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Graphene in periodic deformation fields: Dielectric screening and plasmons
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We consider the effect of periodic scalar and vector potentials generated by periodic deformations of the
graphene crystal lattice on the energy spectrum of electrons. The dependence of electron velocity near the Dirac
point on the periodic perturbations of different types is discussed. We also investigated the effect of screening of
the scalar potential by calculating the dielectric function as a function of the wave length of the periodic potential.
This calculation shows that the periodic scalar field is strongly suppressed by the screening. Using the dependence
of electron velocity on the periodic field we also studied the variation of the plasmon spectra in graphene. We
found that the spectrum of plasmon excitations can be effectively controlled by the periodic strain field.
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I. INTRODUCTION

The enormous interest to graphene is related to the unique
physical properties of this two-dimensional material,1–3 which
most possibly will be used in the future in numerous technolog-
ical applications.4–7 An example of such properties of interest
for the applications is the existence of very unusual spectrum
of plasmon excitations with THz frequencies,8,9 which can be
used in optoelectronics and communications.

One of the most important problems to be solved to use
graphene in electronics is the realization of effective control of
the parameters of energy spectrum, such as the electron energy
gap and/or the velocity of electron and holes. It is already
known that by using the electrostatic gating one can vary
the carrier density of graphene (i.e., the location of chemical
potential). Recently, it was also proposed to use the external
strain field to change the energy spectrum—this is called the
strain engineering of graphene.3,10–12 The idea is mostly based
on the unusually strong effect of the external deformation
acting on the energy spectrum of graphene, quite similar to the
external electric and magnetic fields.3,13

In this work, we consider the effect of periodic fields,
which can be generated by periodic deformations, on the
energy spectrum, screening of electron-electron interaction,
and on the plasmon excitations in graphene. It was already
pointed out that such periodic fields do not open the gap near
the Dirac point but affect the velocity parameter of electrons
and holes,14–16 making the energy spectrum anisotropic. Re-
cently, the effect of periodic modulation on electron spectrum
of graphene has been studied experimentally.17 Here we
reconsider this problem in more details, concentrating on
possible coexistence of periodic scalar and vector potentials,
which, to our knowledge, has not been done before. This is
important since a generic deformation produces both scalar and
vector potentials.3,12,13 We use a different method to solve the
problem18 and find that our numerical results are in agreement
with those of Refs. 14 and 16. We also discuss the role of
screening due to the free carriers in graphene, and we find

that screening can substantially suppress the effect of periodic
scalar potential.

Now there is a growing interest to periodicity-induced
effects in graphene. For example, Kiselev et al.19 studied
optical and photogalvanic properties of modulated graphene.
They predicted a giant dichroism of absorption in the case of
doped graphene superlattices. The combined effect of periodic
scalar potential and constant magnetic field in graphene has
been investigated by Wu et al.20 They found that the structure
of Landau levels can be also strongly affected by the one-
dimensional (1D) periodic fields.

The physics of plasmons in graphene has been intensively
discussed recently by many authors.21–25 The calculations have
been performed in the frame of standard RPA approximation,
taking into account the electron energy structure of graphene
near the Dirac points, as well as for the whole energy spectrum
at the honeycomb lattice.26 The effects of magnetic field, finite
temperature, and chemical potential have been investigated in
the same approach.27 In this work, we discuss the effect of
external periodic fields on the screening and on the energy
spectrum of plasmons.

II. ELECTRON ENERGY SPECTRUM
IN PERIODIC FIELDS

We consider first the transformation of electron energy
spectrum related to deformations of the graphene lattice. It
is known that the deformation of graphene is equivalent to
the generation of electric and magnetic fields, which can be
described by scalar V (r) and vector A(r) potentials.3,13 The
relations between the components of strain tensor uij (r) and
the scalar and vector gauge potentials are28,29

V (r) = g (uxx + uyy), Ax(r) = βt

a0
(uxx − uyy),

(1)

Ay(r) = −2βt

a0
uxy,
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where g is the deformation potential, t is the hopping energy,
the parameter β is defined by β = −∂ log t/∂ log a0, and
a0 is the lattice constant. In the following, we consider
one-dimensional periodicity of the deformation, and in view of
Eq. (1), we assume that the periodic in x strain field generates
periodic scalar and vector potentials V (x) and A(x).

The Hamiltonian of electrons in graphene near the K Dirac
point in periodic scalar and vector fields reads

H = −ivσ · (∇ − iA) + V, (2)

where the Pauli matrices σ act on the sublattice label and
we use the units h̄ = e = 1. This Hamiltonian describes low-
energy excitations of the electronic system in graphene.

The corresponding Schrödinger equation for spinor wave
function ψT (r) = (ϕ,χ ) is(

ε − V iv∂− + vA−
iv∂+ + vA+ ε − V

) (
ϕ

χ

)
= 0, (3)

where ∂± = ∂x ± i∂y and A± = Ax ± iAy . Since the poten-
tials A(x) and V (x) do not depend on y and depend periodically
on x, we take ϕ,χ ∼ eik·r.

In frame of the k · p approximation,30 we have to calculate
first the wavefunction ψ(x) at k = 0. The corresponding
equations for the spinor components at k = 0 are

(ε − V )ϕ + ivχ ′ + vA−χ = 0, (4)

ivϕ′ + vA+ϕ + (ε − V )χ = 0. (5)

From Eq. (5) follows

χ = − ivϕ′

ε − V
− vA+ϕ

ε − V
, (6)

where prime means ∂x . Substituting Eq. (6) into Eq. (4) we
obtain the following equation for ϕ(x)

(ε − V )ϕ + v2ϕ′′

ε − V
+ v2V ′ϕ′

(ε − V )2
− iv2A′

+ϕ

ε − V
− iv2A+ϕ′

ε − V

− iv2V ′A+ϕ

(ε − V )2
− iv2A−ϕ′

ε − V
− v2A+A−ϕ

ε − V
= 0. (7)

Let us assume the existence of solutions of Eq. (7) with
ε = 0 (here we assume that V �= 0). Then we get

ϕ′′ −
(

V ′

V
+ 2iAx

)
ϕ′

+
(

V 2

v2
− iA′

+ + iV ′A+
V

− A+A−

)
ϕ = 0. (8)

This is the equation for ϕ(x) in the K Dirac point, correspond-
ing to the lowest energy band.

Let us consider first some particular cases, when the
periodic field is purely scalar V (x) or purely vector field A(x).

A. Periodic scalar potential

In the case when A(x) = 0 and V (x) �= 0, Eq. (8) essentially
simplifies to

ϕ′′ − V ′

V
ϕ′ + V 2

v2
ϕ = 0 (9)

and has two different solutions:

ϕ1,2(x) = exp

[
± i

v

∫ x

0
V (x ′) dx ′

]
. (10)

Correspondingly, using Eqs. (6) and (10) we obtain

χ1,2(x) = ∓ exp

[
± i

v

∫ x

0
V (x ′)dx ′

]
. (11)

Then the normalized basis functions in k · p approximation
are

ψ1(r) = eik·r
√

2S

(
ϕ1

χ1

)
, ψ2(r) = eik·r

√
2S

(
ϕ2

χ2

)
, (12)

where S = LxLy is the area of graphene sample. Calculating
the matrix elements of the Hamiltonian Eq. (2) with basis
functions Eq. (12) we find the effective Hamiltonian

H̃ =
[ −vkx v(γ1kx − γ2ky)
v(γ1kx − γ2ky) vkx,

]
, (13)

where we denote

γ1 = 1

L

∫ L

0
dx cos

[
2

v

∫ x

0
V (x ′) dx ′

]
, (14)

γ2 = 1

L

∫ L

0
dx sin

[
2

v

∫ x

0
V (x ′) dx ′

]
, (15)

and L is the period of the potential V (x). In correspondence
with Eqs. (14) and (15), both parameters γ1,γ2 < 1.

The Hamiltonian Eq. (13) describes low-energy spectrum
in the periodic scalar field. It has the following eigenvalues:

ε1,2(k) = ±v

√
k2
x + (γ1kx − γ2ky)2. (16)

Taking on alternate ky = 0 and kx = 0, we find that due to the
periodic scalar field, the components of electron velocity in
directions x and y are renormalized, respectively, as ṽx/v =√

1 + γ 2
1 and ṽy/v = |γ2|. Thus, in this case we always obtain

vx > v and vy < v.

B. Periodic vector potential

In the case when V (x) = 0 and A(x) �= 0 we can use
Eqs. (4) and (5) to find directly from these equations the spinor
components of the wave function in the K point, k = 0:

ϕ(x) = exp

[
i

∫ x

0
A+(x ′) dx ′

]
,

(17)

χ (x) = exp

[
i

∫ x

0
A−(x ′) dx ′

]
.

Then we can introduce two k · p basis functions in the form

ψ1(r) = N1e
ik·r

(
ϕ

0

)
, ψ2(r) = N2e

ik·r
(

0
χ

)
, (18)

where Ni are the normalization factors

N1,2 =
{
Ly

∫ Lx

0
exp

[
∓2

∫ x

0
Ay(x ′) dx ′

]
dx

}−1/2

(19)

for the crystal of sizeLx × Ly . Calculating the matrix elements
of the Hamiltonian Eq. (2) with V (x) = 0 in the basis of k · p
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FIG. 1. (Color online) Dependence of the renormalized velocity
factor ṽ/v on the amplitude A0 of periodic potential Ay(x) at different
values of periodicity parameter L.

functions (18), we get

H̃ =
(

0 ṽk−
ṽ∗k+ 0

)
, (20)

where

ṽ = vN1N2Ly

∫ Lx

0
ϕ∗(x) χ (x) dx. (21)

Using Eqs. (17) and (21), we finally obtain

ṽ

v
=

{
1

L2

∫ L

0
exp

[
−2

∫ x1

0
Ay(x ′) dx ′

]
dx1

×
∫ L

0
exp

[
2
∫ x2

0
Ay(x ′) dx ′

]
dx2

}−1/2

. (22)

The dependence of ṽ/v from the amplitude A0 of the periodic
potential Ay(x) = A0 sin(2πx/L) at different values of period
L is presented in Fig. 1. The renormalized electron velocity
decreases in the periodic vector field. This is in agreement18

with Ref. 16.

C. General case: both scalar and vector potentials are nonzero

In the general case when both V (x) �= 0 and A(x) �= 0,
we cannot find simple analytic solutions but we can analyze
further Eq. (8) for ϕ(x). For this purpose we present this
equation as

ϕ′′ + aϕ′ + bϕ = 0, (23)

where we denoted

a(x) = −V ′

V
− 2iAx, (24)

b(x) = V 2

v2
− iA′

+ + iV ′A+
V

− A+A−. (25)

Then after substitution

ϕ(x) = f (x) exp

[
−1

2

∫ x

0
a(x ′) dx ′

]
, (26)

we obtain the equation for the function f (x)

−1

2
f ′′ +

(
a′

4
+ a2

8
− b

2

)
f = 0. (27)

This is the Schrödinger equation for a particle of unit mass
with energy ε = 0 in the potential

U (x) = −V ′′

4V
+ 3(V ′)2

8V 2
+ A2

y − A′
y

2
+ V ′Ay

2V
− V 2

2v2
. (28)

Here we note that U (x) does not depend on Ax . It can be used
when Ay = 0 since in this case we can take the solution for
f (x) corresponding to ϕ(x) from Eq. (10). This way we obtain
simple generalization of Eqs. (10) and (11) for Ax �= 0 and
Ay = 0:

ϕ1,2(x) = exp

{
i

∫ x

0

[
±V (x ′)

v
+ Ax(x ′)

]
dx ′

}
, (29)

χ1,2(x) = ∓ exp

{
i

∫ x

0

[
±V (x ′)

v
+ Ax(x ′)

]
dx ′

}
. (30)

Turning back to Schrödinger Eq. (27), we also note that the
potential Eq. (28) is real and periodic, U (x) = U (x + L), so
that we can present it as

U (x) =
N∑

n=1

(une
2πinx/L + u∗

ne
−2πinx/L), (31)

where the coefficients un can be found from the specific shape
of potential U (x).

We are looking for a periodic solution f (x) of Eq. (27),
which can be presented as

f (x) =
∑
m

fme2πimx/L, (32)

with m as integer. Then using Eqs. (31), (32), and (27) we find
the matrix equation for the coefficients fm in Eq. (32)∑

m

Anmfm = 0, (33)

where Anm = 1
2 k2

nδnm + un−m + u∗
m−n with kn = 2πn/L and

un = 0 for any n < 1.
One can also look for the solution of Eq. (8) in the form

ϕ(x) = eis(x). This representation can be more convenient for
numerical calculations with arbitrary periodic functions V (x)
and A(x). In this approach we get the first-order differential
equation for ξ (x)

ξ ′ + iξ 2 −
(

V ′

V
+ 2iAx

)
ξ − iV 2

v2
− A′

+

+ V ′A+
V

+ iA+A− = 0, (34)

where ξ (x) = s ′(x). Note that the transition to the case
V (x) → 0 formally corresponds to V ′/V → ∞ in Eq. (34).

One can assume that like Eqs. (12) and (18), in the general
case there are also two solutions of Eq. (8) for the envelope
function ψ(x). Then there are also two different solutions
of Eq. (34), ξ1(x) and ξ2(x). Correspondingly, we get two
solutions for the first spinor component

ϕi(x) = exp

[
i

∫ x

0
ξi(x

′) dx ′
]

, i = 1,2.

115405-3



V. K. DUGAEV AND M. I. KATSNELSON PHYSICAL REVIEW B 86, 115405 (2012)

Then, using Eq. (6) with ε = 0, we find the other components
χ1(x) and χ2(x). The obtained spinor function (ϕi, χi)T

should be properly normalized. As before, we use these
independent solutions for our k · p basis presented by ψi(r) =
Nie

ik·r(ϕi,χi)T .
Thus, in the general case of arbitrary periodic perturbations

we obtain the effective Hamiltonian

H̃ =
(

2vα1kx + 2vα2ky vγ k− + vδk+
vγ ∗k+ + vδ∗k− 2vβ1kx + 2vβ2ky

)
, (35)

where we denote

α1 + iα2 = N2
1Ly

∫ Lx

0
ϕ∗

1 χ1 dx,

β1 + iβ2 = N2
2Ly

∫ Lx

0
ϕ∗

2 χ2 dx,

(36)

ζ = N1N2Ly

∫ Lx

0
ϕ∗

1 χ2 dx,

δ = N1N2Ly

∫ Lx

0
χ∗

1 ϕ2 dx.

The eigenvalues of Hamiltonian Eq. (35) are

ε1,2(k) = v(α1 + β1)kx + v(α2 + β2)ky

± v
[
(α1 − β1)2k2

x + (α2 − β2)2k2
y + (|ζ |2 + |δ|2)k2

+ 2 Re (ζ δ∗)
(
k2
x − k2

y

) + 4 Im (ζ δ∗)kxky

]1/2
. (37)

For kx = 0, we obtain ε1,2(ky) = ṽ
y

1,2ky , where

ṽ
y

1,2

/
v = (α2 + β2) ± [(α2 − β2)2

+ (|ζ |2 + |δ|2) − 2 Re (ζ δ∗)]1/2, (38)

and for ky = 0 we get ε1,2(kx) = ṽx
1,2kx , where

ṽx
1,2

/
v = (α1 + β1) ± [(α1 − β1)2

+ (|ζ |2 + |δ|2) + 2Re (ζ δ∗)]1/2. (39)

Using Eqs. (36), (38), and (39), one finds the components of
electron velocity in graphene in the case of arbitrary periodic
perturbation described by the fields V (x) and A(x).

D. Longitudinal standing wave

For a longitudinal strain wave, the components of defor-
mation are ux = ux(x) and uy = 0. Then, in accordance with
Eq. (1), we get Ay = 0, and due to Eq. (28) we can use the
solutions Eqs. (29) and (30).

Using Eq. (36) we find

α = −1/2, β = 1/2,
(40)

ζ = −δ = 1

2L

∫ L

0
exp

[
− i

v

∫ x

0
V (x ′) dx ′

]
dx,

and it follows from Eqs. (38) and (39) that ṽx = v and
ṽy/v = 2|ζ |. The dependence of vy/v on the amplitude of the
periodic potential V (x) = V0 sin(2πx/L) is shown in Fig. 2
for different values of periodicity parameter L.

FIG. 2. (Color online) Dependence of the renormalized velocity
factor ṽy/v on the amplitude of periodic scalar potential V (x) at
different values of periodicity parameter L.

E. Transversal standing wave

In the case of the transversal wave, the only nonzero
component of deformation is uy(x). Then, in accordance with
Eq. (1), we get V (x) = 0 and Ax(x) = 0. Correspondingly, the
solutions for the components at k = 0 are

ϕ1(x) = exp

[
−

∫ x

0
Ay(x ′) dx ′

]
, χ1 = 0, (41)

ϕ2 = 0, χ2(x) = exp

[ ∫ x

0
Ay(x ′) dx ′

]
. (42)

The solution for this case was already presented in Sec. II B;
see Eq. (22).

It should be noted that in reality the longitudinal and
transverse phonon modes in graphene are not completely
independent—there is some mixing between them.29 The
above consideration is fully justified for the phonon (standing
waves) with small q.

III. SCREENING

The scalar potential V (x) generated by deformation wave
in graphene is screened by electrons and holes. Screening is
the main many-particle correction to the bare potential, which
should be taken into account.

For this purpose, using the RPA approximation, we calcu-
late the loop diagram presenting the polarization operator31

�0(q) = −i Tr
∫

d2k dε

(2π )3
G(k + q,ε) G(k,ε), (43)

where the Green function

G(k,ε) = ε + μ + vσ · k

(ε + μ + iδ sgn ε)2 − ε2
k

(44)

corresponds to the Hamiltonian of graphene without any
perturbations, μ is the chemical potential, and εk = vk.
For definiteness we assume μ > 0. This quantity has been
calculated in many papers (see, e.g., Refs. 21 and 33–35), but
we present here some intermediate expressions to discuss a
generalization to the anisotropic case.
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FIG. 3. (Color online) Dependence of dielectric constant ε on q

for different values of chemical potential μ.

Substituting Eq. (44) into Eq. (43) and integrating over ε

we find

�0(q) =
∫

d2k
(2π )2

{
[f (εk+q) − f (εk)]

ε2
k+q + ε2

k + v2k · q

εk+q
(
ε2

k+q − ε2
k

)
+ [1 − f (εk)]

−εk+qεk + ε2
k + v2k · q

εkεk+q(εk+q + εk)

}
, (45)

where f (ε) = {exp[(ε − μ)/T ] + 1}−1 is the Fermi distribu-
tion function. In the limit of small q � μ/v, we get

�0(q) �
∫

d2k
(2π )2

f (εk+q) − f (εk)

εk+q − εk
, (46)

which gives us �0(q → 0) = −ν(μ), where ν(ε) = ε/2πv2

is the density of electron states with energy ε counted from the
Dirac point. The second integral in Eq. (45) includes vacuum
screening because it is nonzero at μ = 0, i.e., in graphene
without any carriers. In the limit of q → 0 this contribution to
�0(q) disappears.

In frame of the RPA, the screened potential V (q) is related
to the bare potential V0(q) by V (q) = V0 + V0�0u = V0/ε,
where u0(q) and u(q) refer, respectively, to bare and renormal-
ized Coulomb interaction, and ε(q) = 1 − u0(q) �0(q). The
dielectric constant ε(q) calculated numerically using Eq. (45)
is presented in Fig. 3. As we see in this figure, the scalar
potential V (q) is substantially suppressed by the screening
since ε(q)  1.

The same dielectric function ε(q) determines (within the
RPA) screening of the electron-electron interaction, u(q) =
u0/ε. The value of the effective screening radius is Rc =
−[2πe2�0(0)]−1 = [2πe2ν(μ)]−1.

In the periodic field, the components of velocity are
renormalized, so that the density of states changes from
ν(ε) = ε/(2πv2) to ν̃(ε) = ε/(2πṽxṽy). Taking into account
a variation of the chemical potential in the periodic field at a
constant density of free carriers, μ̃ = μ

√
ṽx ṽy/v, we find for

the density of states at the Fermi level ν̃ = μ/(2πv
√

ṽx ṽy).
It means that ν̃ grows with decreasing carrier velocity as
ν̃ ∼ v/

√
ṽx ṽy , leading to decreasing screening radius Rc ∼√

ṽx ṽy/v. In other words, the periodic potential effectively

enhances screening of the Coulomb interaction between
electrons in graphene.

The periodic-field-induced variation of e-e interaction
can affect the many-particle renormalization of the Fermi
velocity36–38 due to modification of the screening. As follows
from presented above estimations, this effect is especially
important when v/

√
ṽx ṽy  1.

On the other hand, the anisotropy of velocity generated by
the periodic field can essentially modify the renormalization
group (RG) equations of Refs. 36 and 38. Indeed, by calcu-
lating the Fock self-energy diagram in the case of anisotropic
spectrum with ṽx �= ṽy we find

�(k) = e2

4π

∫
|k−q|>kF

d2q
q

ṽxσx(kx − qx) + ṽyσy(ky − qy)

ε̃k−q
,

where kF is the Fermi wave vector, ε̃k = (ṽ2
xk

2
x + ṽ2

yk
2
y)1/2.

Correspondingly, the velocity correction is δṽi = δṽ
(1)
i +

δṽ
(2)
i , where

δṽ
(1)
i = e2ṽi

4π

∫
|k−q|>kF

d2q
q

1

ε̃k−q
, (47)

δṽ
(2)
i = − e2ṽi

4πk2

∫
|k−q|>kF

d2q
q

k · q
ε̃k−q

. (48)

In Eq. (47) we take the limit k → 0

δṽ
(1)
i = e2ṽi

4π

∫
kF

dq

q

∫ 2π

0

dθ√
ṽ2

x cos2 θ + ṽ2
y sin2 θ

, (49)

whereas in Eq. (48) we have to take first k = (k,0) for δṽ(2)
x

and k = (0,k) for δṽ(2)
y , respectively, and after that take the

limit of k → 0

δṽ(2)
x = −e2ṽx

4π

∫
kF

dq

q

∫ 2π

0

ṽ2
x cos2 θ dθ(

ṽ2
x cos2 θ + ṽ2

y sin2 θ
)3/2 ,

(50)

δṽ(2)
y = −e2ṽy

4π

∫
kF

dq

q

∫ 2π

0

ṽ2
y sin2 θ dθ(

ṽ2
x cos2 θ + ṽ2

y sin2 θ
)3/2 .

The integrals over q in Eqs. (49) and (50) run from kF to qmax �
1/a0. Since the field-induced renormalization of velocity refers
only to a region of small q < 1/L, we will divide each of these
integrals to the part from kF to 1/L (where, as we found, the
spectrum is anisotropic), and to the part from 1/L to 1/a0 with
ṽx = ṽy = v.

Let us assume for definiteness that for the bare values
ṽx/ṽy � 1. Using Eqs. (49) and (50) and dividing each of
integrals over q in two parts we find the following many-
particle corrections to the velocity

δṽx � e2ξ0

4
+ e2ṽxξ

πṽy

[
K(m) − ṽ2

x

ṽ2
y

R(m)

]
,

(51)

δṽy � e2ξ0

4
+ e2ξ

π
[K(m) − P(m)],

where we denoted ξ0 = log(L/a0), ξ = log(1/kF L), K(m) =∫ π/2
0 (1 − m sin2 θ )−1/2dθ (complete elliptic integral of the

fist kind39), P(m) = ∫ π/2
0 (1 − m sin2 θ )−3/2 sin2 θ dθ , R(m) =∫ π/2

0 (1 − m sin2 θ )−3/2 cos2 θ dθ , and m = 1 − ṽ2
x/ṽ

2
y . As we

are interested in the limit of small kF , the integrals over
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FIG. 4. The characteristics of RG Eqs. (52). In the limit of ṽx →
∞, all of them go to ∞. The renormalization due to the e-e interaction
shifts the initial values of ṽx + e2ξ0/4 and ṽy + e2ξ0/4 along a certain
characteristic to the right.

q are calculated with the logarithmic precision asssuming
kF � 1/L � 1/a0.

The first terms in the right-hand sides of Eq. (51) lead to a
constant shift of the bare values ṽi → ṽi + e2ξ0/4. Note that
in the limit of ṽx = ṽy , Eqs. (51) coincide with the ones from
Refs. 36 and 38.

Using Eq. (51) we obtain the following RG equations:

∂ṽx

∂ξ
= e2ṽxξ

πṽy

[
K(m) − ṽ2

x

ṽ2
y

R(m)

]
,

(52)
∂ṽy

∂ξ
= e2ξ

π
[K(m) − P(m)].

The corresponding characteristics in the sector 0 < ṽx < ṽy

of (ṽx,ṽy) plane are presented in Fig. 4. As we see, the
e-e-interaction-induced renormalization leads to the effective
isotropization of the energy spectrum, which has been broken
by the periodic field.

IV. PLASMONS

First we calculate the real part of polarization operator
�0(q,ω) for ω �= 0 assuming that εk = vk. It allows us to
consider the plasmons in graphene [corresponding to the poles
of dielectric function ε(ω,q)] without external perturbations,

Re �0(q,ω) = −
∫

d2k
(2π )2

{
[1 − f (εk+q)]

× εk+q(εk+q − ω) + ε2
k + v2k · q

εk+q
[
(εk+q − ω)2 − ε2

k

]
+ [1 − f (εk)]

2ε2
k + εkω + v2k · q

εk
[
(εk + ω)2 − ε2

k+q

]
}

. (53)

The dielectric function ε(q,ω) = 1 − 2πe2

q
Re �0(q,ω) can

be found using polarization operator Eq. (53). The plas-
mon spectrum is calculated by solving numerically equation
ε(q,ωp) = 0. It is presented in Fig. 5. At small q � μ/v the
spectrum is ωp(q) ∼ √

q in agreement with Refs. 22 and 40.

FIG. 5. (Color online) Plasmon spectrum ωp(q) of graphene for
different values of the chemical potential μ. Thin strait lines indicate
the boundaries related to one-particle excitations:21 for ω < vq the
damping Im �0(q,ω) �= 0 due to intraband transitions, whereas for
ω > 2μ − qv due to interband ones.

As we see from Fig. 5, at larger q the plasmon dispersion is
linear with q.

It should be noted that in our calculation the plasmon spec-
trum is linear at μ → 0, which corresponds to the temperature
T = 0. It is known41,42 that for T �= 0, the plasmon spectrum
is still ωp(q) ∼ √

q if q � max{μ,T }/v.
As we demonstrated in Sec. II, the energy spectrum of low-

energy excitations in graphene under the periodic perturbation
can be described by an effective Hamiltonian Eq. (35). After
some unitary transformation T , this Hamiltonian can be
reduced to the form similar to nonperturbed graphene,

T −1H̃T = ṽxσxkx + ṽyσyky, (54)

with renormalized values of electron velocity. For example, in
the case of longitudinal standing wave, we have T = e−iπσy/4,
ṽx = v, and ṽy = 2v|ζ |, with ζ defined by Eq. (40).

The polarization operator Re �(q,ω) in the periodic field
can be found using the same Eq. (53) after scaling transforma-
tion ki = (v/ṽi)k̃i and qi = (v/ṽi)q̃i . Then we find

Re �(q̃,ω) = v2

ṽx ṽy

Re �0(q̃,ω). (55)

Since the renormalization of electron velocities is different for
longitudinal and transversal waves, the plasmon spectrum is
different in these cases, too.

As shown before, the plasmon spectrum at q → 0 is
proportional to

√
q. It corresponds to Re �0(q,ω) ∼ q2/ω2.

Then the scaling transformation presented above does not
change the polarization operator at q → 0. Thus, the variation
of electron velocity does not affect the plasmon spectrum at
small q.

In Fig. 6 we present the results of numerical calculation
of the plasmon spectrum for different values of renormalized
velocity ṽ/v. It corresponds, e.g., to the presence of periodic
field Ay(x). This figure demonstrates that only the linear part
of the spectrum can be strongly affected by the periodic field.
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FIG. 6. (Color online) Plasmon spectrum ωp(q) of graphene
under periodic perturbation for different values of the electron
velocity (without anisotropy like in the case of periodic vector
potential). Here the chemical potential μ = 10 meV.

In the case of longitudinal wave and in the limit of q → 0
we obtain

Re �(q̃,ω) � C(ω)

(
vq2

x

ṽy

+ ṽq2
y

v

)
. (56)

It leads to the anisotropy of plasmonic spectrum.

V. ROLE OF INTERVALLEY TRANSITIONS

It should be pointed out that our consideration of the
plasmonic spectrum cannot be extended to q of the order
of the vector of inverse lattice. The point is that when
one starts from the tight-binding approximation to describe
the electronic structure of graphene, the Hamiltonian of the
Coulomb interaction has the following form (index σ labels
sublattices A and B):

Hint =
∑

Rσ R′
σ ′

c
†
Rσ

cRσ
u0(Rσ − R′

σ ′) c
†
R′

σ ′
cR′

σ ′

=
∑

kk′qσσ ′
c
†
kσ ck−q,σ u0(q) c

†
k′σ ′ck′+q,σ ′ , (57)

where k and k′ are any points in the Brillouin zone. Consider-
ing the states near the Dirac points K and K′ we can present

Eq. (57) in a different form:

Hint =
∑

kk′qσσ ′ij

[c†kσ ick−q,σ i u0(q) c
†
k′σ ′j ck′+q,σ ′j

+ c
†
kσ ick−q,σj u0(q − Q) c

†
k′σ ′j ck′+q,σ ′i], (58)

where i,j labels the valleys, k and k′ are measured from the
corresponding Dirac points, and Q is the vector between the
points K and K′. This expression shows that for plasmon
excitations with momentum of the order of Q, intervalley
transitions should be taken into account, as was pointed out in
Ref. 23.

VI. CONCLUSION

We considered the variation of electron energy spectrum
near the Dirac point in graphene under periodic perturbation
related to the scalar and vector gauge fields, which can be
generated by the periodic deformations. The possible source
of such deformation fields is a periodic strain wave, like in
the case of the ultrasonic wave in solid. We found that in
the general case with both V �= 0 and A �= 0 there exists a
solution for the renormalized electron velocity, corresponding
to the anisotropy of the spectrum. The problem substantially
simplifies in some particular cases. Namely, for pure longi-
tudinal and pure transverse periodic excitations the solutions
have simple form.

We also considered the screening of the scalar potential
and found that it is strongly suppressed, especially at small
q. It means that the main perturbation affecting the electron
velocity is the vector potential A.

We calculated the plasmon spectrum of collective exci-
tations in graphene in the presence of periodic excitations.
We found that the plasmon spectrum can be strongly affected
by the periodic field. For the fields created by longitudinal
acoustic wave, one appears to be the anisotropy of the plasmon
spectrum.
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