2O3/bilayer graphene/SiO2 appears to
be smaller than in the 2DEG-graphene system. This behavior
can be understood from Eq. (27) by taking into account that
the screened Thomas-Fermi wave vector in BLG is larger than
in GaAs.

IV. CORRECTIONS TO THE LARGE INTERLAYER
SEPARATION LIMIT

As mentioned in Sec. II and shown in Table I, the asymptotic
behavior of the transresistivity in a massless-massive double-
layer system in the limit of q

a/p
TF d � 1 is identical to the

behavior in massive-massive and massless-massless systems
(a/p denote the active/passive layers). Only when higher-order
terms in the series expansion of �a/p(x/d) [see Eqs. (11), (13),
and (29)] are taken into account, one can find a difference in
the asymptotic behavior.

In general, we find that the leading correction (for w = 0)
to Eq. (27) is given by

�ρD ≈ − h

e2

5πζ (5)(kBT )2
[
cp
(
ka

Fd
)2 + ca

(
k

p
Fd
)2]

256gagpε
a
Fε

p
F

(
ka

Fd
)3(

k
p
Fd
)3(

qa
TFd
)(

q
p
TFd
) , (32)
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where a/p, k
a/p
F , and q

a/p
F denote the active/passive layers

and their respective Fermi and screened Thomas-Fermi wave
vectors. The parameters ca/p and ga/p are specific of the system
comprising the active/passive layers, with c2D = 1, cg = −1,
and cbg = −7, as well as g2D = gg = 1 and gbg = 2.

From Eq. (32), we find �ρD ∼ (ng − 2n2D)/[(n2Dng)5/2d6]
for the density dependence in 2DEG-graphene systems in
contrast to �ρD ∼ ∓(na + np)/[(nanp)5/2d6] in 2DEG-2DEG
(−) and graphene-graphene (+) systems. In particular, under
the condition of n = ng = 2n2D the correction to the drag
vanishes for the 2DEG-graphene system but remains finite,
with the asymptotic behavior �ρD ∼ 1/(n4d6), for the 2DEG-
2DEG and graphene-graphene systems. Similarly, Eq. (32) can
be used to describe deviations from the asymptotic behavior
for 2DEG-BLG, BLG-BLG, and BLG-(monolayer) graphene
systems.

In the limit q
a/p
TF d � 1, the drag correction is small,

in agreement with the trend described by Eq. (32). For
the set of parameters considered here (which correspond
to a region close, but still not in such a limit), we
have found from our numerical calculations that while the
drag correction in air/graphene/Al2O3/GaAs/AlGaAs and
air/graphene/SiO2/GaAs/AlGaAs turns out to be still small
(a few percent of the total drag), it becomes relevant for the
case of air/graphene/Al2O3/bilayer graphene/SiO2, in which it
represents about 30% of the total transresistivity.

For the case of air/graphene/Al2O3/bilayer graphene/SiO2

with the parameters used in Fig. 4, the limit q
a/p
TF d � 1

is reached when the interlayer distance is increased to
values d � 80 nm. In such a limit, we found a very good
agreement between our numerical calculations and Eq. (32).
Our calculations indicate that the drag correction decreases
from 12%–13% to 1% (at ng = 1.5 × 1012 cm−2) of the total
transresistivity when the interlayer distance is increased from
d = 20 nm to d = 80 nm.

V. CONCLUSIONS

In this manuscript, we have studied the Coulomb drag
at low temperatures in a double-layer structure composed
of a 2DEG and a graphene layer, both of which were
treated as being in the Boltzmann regime. We have written
down a formula to describe the transresistivity of such a
system at low temperatures and have analyzed the temperature
and density dependence of this formula both analytically
and numerically. Analytical formulas have been derived to
describe the asymptotic behavior in both the small and large
interlayer separation limits and compared to the respective
behavior in massive-massive as well as massless-massless
systems. It has been found that for q

a/p
TF d � 1 each system,

massive-massive, massless-massless, and massless-massive,
possesses a different dependence on the carrier densities,
whereas the three systems share the same behavior in the
dominant contribution to ρD for q

a/p
TF d � 1. Only looking at

higher-order corrections allows us to distinguish between the
different systems in this regime. Furthermore, the effect of a
finite width of the quantum well in which the 2DEG is formed
has been investigated and we have seen that with increasing
well width the absolute value of the transresistivity is reduced.

Finally, we have also studied a BLG-graphene system, which
we found to be qualitatively similar to a 2DEG-graphene
system in the large interlayer separation limit, but different
in the limit of small interlayer separation.
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APPENDIX A: BARE COULOMB POTENTIAL

The bare Coulomb potentials can be obtained from the
Poisson equation, which in cylindrical coordinates (ρ,z)
reads as

∇[κ(z)∇φ(ρ − ρ ′; z,z′)] = 4πeδ(ρ − ρ ′)δ(z − z′), (A1)

for a point charge located in a geometry as shown in Fig. 1.
Here, the relative dielectric constant is given by

κ(z) =

⎧⎪⎨
⎪⎩

κ3 for z > d + w

κ2 for w < z < d + w

κ2D for 0 < z < w

κ1 for z < 0.

(A2)

Introducing the Fourier transform of φ with respect to the
in-plane coordinates ρ and insertion in Eq. (A1) yields

d

dz

[
κ(z)

dφ(q; z,z′)
dz

]
− κ(z)q2φ(q; z,z′) = 4πeδ(z − z′).

(A3)

This equation is solved for each region given in Eq. (A2)
(and each combination of z and z′) separately and we require
the global solution to be continuous and its derivative to be
piecewise continuous with a jump of 4πe at z = z′.

Having determined the potential φ(q; z,z′) in this way, the
bare Coulomb potential can be calculated from

U
(0)
ij (q) = −e

∫ ∞

−∞
dz

∫ ∞

−∞
dz′φ(q; z,z′)|χi(z)|2|χj (z′)|2,

(A4)

where χi/j (z) describes the localization in the z direction of
a particle located in the 2DEG (i = 2D) or graphene (i = g)
layers. For graphene, we assume the electrons to be perfectly
localized and, therefore,

|χg(z)|2 = δ(z − d − w). (A5)

The transversal wave function of an electron located in the
2DEG quantum well, on the other hand, is assumed to be
given by that of the ground state of an infinite one-dimensional
potential well,

|χ2D(z)|2 = 2

w
sin2

(
πz

w

)

(w − z)
(z), (A6)

that is, we assume that only the lowest quantum well subband
is occupied. From the solution of Eq. (A3), φ(q; z,z′), and
Eqs. (A4)–(A6) we find the interlayer potential U

(0)
2Dg (q) =

(8πe2/q)f2Dg (qd,qw) (i = 2D and j = g or vice versa) and
the intralayer potentials U

(0)
2D/g (q) = (4πe2/q)f2D/g (qd,qw)
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(i = j = 2D and i = j = g) with the form factors,

f2Dg(x,y) = 2π2κ2{κ1[cosh(y) − 1] + κ2D sinh(y)}
y(y2 + 4π2)N (x,y)

, (A7)

fg(x,y) = κ2 cosh(x) [κ1 sinh(y) + κ2D cosh(y)]

N (x,y)
+ κ2D sinh(x) [κ1 cosh(y) + κ2D sinh(y)]

N (x,y)
, (A8)

f2D(x,y) = κ1κ2[κ2 sinh(x) + κ3 cosh(x)]{64π4[1 − cosh(y)] + y(y2 + 4π2)(3y2 + 8π2) sinh(y)}
2κ2Dy2(y2 + 4π2)2N (x,y)

+
[
κ2(κ1 + κ3) cosh(x) + (

κ2
2 + κ1κ3

)
sinh(x)

]
[y(32π4 + 20π2y2 + 3y4) cosh(y) − 32π4 sinh(y)]

2y2(y2 + 4π2)2N (x,y)

+ κ2D[κ2 cosh(x) + κ3 sinh(x)]y(y2 + 4π2)(3y2 + 8π2) sinh(y)

2y2(y2 + 4π2)2N (x,y)
, (A9)

where
N (x,y) = κ2 cosh(x)

[
κ2D(κ1 + κ3) cosh(y) + (

κ1κ3 + κ2
2D

)
sinh(y)

]
+ sinh(x)

[
κ2D
(
κ2

2 + κ1κ3
)

cosh(y) + (
κ1κ

2
2 + κ3κ

2
2D

)
sinh(y)

]
. (A10)

In the limit of y → 0 [fi(x) ≡ fi(x,0)], which describes the
setup of Sec. III, we recover

f2Dg(x) = κ2e
x

(κ1 − κ2)(κ2 − κ3) + e2x(κ1 + κ2)(κ2 + κ3)
,

(A11)

fg(x) = (κ2 − κ1) + (κ1 + κ2)e2x

(κ1 − κ2)(κ2 − κ3) + e2x(κ1 + κ2)(κ2 + κ3)
,

(A12)

f2D(x) = (κ2 − κ3) + (κ2 + κ3)e2x

(κ1 − κ2)(κ2 − κ3) + e2x(κ1 + κ2)(κ2 + κ3)
,

(A13)

consistent with the results found in Refs. 30 and 31.

APPENDIX B: LIMITING CASES FOR SMALL
INTERLAYER DISTANCES

As noted in Secs. II and III, the integrals defined by
Eqs. (24), (25), and (31) have to be computed numerically, but
it is possible to obtain analytical formulas for certain limiting
cases. In the following, some of these cases are presented.

If km
F ≈ k

g
F ≡ kF (m = 2D/bg), that is, for carrier densities

ng ≈ 2n2D in a 2DEG-graphene structure or ng ≈ nbg in a
BLG-graphene structure, the integrands can be expanded
around km

F /k
g
F = 1 and the integration of the lowest order

contributions yields

f (kF,kF,qTF) = ln

(
1 + γ

γ

)
− 1

1 + γ
, (B1)

and

f1(kF,kF,qTF) = 4γ 2(3 − 5γ 2) ln

(
1 + γ

γ

)

+ 20γ 3 − 10γ 2 − 16

3
γ + 1, (B2)

where γ = qTF/(2kF). For the massive-massless systems
investigated in Secs. II and III, the functions f and f1 have to

be evaluated at qTF = q
g
TF + qm

TF [see Eqs. (23) and (30)] and
thus γ = α/2 + qm

TF/(2
√

πng). Assuming that we are in the
high-density limit (consistent with our usage of RPA), we can
further simplify the transresistivity, given by Eqs. (23), (30),
(B1), and (B2) if km

F = k
g
F, by expanding it in powers of the

density, from which we obtain ρD ∝ 1/n2
g. This is the formula

used in Table I for massive-massless systems.
In the case of km

F /k
g
F � 1, we can expand the integrands

around km
F /k

g
F = 0 and then perform the integration of the

lowest order contributions analytically,

f
(
km

F ,k
g
F,qTF

) = 1

γ 2
< − 1

+

(1 − γ<) ln

(
1+

√
1−γ 2

<

γ<

)
|γ 2

< − 1|3/2

+

(γ< − 1)

[
arctan

(
1√

γ 2
<−1

)
− π

2

]
|γ 2

< − 1|3/2
,

(B3)

and

f1
(
km

F ,k
g
F,qTF

)
= 2γ 2

<(4γ 2
< − 3)√|γ 2

< − 1|

{

(1 − γ<) ln

(
1 −√

1 − γ 2
<

1 +√
1 + γ 2

<

)

+ 2
(γ< − 1)

[
arctan

(
1√

γ 2
< − 1

)
− π

2

]}

+ 8πγ 3
< − 16γ 2

< − 2πγ< + 4

3
, (B4)

where γ< = qTF/(2km
F ).
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Finally, we consider the case of km
F /k

g
F � 1. Here, we can

expand the integrands around k
g
F/km

F = 0 and obtain

f
(
km

F ,k
g
F,qTF

)
= 2γ 2

< − 1√|γ 2
> − 1|

{
− 
(1 − γ>) ln

(
1 +√

1 − γ 2
>

γ>

)

+
(γ> − 1)

[
arctan

(
1√

γ 2
> − 1

)
− π

2

]}
+ πγ> − 2,

(B5)

where γ> = qTF/(2k
g
F). Moreover, the main contribution in this

limit arises from f because f (km
F ,k

g
F,qTF) � f1(km

F ,k
g
F,qTF).
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