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Dynamical frictional force of nanoscale sliding
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We measured the dynamical frictional force acting on highly oriented pyrolytic graphite and C60 substrates
by a sliding Si3N4 tip as a function of sliding distance using the probe-tip–quartz-crystal-resonator technique.
It was found that the dynamical frictional force undergoes a drastic change when the oscillation amplitude is
approximately the lattice constant of each substrate: For a small case, it is directly proportional to the amplitude,
while for a large case, it does not depend on the amplitude. The observed behavior is qualitatively understood by
a simple one-dimensional Tomlinson model.
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I. INTRODUCTION

In nano- or microscale systems the surface effects, such as
the frictional and stictional behaviors, are of great importance
because of their large surface-to-volume ratio. Even in macro-
scopic bodies, their friction and stiction are governed by the
real area of contact, which is much smaller than the apparent
area of contact. To control the surface effects, understanding
of small contacting asperities has an industrial significance.1,2

By using a probe-tip–quartz-crystal resonator, it is pos-
sible to study the frictional behavior of small contacting
asperities.3–5 In 1999, Laschitsch and Johannsmann studied
this by contacting a small sphere with a quartz surface and
reported a positive frequency shift and a decrease in the Q

factor.4 This observation was explained as being caused by the
emanation of a spherical sound wave from the point of contact
into the sphere. They also reported an additional decrease in the
Q factor for high-friction interfaces of a metal-metal contact,
which may be attributable to frictional processes in the contact
area. Thereafter, Borovsky et al. measured nanomechanical
properties using a depth-sensing nanoindenter probe and a
quartz-crystal microbalance (QCM).5

The atomic force microscope (AFM) is a powerful tool to
investigate the friction on a nanometer scale.6–8 In 1987, Mate
et al. first observed atomic-scale features on the lateral force
acting on a tungsten wire tip sliding on a graphite surface.6

Its lateral force showed an atomic-scale stick-slip behavior
during sliding. In 2004, Socoliuc et al. measured the lateral
force acting on a NaCl surface.8 For a normal load of 4.7 nN,
the force clearly showed two opposite sawtooth profiles when
scanning forwards and backwards. Although the sawtooth
profile can be attributed to a corrugation potential with a
periodicity of the lattice, it can be observed using something
other than a single-atom tip; in fact, Miura et al. observed the
atomic-scale sawtooth profile in the case of a graphite flake
sliding on a graphite surface.9

It is believed that the dynamical frictional force is connected
to the hysteresis for the sawtooth profile observed by AFM.
We can expect that the force of a nanoscale contact drastically
changes when the sliding distance becomes less than the lattice
constant. Thus, we directly measured the force acting on highly
oriented pyrolytic graphite (HOPG) and C60 substrates by a

sliding Si3N4 tip as a function of sliding distance using the
QCM technique. In this paper, we report our observation and a
comparison with the calculation of a simple Tomlinson model.

II. EXPERIMENTAL SETUP

To study the dynamical frictional force, or the energy
dissipation due to this force, by changing the sliding distance,
we combined an AFM cantilever with an AT-cut quartz crystal
resonator. Figure 1 gives a sketch of the experimental setup.
A resonator with a HOPG or C60 substrate was mounted on a
piezo-scanner base and was set facing an AFM cantilever as a
force sensor. In the present experiments, a Si3N4 self-detective
cantilever with a spring constant of 2.2 N/m (NPX1CTP003,
SII) was used, and the typical radius of the tip was 20 nm.

The normal load acting on a Si3N4 tip was controlled by
driving the piezo-scanner base. The cantilever was connected
to the dc bridge circuit with an applied voltage of 1.0 V as
bias. The out-of-balance signal corresponded to the normal
load, and its sensitivity was better than 1 nN.

To clarify the effect of the periodicity of corrugation
potential, we prepared two kinds of substrates: HOPG and
C60. For the HOPG substrate, an AT-cut quartz crystal with
a fundamental resonance frequency of 3.26 MHz (SMD-49,
Daishinku Corporation) was used as the resonator, and a
HOPG flake of 1 mm2 × 5 μm was pasted with varnish.
After heating at 130 ◦C for 1 h, the flake was cleaved to
prepare a clean surface. The Q factor of the resonator remained
higher than 2.0 × 104 in air. For the C60 substrate, an AT-cut
quartz crystal with a fundamental resonance frequency of
4.99 MHz (SEN-5P, TAMADEVICE Co., Ltd) was used. C60

was thermally deposited on the Au electrode at 0.3 ML/min
with a boat temperature of about 420 ◦C. The average thickness
of C60 film was 90 ML, and the grain size was about 200 nm.
After deposition, the Q factor was higher than 1.6 × 104.

The decrease in Q factor is connected to the energy
dissipation, and the change in resonance frequency is related
to the effective spring constant as follows:
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FIG. 1. Schematic diagram of the present apparatus. An AFM
cantilever is combined with an AT-cut quartz-crystal resonator.

where �E is the energy dissipated per cycle, E is the energy
stored in the system, MC is the mass of the oscillating area,
and κ is the effective spring constant.4,5

The resonator was placed in a transmission circuit, in
which a 50 � cw signal generator and a rf lock-in amplifier
were connected in series. The signal transmitted through
the resonator was detected by the lock-in amplifier, and the
frequency of the signal generator was controlled in order
to keep the in-phase signal zero. The frequency was then
locked to the resonance frequency. The quadrature signal at
this frequency was the resonance amplitude, and this decrease
was converted to the decrease in Q factor. The sliding distance
corresponded to the oscillation amplitude of the resonator and
was controlled by the output signal of the signal generator. In
the present experiments, we obtained the oscillation amplitude
from the current transmitted through the resonator.11,12

III. RESULTS AND DISCUSSION

A. Experiment

We measured the resonance frequency and the Q factor
while advancing and retracting the tip under the condition
of the resonator oscillating at a constant amplitude. The
amplitude was controlled in the range of 0.03–3 nm for the
HOPG substrate, which corresponds to the maximum substrate
velocity of 0.6–60 mm/s. The experiments were carried out at
atmospheric pressure with less than 40% relative humidity.

Figures 2(a)–2(c) show the variation of the normal load
N , the frequency shift �fR/fR , and the energy dissipation
�(1/Q) for the HOPG substrate as a function of piezo travel.
These sets of data were taken when the tip was advancing at
6 nm/s. The crystal orientation of HOPG substrate was not
determined. It was found, however, that different positions
and substrates showed qualitatively the same behavior and
further that it did not depend strongly on the angle between
the oscillation and the cantilever.

As shown in Fig. 2, a clear jump-in was observed at the
contact, and N increased almost linearly. At the jump-in, both
�fR/fR and �(1/Q) increased rapidly and showed a clear
oscillation amplitude dependence. As the amplitude increased,
the rapid increase of �fR/fR decreased monotonously; in
contrast, that of �(1/Q) took a maximum value at a certain
amplitude. The normal load dependence of �fR/fR and
�(1/Q) was small after the rapid increase, although �fR/fR

increased gradually at a small amplitude.
For the tip–quartz-crystal-resonator experiments of Las-

chitsch and Johannsmann,4 the maximum value of �fR/fR
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FIG. 2. (Color online) Variation of (a) the normal load N , (b) the
frequency shift �fR/fR , and (c) the energy dissipation �(1/Q) for
the HOPG substrate. These sets of data were taken when the tip was
advancing, and the horizontal axis is the piezo travel of the stage.
Different colors correspond to different oscillation amplitudes. The
data in (b) and (c) are shifted vertically.

was as high as 25 ppm at about 1 N for an Au-plated sphere
of 3.5-mm radius. For those of Borovsky et al.,5 the value also
reached 11 ppm at 450 μN for a silica sphere of 0.5-mm radius.
Their value is two orders of magnitude larger than the present
experiments. Although their experiments showed that �fR/fR

increases gradually with increasing N , the different behavior
may be attributable to the experimental conditions. Here,
we estimate the contact area Ac of the present experiments
from the Johnson-Kendall-Roberts (JKR) equation to be about
90 nm2 at the normal load of 400 nN.10,13 Compared with their
experiments, Ac is expected to be remarkably small, although
it is difficult to study it quantitatively. For the C60 substrate,
the variation of �fR/fR and �(1/Q) was found to be similar
to that in the HOPG substrate, although the maximum value
of �(1/Q) is shifted to a larger amplitude and the normal load
dependence of �fR/fR is slightly enhanced.

Figures 3(a) and 3(b) show �fR/fR and �(1/Q) for HOPG
and C60 substrates as a function of oscillation amplitude for
the normal load of 400 nN; the behavior is qualitatively similar
in the two substrates. They remained constant at a small
amplitude. As the amplitude increased, �(1/Q) increased
rapidly and took the maximum value, then decreased in inverse
proportion to the amplitude. On the other hand, �fR/fR

decreased after �(1/Q) took the maximum value. One of the
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FIG. 3. (Color online) Oscillation amplitude dependence of (a)
�fR/fR , (b) �(1/Q), and (c) the frictional force at the normal load
of 400 nN. The squares correspond to the HOPG substrate, while the
circles correspond to the C60 substrate. The solid and dash lines are
calculated numerically from Eq. (2).

differences between substrates appears to be the amplitude at
the maximum value of �(1/Q). For the HOPG substrate it was
about 0.3 nm, while for the C60 substrate it was about 0.8 nm.

The decrease in Q factor is connected to the energy
dissipated per cycle as Eq. (1) and is converted to the energy
dissipation per unit distance, i.e., the average dynamical
frictional force, using the oscillation amplitude.14 Figure 3(c)
shows the amplitude dependence of this force. For the
HOPG substrate, the force is directly proportional at a small
amplitude. The transition occurs around 0.1 nm, and it becomes
almost constant above 0.3 nm. For the C60 substrate, the force
is directly proportional to the amplitude below 0.3 nm, and the
transition occurs around 0.4 nm. It should be noted that the
amplitude when the transition occurs depends on the substrate
and is close to its lattice constant.

From these observations, we found the nanoscale contact
has a common feature. When the oscillation amplitude is

x
O x

X(t)=Asin(ωt)

m

K

FIG. 4. One-dimensional Tomlinson model.

sufficiently smaller than the lattice constant, the dynamical
frictional force is proportional to the amplitude. As the
amplitude reaches around the lattice constant, it undergoes
a transition. Following the transition, it does not depend on
amplitude, i.e., the force does not depend on sliding velocity,
or the Amontons-Coulomb-like behavior, although it does not
increase proportionally with normal load.16 This feature can
be understood qualitatively as follows: For a small amplitude,
the deformation due to the contact is proportional to the
amplitude, and it is expected that the energy dissipation is
proportional to the deformation in the case of the first-order
perturbations. For a large amplitude, the energy dissipation is
roughly proportional to the number of corrugations which the
contact passes through.

B. Model calculation

We compare the observed behavior with the calculation
of a simple one-dimensional Tomlinson model.15 Figure 4
shows the present model. Here, the substrate is replaced with
a sinusoidal potential, and the tip is replaced with a point mass
with a spring. The equation of motion is expressed as

m
d2x

dt2
= −Kx − η

(
dx

dt
− dX(t)

dt

)

− 2π

a
U0 cos

{
2π

a
[x − X(t)]

}
, (2)

where the first term on the right-hand side is the restoring
force, the second one is the viscous force, and the third one
is the force from the effective corrugation potential. For the
HOPG substrate, the periodicity of the sinusoidal potential is
chosen to be a = 0.246 nm of the lattice constant of graphite
and oscillates as X(t) = A sin(ωt), where ω = 2π × 3.26 ×
106 s−1. On the other hand, for the C60 substrate, the periodicity
is chosen to be a = 1.00 nm from the (111) plane of C60 crystal,
and ω = 2π × 5.00 × 106 s−1.

To compare with the experiments, the changes in resonance
frequency and Q factor are calculated from the in-phase
and quadrature-phase components of the force acting on the
substrate.17 It was found that �(1/Q) in the calculation shows
a rapid increase at a certain oscillation amplitude under the
stick-slip condition of 2π2U0/(Ka2) > 1. As U0 decreases
from the stick-slip condition, the increase becomes small and
finally disappears. The amplitude at the increase is close to
a. However, it also depends on K and shifts to a larger value
with increasing K . In addition, it was found that �fR/fR

oscillates vigorously at a large amplitude. This is caused by
enhancement of high-harmonic generation under the condition
when the point mass climbs over the sinusoidal potential. The
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solid lines in Fig. 3 are the calculated curves with parameters
m = 3.1 × 10−13 kg, K = 3.2 × 103 N/m, U0 = 1.2 × 10−17

J, and η = 2.5 × 10−5 Ns/m, while the dashed lines have
parameters m = 4.8 × 10−13 kg, K = 5.1 × 103 N/m, U0 =
3.1 × 10−16 J, and η = 3.9 × 10−5 Ns/m.

We found that the model calculation reproduces the
experimental data. The calculation shows that �fR/fR and
�(1/Q) are constant at a small amplitude. As the amplitude
increases, �(1/Q) increases rapidly and takes the maximum
value around when the amplitude is close to half of the
periodicity of sinusoidal potential; thereafter, it decreases
in inverse proportion to amplitude. The drastic change in
�(1/Q) is caused by the change in sliding manner. For a
large amplitude, a rapid motion of the point mass due to
high-harmonic oscillations increases the energy dissipation.
According to this behavior, the frictional force is proportional
to the amplitude for a small case, while it remains a large value
for a large case.

The model calculation can qualitatively explain the ob-
served frictional force. It should be emphasized that only
the parameter η for energy dissipation in the calculation
determines the whole frictional behavior. Thus, we can
conclude that the principal mechanism of energy dissipation in
the present experiments does not depend on sliding distance,
although the frictional force drastically changes whether or
not the sliding distance is smaller than the lattice constant.

Here, we make a short comment on Berg and Johanns-
mann’s experiments in 2003.18 They studied the tribology of
micron-sized Au-Au contacts based on the probe-tip–quartz-
crystal ring-down technique. They found that the frictional
force remains small below the velocity amplitude of 0.4 m/s
and explained that a local slip-to-stick transition occurs at the
oscillation amplitude of about 0.5 nm. It is of interest that the
frictional behavior is altered at a small sliding distance even
by a micron-sized contact.

IV. SUMMARY

We measured the dynamical frictional force of a nanoscale
contact as a function of sliding distance using the probe-
tip–quartz-crystal-resonator technique. For a small oscillation
amplitude, the force is directly proportional to amplitude.
When the amplitude is about that of the lattice constant, it un-
dergoes a transition to the Amontons-Coulomb-like behavior.
This is qualitatively understood by a simple one-dimensional
Tomlinson model.
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