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Effective field theory of interacting π electrons
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We develop a π -electron effective field theory (π -EFT) wherein the two-body Hamiltonian for a π -electron
system is expressed in terms of three effective parameters: the π -orbital quadrupole moment, the on-site repulsion,
and a dielectric constant. As a first application of this π -EFT, we develop a model of screening in molecular
junctions based on image multipole moments, and use this to investigate the reduction of the HOMO-LUMO
gap of benzene. Beyond this, we also use π -EFT to calculate the differential conductance spectrum of the
prototypical benzenedithiol-Au single-molecule junction and the π -electron contribution to the van der Waals
interaction between benzene and a metallic electrode.
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I. INTRODUCTION

Owing to the profound versatility of the carbon-carbon
bond, organic molecules form the basis for a myriad of
potential nanotechnology applications. Many of these make
use of the ability of conjugated organic molecules to conduct
electricity, in which case the system of delocalized π electrons
plays a role analogous to that of the conduction band in
a conventional semiconductor. In such devices, the most
important degrees of freedom from a technological perspective
are those associated with these current-carrying π electrons.

The main motivation of the present work is to derive a
model Hamiltonian for π -electron systems to facilitate the
study of many-body effects on transport through molecular
heterojunctions. The standard paradigm for molecular junction
transport calculations involves local or semilocal approxi-
mations to density functional theory (DFT) combined with
nonequilibrium Green’s functions (NEGF). This DFT-NEGF
approach1 has tremendous advantages in terms of compu-
tational efficiency and chemical realism. However, it has
notorious difficulties describing the energetics most relevant
for electron transport, namely the energy level alignment
between molecule and metal electrodes, and the fundamental
(or HOMO-LUMO) gap. Some possible underlying reasons
for this are (i) the failure to include nonlocal correlations
responsible for screening of intramolecular interactions by
nearby metal electrodes,2,3 (ii) self-interaction error,4–7 and
(iii) omission of the derivative discontinuity8,9 needed to
describe the quantization of the molecular charge within the
junction.10 Self-consistent many-body perturbation theory11 is
able to overcome hurdles (i) and (ii), but still leaves (iii) as an
open problem.

An alternative approach is to formulate a model including
only the degrees of freedom essential to describing the
π -electron dynamics, thereby reducing the overhead asso-
ciated with an exact treatment of interactions within the
junction. Electron transport can then be treated using many-
body Green’s function techniques,12,13 the master equation
approach,14–18 or quantum impurity solvers.19 This procedure
begins with the observation that processes in systems of π

electrons take place at characteristic length, energy, and time

scales all ultimately dictated by the strength of the π -electron
bond. Intuitively, one expects that only degrees of freedom
with scales comparable to these need to be explicitly included.
Semiempirical models based on this notion have been in use
for over fifty years,20–23 and work to improve their accuracy
is ongoing.24–26 However, since these are based on ad hoc
parametrizations22,24–27 of interparticle Coulomb interactions
that do not satisfy Maxwell’s equations, it is difficult to extend
such techniques to include effects such as the screening of
intramolecular interactions by the electrodes in molecular
junctions.

In contrast to this, effective field theory (EFT) provides
a concise, systematic method of constructing a π -electron
Hamiltonian starting from first principles by performing an
expansion in a small parameter and then imposing symmetry
constraints. The result contains a few physically meaningful
parameters, which are then renormalized to include the aggre-
gate effect of the degrees of freedom not explicitly retained.
In this article we proceed along these lines, first expanding the
full electronic Hamiltonian of a conjugated organic molecule
in a basis of atomic orbitals and then dropping terms involving
energies far from the π -electron bond energy.

Imposing symmetry constraints and performing an expan-
sion in powers of the interatomic bond length then allows us
to construct an effective Hamiltonian for the π electrons in a
conjugated organic molecule that accounts for the effects of
σ electrons virtually.28 As an example of this, we consider
the particular case of gas-phase benzene, for which we
formulate an effective Hamiltonian with only four adjustable
parameters: the on-site repulsion U , the nearest-neighbor
hopping matrix element t , a dielectric constant ε, and the
π -electron quadrupole moment Q. In principle, these could
then be renormalized ab initio, e.g., by using perturbation
theory to freeze out degrees of freedom far from the π -electron
energy scale; however, since this is tedious and would not
enhance the predictive power of our model, we instead fit the
parameters directly to experiment.

Next, we show how screening from metallic electrodes
can be incorporated into this scheme without introducing
additional parameters by considering the multipole moments
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of image charge distributions. We then use this method of
screening to calculate the screened HOMO-LUMO gap of
benzene near a metallic electrode, as well as to formulate
a realistic model of a gold-benzenedithiol-gold junction,
including effects arising from the presence of the thiol side
groups. The differential conductance spectrum of the junction
is calculated as a function of the gate and bias voltages in the
experimentally relevant regime,30 exhibiting the characteristic
diamond-shaped features12 indicative of quantized charge
on the molecule within the junction. Finally, we also use
this π -electron effective field theory (π -EFT) to compute
the π -electron contribution to the van der Waals interaction
between benzene and a metallic electrode.

II. BARE HAMILTONIAN

Using the Born-Oppenheimer approximation, the one-body
term in the electronic Hamiltonian for an isolated molecule can
be written as

H (1) =
∑

σ

∫
d3x ψ†

σ (�x)

(−h̄2

2m
∇2 + V

)
ψσ (�x), (1)

where V is the interaction between the electrons and the atomic
nuclei. The operator that creates an electron with spin σ in the
nth element of a basis of atomic orbitals {φn} can be expressed
as

d†
nσ =

∫
d3x φn(�x)ψ†

σ (�x).

Multiplying this by the inverse of the overlap matrix Snm =
〈φn|φm〉 and summing over m implies∑

m

d†
nσ S−1

nmφ∗
m(�x) =

∫
d3x ′ ∑

m

φn(�x ′)S−1
nmφ∗

m(�x)ψ†
σ (�x ′)

= ψ†
σ (x), (2)

where we have made use of the completeness relation for a
nonorthogonal basis:31∑

nm

φn(�x ′)S−1
nmφ∗

m(�x) = δ(�x − �x ′).

Combining Eqs. (1) and (2) then gives

H (1) =
∑
nmσ

Hnmd†
nσ dmσ , (3)

where

H (1)
nm =

∫
d3x φ∗

n(�x)

(−h̄2

2m
∇2 + V

)
φm(�x) (4)

and

Hnm =
∑
kl

S−1
nk H

(1)
kl

(
S−1

ml

)∗
. (5)

If we keep only nearest-neighbor terms this reduces to the
Hückel Hamiltonian

H (1) =
∑

n

εnd
†
nσ dnσ −

∑
〈n,m〉,σ

tnmd†
nσ dmσ ,

where tnm = H(1)
nm and εn = H(1)

nn .

Similarly, the two-body term in the electronic Hamiltonian
can be written as

H (2) = 1

2

∑
σσ ′

∫
d3x1d

3x2 ψ†
σ (�x1)ψ†

σ ′(�x2)

× e2

|�x1 − �x2|ψσ ′(�x2)ψσ (�x1),

which, in terms of the atomic orbital basis, is equivalent to

H (2) = 1

2

∑
nmlkσσ ′

Unmlkd
†
nσ d

†
mσ ′dlσ ′dkσ , (6)

where

Unmkl =
∫

d3x1d
3x2 φ∗

n(�x1)φ∗
m(�x2)

e2

|�x1 − �x2|φk(�x2)φl(�x1)

and

Unmkl =
∑
opqr

S−1
no S−1

mpUopqr

(
S−1

kq

)∗(
S−1

lr

)∗
. (7)

Together, Eqs. (3)–(5) and (6)–(7) give the full electronic
Hamiltonian from first principles,

H = H (1) + H (2),

but do so in terms of a basis that is impractically large
for use within existing many-body techniques. To overcome
this difficulty, in the next section we formulate an effective
Hamiltonian in a reduced basis, explicitly retaining only
the degrees of freedom necessary to describe the π -electron
dynamics.

III. EFFECTIVE HAMILTONIAN

The first step in constructing the effective Hamiltonian is
culling elements of the basis that lie far from the energy scale
of interest. To this end, we first exclude atomic orbitals that
do not participate in chemical bonding (those corresponding
to core or excited electrons), which, in a π -electron system,
leaves an effective s orbital and three effective p orbitals at
each atom. The former hybridize with the effective px and
py orbitals giving rise to three sp2 hybrids that form the σ

bonds between the atoms. The remaining effective pz orbitals,
which, for a planar molecule, cannot hybridize with any of the
σ electrons without breaking inversion symmetry, are occupied
by one electron on each atom and form π bonds with weaker
binding energies. Because of this energy difference we also
omit the atomic orbitals participating in the σ bonds, though
this approximation could be relaxed at the expense of a larger
basis.

The effective Hamiltonian for the remaining effective p

orbitals can then be determined using Eqs. (3) through (7) if
the effective orbitals are known. In principle, these could be
calculated directly, e.g., by using perturbation theory to freeze
out the degrees of freedom far from the π -electron energy
scale; however, as noted previously we find it more practical
to parametrize these expressions by imposing symmetry
constraints.

To do this, we work initially in the asymptotic limit where
the interatomic bond length is large compared to the size of the
effective orbitals. This condition implies that matrix elements
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Unmkl with n �= l or m �= k and overlap integrals Snm with n �=
m are exponentially small, allowing us to reduce the interaction
matrix [Eq. (7)] to

Unmkl = Unmkl = δnlδmk

∫
d3x1d

3x2
e2|φn(�x1)|2|φm(�x2)|2

|�x1 − �x2|
≡ δnlδmkUnm, (8)

where φn are now effective instead of bare orbitals. Although it
is known22 that the terms neglected are not a priori negligible
at typical interatomic distances, it has been suggested that this
approximation can be justified by the use of orthogonalized
orbitals,32 and it has been explicitly shown33 that this is
an accurate approximation for π -conjugated systems. Here
we offer a simpler perspective more consistent with the
spirit of EFT, namely that the neglected terms are accounted
for virtually when the parameters in the Hamiltonian are
renormalized. We also note that Eq. (8) is equivalent to
the “neglect of differential overlap approximation” that has
already been used extensively elsewhere, but that in the
context of EFT it is simply the requirement that the effective
Hamiltonian be local. However, we note here that in order
to extend the present work to the case where multiple orbitals
(e.g., both σ and π ) are centered on the same atom, it would be
necessary to include the same-site interaction matrix elements
as additional parameters.

Expanding Eq. (8) in powers of the interatomic bond length
yields a standard electrostatic multipole expansion, and, if we
assume the effective p orbitals possess azimuthal and inversion
symmetry, Unm can be parametrized up to the quadrupole-
quadrupole interaction in terms of the on-site repulsion Unn

and the zz component of the quadrupole moment Qn associated
with each orbital, as well as a dielectric constant ε included to
account for the polarizability of the σ and core electrons.

Explicitly, this gives

Unm = Unnδnm + (1 − δnm)
(
UMM

nm + UQM
nm + UQM

mn + UQQ
nm

)
+O(r−6), (9)

where UMM is the monopole-monopole interaction, UQM

is the quadrupole-monopole interaction, and UQQ is the
quadrupole-quadrupole interaction. For two orbitals with
arbitrary quadrupole moments Q

ij
n and Qkl

m separated by a
displacement �r , the expressions for these are

UMM
nm = e2

εr
, (10)

UQM
nm = −e

2εr3

∑
ij

Qij
mr̂i r̂j , (11)

UQM
mn = −e

2εr3

∑
ij

Qij
n r̂i r̂j , (12)

UQQ
nm = 1

12εr5

∑
ijkl

Qij
n Qkl

mWijkl, (13)

where

Wijkl = δliδkj + δkiδlj − 5r−2(rkδlirj + rkriδlj

+ δkirj rl + riδkj rl + rkrlδij ) + 35r−4rirj rlrk

is a rank-four tensor that characterizes the interaction of two
quadrupoles.34 Altogether, this provides an expression for

the interaction energy that is correct up to fifth order in the
interatomic distance.

To further reduce the number of free parameters it is
convenient to simplify the effective Hamiltonian by requiring
it to satisfy particle-hole symmetry. Although this is not
strictly necessary within the context of π -EFT, the success
of Pariser-Parr-Pople type semiempirical models—which im-
plicitly assume particle-hole symmetry—suggests that it is a
good approximation to do so. Taking this to be the case, Eq. (4)
then gives for the one-body Hamiltonian

H (1)
nm =

∫
d3x φ∗

n(�x)

(
−h̄2

2m
∇2 +

∑
l

Vl(�x)

)
φm(�x),

where Vl(�x) is the effective potential due to the ionic hole at
site l:

Vl(�x) =
∫

d3x ′ −e2|φl(�x ′)|2
ε|�x − �x ′| .

Using Eq. (8) then gives

H (1)
nm = δnm

(
ε(at)
n −

∑
l �=n

Unl

)
+ (1 − δnm)tnm,

where we have defined the atomic on-site energy as

ε(at)
n =

∫
d3x φ∗

n(�x)

(−h̄2

2m
∇2 + Vn(�x)

)
φn(�x).

Defining ρn = ∑
σ d

†
nσ dnσ and rearranging the two-body term

then yields

H (1) + H (2) =
∑

n

ε(at)
n ρn −

∑
〈n,m〉,σ

tnmd†
nσ dmσ

+ 1

2

∑
nm

Unm(ρn − 1)(ρm − 1)

+ 1

2

∑
n

Unnρn − 1

2

∑
nm

Unm.

Finally, adding the mutual repulsion of the ionic cores
1
2

∑
n�=m Unm gives the full effective molecular Hamiltonian:

H =
∑

n

ε(at)
n ρn −

∑
〈n,m〉,σ

tnmd†
nσ dmσ

+ 1

2

∑
nm

Unmqnqm + 1

2

∑
n

Unnqn,

where we have introduced the effective charge operator defined
by qn = ρn − 1. In conjunction with Eq. (9), this expresses
the effective Hamiltonian for an arbitrary π -electron system
in terms of the tight-binding matrix tnm, the on-site repulsion
Unn, a dielectric constant ε, and the π -electron quadrupole
moment Qn.

In the remainder of this paper we focus on benzene as a
benchmark system, in which case the Hamiltonian reduces to

H = μ
∑

n

ρn − t
∑

〈n,m〉,σ
d†

nσ dmσ + 1

2

∑
nm

Unmqnqm, (14)

where Unn = U and Qzz
n = −Qxx

n /2 = −Q
yy
n /2 ≡ Q by sym-

metry. The molecular chemical potential μ is fixed by the

115403-3



J. D. BARR, C. A. STAFFORD, AND J. P. BERGFIELD PHYSICAL REVIEW B 86, 115403 (2012)

experimental ionization energy35–39 and electron affinity,40

μ = IE − EA

2
= −4.06 eV,

whereas the four other parameters must be renormalized by
fitting to experiment, which is the subject of the following
section.

IV. RENORMALIZATION: FITTING THE GAS-PHASE
SPECTRUM

We have renormalized the parameters in our effective
Hamiltonian for gas-phase benzene by fitting to experimental
values that should be accurately reproduced within a π -
electron-only model. In particular, we have simultaneously
optimized the theoretical predictions of (1) the vertical ioniza-
tion energy, (2) the vertical electron affinity, and (3) the six
lowest singlet and triplet excitations of the neutral molecule.

This was done by exactly diagonalizing Eq. (14) with the
interatomic bond length45 fixed at 1.40 Å. In particular, using
the OQNLP algorithm46 for nonlinear global optimization we
minimized the rms relative error of our predictions for the
quantities in the first column of Table I. The results of this
procedure, which converged to the same solution regardless of
initial conditions, are summarized in column two of the same
table. The optimal parametrization for the π -EFT was found to
be t = 2.70 eV, U = 9.69 eV, Q = −0.65 eÅ2, and ε = 1.56
with a rms relative error of 4.2 percent.

Also appearing in Table I are the predictions of a recent
Pariser-Parr-Pople type semiempirical model26 as well as
those of the original Ohno parametrization.22,27 Compared to
the recent PPP model, π -EFT fits the optical spectrum of
gas-phase benzene to a similar degree of accuracy and gives
better results for the ionization energy and electron affinity.
Moreover, the parameters common to both models have
comparable values, namely those given above for our model
and those of the model of Castleton et al.26 (t = 2.64 eV, U =
8.9 eV, and ε = 1.28). The π -EFT on-site repulsion is also in
qualitative agreement with recent RPA-based calculations of
the effective Coulomb repulsion in graphene.47

Although our effective quadrupole moment has no direct
counterpart in phenomenological models, its value can be

FIG. 1. (Color online) Two isosurfaces of the average π -electron
density 〈ψ †(�x)ψ(�x)〉 depict the electronic structure of gas-phase
benzene within π -EFT.

compared to the bare quadrupole moment of a hydrogenic
2pz orbital, which is given by

Qzz = −24e(a0/Z)2, (15)

where a0 is the Bohr radius and +Ze is the nuclear charge.
Using this, we find that our π -orbital quadrupole moment
corresponds to a hydrogenic p orbital bound by an effective
charge of +3.22e, or, equivalently, with an effective Bohr
radius of 0.16 Å. This is consistent with the expectation that the
sp2 orbitals forming the σ bonds provide only weak screening
of the atomic core, which has a net charge of +4e. For the
purpose of visualization, effective hydrogenic orbitals can also
be used to render the average π -electron density 〈ψ†(�x)ψ(�x)〉,
as shown in Fig. 1.

V. SCREENING BY METALLIC ELECTRODES:
THE IMAGE MULTIPOLE METHOD

In this section, we extend the preceding model to include
the effect of screening by metallic electrodes, which for
simplicity are modeled as planar or spherical conductors.
In the regime where the characteristic response time of the
electrons in the electrode is much shorter than the timescale of
the π -electron dynamics, this can be done using the method

TABLE I. Experimental data for the vertical ionization energy (Refs. 35–39), vertical electron affinity (Ref. 40), and optical spectrum
(Refs. 41–44) of gas-phase benzene compared to the predictions of π -EFT, a recent PPP-type model (Ref. 26), and the Ohno parametrization
(Refs. 22 and 27). The best-fit parametrization of our π -EFT was determined to be t = 2.70 eV, U = 9.69 eV, Q = −0.65 eÅ2, and ε = 1.56.

PPP PPP
Exp.35–44 π -EFT (Castleton et al.26) (Ohno22,27)

Ionization Energy (eV) 9.23 9.26 9.05 9.78

Electron Affinity (eV) −1.12 −1.14 −0.93 −1.67

Neutral Spectrum (eV)
Singlet 4.90 4.87 4.76 4.23

6.21 6.08 6.30 5.52
6.93 7.59 6.93 6.81

Triplet 3.93 4.10 3.99 3.52
4.75 4.92 4.74 4.32
5.60 6.17 5.84 5.58

rms Relative Error (%) N/A 4.2 6.0 19.0

115403-4



EFFECTIVE FIELD THEORY OF INTERACTING π . . . PHYSICAL REVIEW B 86, 115403 (2012)

of images via a straightforward extension of Eq. (9). This
is expected to be the case for conjugated organic molecules
in the vicinity of gold electrodes, in which case the metallic
plasma frequency48 ωp ≈ 9 eV/h̄ is large compared to the
frequency scale of π excitations ωπ ≈ 2t/h̄ ≈ 5 eV/h̄. The
leading order correction to the metallic dielectric function,
given by the GW approximation, then goes as (ωπ/ωp)2 ≈ 0.3.
Explicit calculations using the GW approach also suggest that
corrections to the image charge method tend to be small for
organic molecules adsorbed on a metallic surface.2

In the following subsections, the multipole moments of
the image charge distribution generated by an orbital near
planar and spherical conductors are described. To determine
the screened interaction matrix, interactions between these
and the orbital multipole moments are included in Unm using
Eqs. (10) through (13). Overall, the two-body Hamiltonian
should give the energy required to prepare the molecular
charge distribution by bringing each of the electrons in from
infinity with the electrodes maintained at fixed electrostatic
potentials. This can be ensured using a number of different
counting schemes, but we take one that ensures a symmetric
interaction matrix, namely

Ũnm = Unm + δnmU (i)
nn + 1

2 (1 − δnm)
(
U (i)

nm + U (i)
mn

)
,

where Unm is the unscreened interaction matrix, U (i)
nm is the

interaction between the nth orbital and the image of the mth
orbital, and Ũnm is the screened interaction matrix. Since the
image multipole moments of an orbital change as it is brought
in from infinity, one might expect a prefactor of 1/2 in the
second term of the preceding equation; however, this is already
present in the Hamiltonian itself.

When multiple electrodes are present, the image of an or-
bital in one conductor produces images in the other electrodes,
resulting in an effect reminiscent of a hall of mirrors. We deal
with this by including these “higher order” multipole moments
iteratively until the difference between successive approxi-
mations of Ũnm drops below a predetermined threshold. In
practice, this procedure converged rapidly.

Within the foregoing scheme, the case where one or more
electrodes are maintained at a fixed potential other than zero
can be treated straightforwardly by including image charges
that contribute to the one-body Hamiltonian rather than to Ũnm.
For example, a spherical contact with radius R at potential
V can be treated using a hypothetical point charge q = V R

at the center of the electrode. This technique is especially
useful for transport calculations in the context of molecular
junctions, as it provides the full junction Hamiltonian at finite
bias, alleviating the need for the phenomenological models of
capacitive lead-molecule coupling that have been relied on in
the past.12

A. Screening by a planar electrode

In classical electrostatics, the image of a charge distribution
near a planar conductor is merely the mirror image of the
charge distribution itself. Thus an orbital with monopole
moment q and quadrupole moment Qij located a distance r

away from a conducting plane produces an image orbital inside
the conductor located at depth r with multipole moments q̃ =
−q and Q̃ij = −∑

kl TikTjlQ
kl , where Tik is a transformation

matrix representing a reflection about a plane parallel to the
surface of the conductor, i.e.,

Tik = δik − 2n̂i n̂k, (16)

where n̂ is the unit vector normal to the planar surface.

B. Screening by a spherical electrode

An orbital with monopole moment q and quadrupole
moment Qij located a distance r from the center of a spherical
electrode with radius R induces an image distribution at
r̃ = R2/r with monopole and quadrupole moments

q̃ = −q
R

r
− R

2r3

∑
ij

Qij r̂i r̂j

and

Q̃ij = −
(

R

r

)5 ∑
kl

TikTjlQ
kl,

respectively, where Tik is a transformation matrix representing
a reflection about the plane normal to the vector r̂ , similar to
Eq. (16).

Thus the orbital quadrupole moment induces a higher order
image monopole moment, as well as an image of itself that is
deformed and reflected. An image dipole is also generated, but
its interaction with the orbital charge distribution is of order
r−7 and so we have neglected it here.

VI. SCREENING OF THE HOMO-LUMO GAP

Although π -EFT could be used to study a wide variety
of phenomena involving conjugated organic molecules, our
primary motivation in formulating it has been to facilitate
realistic many-body calculations of transport phenomena in
molecular junctions. In particular, while recent semiempirical
models26 reproduce the low-lying excitations of gas-phase
benzene, their predictions of quantities relevant to transport,
namely the fundamental (or HOMO-LUMO) gap and the
optical excitations of the ionized molecule, are less accu-
rate. Moreover, in a molecular junction these quantities are
renormalized by screening from metallic electrodes as well
as the presence of linker groups not explicitly included in the
molecular Hilbert space.

Within π -EFT these effects can be clearly seen: Consider
the spectral function of gas-phase benzene, which we evaluate
at the many-body level using the nonequilibrium Green’s
function formalism as described in the Appendix. Figure 2
shows this quantity, along with experimental values for the
vertical ionization energy (9.23 eV), vertical electron affinity
(−1.12 eV), and the first optical excitation of the cation
(3.04 eV). As a guide to the eye, the spectrum has been
broadened artificially using a broadening matrix of �nm =
(0.2 eV)δnm. As an aside, we note here that the close agreement
between the experimental values and the maxima of the
spectral function suggests our model is accurate at this energy
scale. In particular, the accuracy of the theoretical value for
the lowest optical excitation of the cation is noteworthy, as this
quantity was not fit during the renormalization procedure but
rather represents a prediction of π -EFT.
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FIG. 2. (Color online) The spectral function of gas-phase benzene
broadened artificially as a guide to the eye. The dashed orange lines
are fixed by (left to right) the lowest lying optical excitation of the
molecular cation (Refs. 36–39, and 49), the vertical ionization energy
of the neutral molecule (Refs. 35–39), and the vertical electron affinity
of the neutral molecule (Ref. 40).

Screening effects become evident when the molecule is
brought into proximity with the surface of a planar electrode.
Figure 3 shows the reduction of the ionization energy and
electron affinity as a function of electrode-molecule distance in
this scenario, and the HOMO-LUMO gap, given by IE − EA,
is reduced commensurately. These results, based on the image
multipole method, are also consistent with recent GW-based
investigations of screening.2,3

We also considered the prototypical benzene-gold junction,
consisting of benzene linked to two gold electrodes via thiol
side groups. Although this junction can occur with a wide
variety of different geometries, in this example we have taken
the configuration shown in Fig. 4. The electrodes are modeled
as metallic spheres with radii of 0.5 nm, and the partially
ionic character of the gold-sulfur bond has been accounted
for by placing point charges of −0.67e at the locations of
the sulfur atoms. The latter value was determined in conjunc-
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FIG. 3. (Color online) The ionization energy and electron affinity
of benzene oriented parallel to the surface of a screening plane, shown
as a function of distance.

FIG. 4. (Color online) The geometry (Refs. 52 and 53) for the
benzenedithiol junction associated with the spectral function shown
in Fig. 5. The electrodes have been placed so that the screening
surface lies one covalent radius (Ref. 54) beyond the position of
the outermost gold nuclei, a convention that has been investigated
elsewhere (Ref. 55) in the context of atom-surface van der Waals
interactions.

tion with the tunneling-width matrix (�11 = �44 = 0.44 eV)
via a simultaneous fit of the experimental thermopower50

and conductance,51 using the techniques described in the
Appendix. The upper panel of Fig. 5 shows the spectral
function for this junction in the simple case where the
tunneling-width matrix is the same as in Fig. 2, a choice which
simplifies comparison of the two cases.

FIG. 5. (Color online) Top: The spectral function of the Au-1,4-
benzenedithiol-Au junction depicted in Fig. 4 at room temperature,
together with the gas-phase density of states from Fig. 2. To facilitate
comparison, the same broadening has been used in both cases.
The dashed orange line at −5.1 eV indicates the position of the
experimental chemical potential of clean gold (Ref. 56). Bottom: The
spectral function of the same junction with planar instead of spherical
electrodes.
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Screening from the electrodes reduces the HOMO-LUMO
gap by 12.5 percent as compared to the gas phase, and the
dipole formed by the gold-sulfur bond shifts the chemical
potential of the molecule up by 1.4 eV. For comparison,
we have also calculated the spectral function of the same
junction, but with the electrodes modeled as planes (Fig. 5,
bottom), in which case the screening is maximal and the
HOMO-LUMO gap is reduced by 19 percent. These results
are qualitatively consistent with GW-based investigations of
screening effects wherein a molecule is adsorbed on a metallic
surface,2,3 as well as with the recent state-of-the-art GW
calculations for benzenedithiol-Au junctions.11 In comparison
to Ref. 11, the HOMO and LUMO resonances in Fig. 5 are
both shifted slightly upward in energy, but the gap between
them is comparable. It should be pointed out that the upward
shifts of HOMO and LUMO in our model are due in part to
the dipole moments of the S-Au bonds, which are treated
phenomenologically in our model, while the screening of
the HOMO-LUMO gap is a fundamental effect described
by the image multipole method. As compared to models of
screening that treat only the π -orbital monopole moment,57

the reduction of the HOMO-LUMO gap predicted herein
is somewhat smaller, presumably owing to the tendency of
the monopole-quadrupole and quadrupole-quadrupole inter-
actions to soften short-range Coulomb interactions. For both
of the electrode geometries we considered, a splitting of the
twofold-degenerate HOMO and LUMO resonances can also be
seen, which arises from the interaction between the π electrons
and the dipoles associated with the partly ionic gold-sulfur
bonds.

We also note that, as compared to DFT-based treatments
of similar junctions,58 the HOMO-LUMO gap seen in Fig. 5
is dramatically larger, consistent with the observation59 that
correlation effects beyond the scope of local DFT must be
included to accurately model transport through this junction.

VII. DIFFERENTIAL CONDUCTANCE SPECTRUM

The advantages of a computational approach such as π -EFT
combined with many-body NEGF are perhaps most evident in
describing transport through a molecular junction far from
equilibrium.30,60–62 For then, not only must the equilibrium
energetics of electron addition and removal be described
correctly, but the dependence of both processes on both gate

and bias voltages must be correct, a significant challenge
for conventional approaches.10 To illustrate the advantages
of π -EFT in this context, we have calculated the differential
conductance spectrum of a Au-1,4-benzenedithiol-Au junc-
tion. Figure 6 shows the absolute value of the differential
conductance on a logarithmic scale, calculated as a function of
bias voltage and the electrostatic potential on a spherical gate
electrode of radius 3 Å centered 5 Å above the benzene ring.
The effective electrostatic lever arm of the gate is 0.21 eV/V.
The junction geometry is otherwise identical to that depicted
in Fig. 4. In Fig. 6, we have used the physical tunneling-width
matrix �11 = �44 = 0.44 eV.

Of particular note are the diamond-shaped features in
the differential conductance spectrum: The charge on the
molecule within the junction is quantized and the differential
conductance is suppressed within the diamond-shaped regions
centered along the horizontal axis due to the phenomenon
of Coulomb blockade.10,12 This is similar to what has been
observed experimentally in junctions based on larger dithi-
olated molecules,60–62 in which case the charging energy is
significantly smaller. To describe this phenomenon within
DFT would require a proper treatment of the derivative
discontinuity8,9 far from equilibrium, for which no theory
currently exists. To the best of our knowledge, charge
quantization effects like these are beyond the scope even of
self-consistent many-body perturbation theory, e.g., as in the
case of the state-of-the-art DFT + GW approach.11

Resonant tunneling through electronic excited states at
large bias and suppression of transport at small bias due to
destructive quantum interference (blue fringes) are also clearly
visible in Fig. 6. This differential conductance spectrum is
similar to that obtained previously12 using a PPP model of the
electronic structure. The main differences are that the sizes of
the Coulomb diamonds are reduced due to screening from the
metal electrodes, and the particle-hole symmetry of the PPP
spectrum is broken by the presence of the S-Au dipoles.

VIII. π -ELECTRON CONTRIBUTION TO THE VAN DER
WAALS INTERACTION

As a final application of the image-multipole method, we
consider the π -electron contribution to the van der Waals
interaction between a molecule and a metallic electrode. Ex-
perimentally, such interactions are important when a molecule

Gate (V)

B
ia

s 
(V

)

Absolute differential conductance (G0)
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FIG. 6. (Color online) Differential conductance spectrum of a Au-1,4-benzenedithiol-Au junction at room temperature versus gate and bias
voltages. The junction geometry, including source and drain electrodes, is depicted in Fig. 4; a spherical gate electrode of radius 3 Å (not shown)
is centered 5 Å above the benzene ring. The effective electrostatic lever arm of the gate is 0.21 eV/V. The charge on the molecule within the
junction is quantized within the diamond-shaped regions centered on the horizontal axis due to the phenomenon of Coulomb blockade. Resonant
tunneling through electronic excited states at large bias and suppression of transport at small bias due to destructive quantum interference (blue
fringes) are clearly visible.
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FIG. 7. (Color online) The π -electron contribution to the van
der Waals interaction between benzene and a spherical electrode
with a radius of 10 nm, plotted as a function of the distance from
the conducting surface. At all distances the molecule is oriented
parallel to the surface of the electrode. The dashed green and orange
lines show the expected asymptotic dependence in the near and far
fields, respectively. Inset: The same quantity very near the surface of
the electrode, including a phenomenological (Ref. 67) gold-carbon
hard-core repulsion.

is adsorbed on a metal surface, or in single-molecule junctions
in which a molecule bonds directly to metallic electrodes,
as in the Pt-benzene-Pt junctions investigated recently by
Kiguchi et al.63 Theoretically, the van der Waals interaction
also represents a unique challenge in that it is a true many-body
phenomenon arising from quantum correlations induced by
long-range interactions. As such, it is outside the scope of local
approximations to density functional theory, and modeling van
der Waals interactions using nonlocal functionals is a topic
of ongoing research.64–66 In contrast to this, the preceding
treatment of screening, in conjunction with a full many-body
treatment of the π electrons on the molecule, makes it
possible to calculate the π -electron contribution to the van der
Waals interaction straightforwardly with no extra adjustable
parameters.

In particular, by exactly diagonalizing the few-body molec-
ular Hamiltonian with and without the effects of screening
included in Unm, it is possible to infer the van der Waals
interaction at zero temperature between a molecule and a
metallic electrode by comparing the expectation values of the
Hamiltonian in these two cases:

EvdW = 〈H̃ 〉 − 〈H 〉.
This procedure was carried out at zero temperature for

benzene oriented parallel to the surface of a spherical electrode
over a large range of electrode-molecule distances, and the
results are shown in Fig. 7. When the molecule is near the
surface of the electrode EvdW = −C3

r3 , which is the expected
asymptotic dependence for the van der Waals interaction
between a molecule and a planar conductor. Conversely, when
the molecule is far from the electrode EvdW = −C6

r6 , which
is the usual asymptotic dependence of the van der Waals
interaction as given by the Lennard-Jones potential. A clear
transition between the two regimes can be seen around 10 nm,
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FIG. 8. (Color online) The orientation dependence of the π -
electron contribution to van der Waals interaction between a planar
electrode and a benzene molecule centered 2 nm from the metal
surface. The molecule is initially oriented parallel to the electrode
and then rotated by an angle θ⊥ about the axis perpendicular to the
plane of the molecule, followed by a rotation of θ‖ about an axis
within the plane of the molecule.

the radius of the electrode. In the near-field region the constant
of proportionality predicted by π -EFT is C3 ≈ 1.56 eV Å3.
We also investigated the orientation dependence of the van der
Waals interaction between a planar electrode and a benzene
molecule, as depicted in Fig. 8, which shows a significantly
stronger attractive interaction when the plane of the molecule
is oriented perpendicular to the surface of the electrode.

The van der Waals coefficient C3 is fundamentally related
to the molecular polarizability tensor αij . Thus, for an axially
symmetric molecule such as benzene, a simplified single-
oscillator model can be used to derive semiempirical formulas
relating αij to C3 with the molecule oriented either parallel or
perpendicular to the surface of a planar electrode:68

C
‖
3 ≈ Ed

32
(2α⊥ + 2α‖), (17)

C⊥
3 ≈ Ed

32
(α⊥ + 3α‖). (18)

Here Ed is the energy of the principal dipole-allowed optical
transition, and α‖ and α⊥ are respectively the molecular
polarizabilities parallel and perpendicular to its plane of
symmetry. As an internal consistency check and to demonstrate
that our technique captures the basic physics of the van der
Waals interaction, we have calculated these quantities within
π -EFT (Ed = 7.59 eV, α‖ = 3.24 Å3, and α⊥ = 0.00 Å3),
and used them to deduce C

‖
3 ≈ 1.54 eV·Å3 and C⊥

3 /C
‖
3 = 1.5,

which are in close agreement with the values of C3 obtained
via direct calculation.

Experimentally, α‖ = 12.31 Å3, α⊥ = 6.35 Å3, and Ed =
6.93 eV for benzene, and in this case Eq. (17) gives C

‖
3 ≈

8.08 eV Å3, which is roughly five times larger than that
predicted by π -EFT. This discrepancy can be attributed to
the significant contribution of the σ electrons to the molecular
polarizability, as evidenced by the large experimental value of
α⊥, which arises from σ -π transitions. Consistent with this and
the notion that all of the valence electrons contribute more or
less equally to the molecular polarizability, the angular average
of the π -EFT polarizability, i.e., α⊥+2α‖

3 , is roughly a quarter
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of the same quantity calculated using experimental values.
This underscores the importance of the σ -electron dynamics
in the context of van der Waals interactions, which arise from
the long-range spatial correlation of purely virtual processes.
In contrast to this, the effect of the σ electrons on real π -π
transitions, such as those involved in transport, should be well
described by π -EFT. Moreover, as noted previously, the σ -
electron dynamics can be explicitly included within effective
field theory at the expense of a larger Hilbert space, and we
believe that such a πσ -EFT would accurately reproduce the
full van der Waals interaction between a conjugated molecule
and a metallic electrode.

IX. CONCLUSIONS

We have shown how EFT can be used to provide a
concise derivation of an effective Hamiltonian for π -electron
systems by performing a multipole expansion, imposing
symmetry constraints, and then renormalizing a few adjustable
parameters. In particular, we have optimized the parameters
appearing in an effective Hamiltonian for gas-phase benzene,
Eq. (14), by fitting to experimental data for (1) the vertical
ionization energy, (2) the vertical electron affinity, and (3)
the six lowest singlet and triplet excitations of the neutral
molecule. This procedure yields a fit which is comparable
to or better than traditional PPP models22,26,27 and gives
U = 9.69 eV for the on-site repulsion, t = 2.70 eV for the
nearest-neighbor hopping matrix element, ε = 1.56 eV for
the dielectric constant, and Q = −0.65 eÅ2 for the π -electron
quadrupole moment. These values of U , t , and ε are consistent
with those used in previous π -electron models,26,27,47 while Q

is a new physical parameter in our approach, which takes
the place of the ad hoc functional forms assumed in PPP
models and governs the corrections to 1/r interactions at short
distances.

We have also utilized π -EFT to model the screening
of intramolecular Coulomb interactions by nearby metallic
electrodes. Within our approach, lead-molecule coupling is
treated using a two-step process wherein all long-range
Coulomb interactions are included nonperturbatively before
lead-molecule tunneling is accounted for via Dyson’s equation.
The ability to include finite bias and screening effects via im-
age multipoles—without additional adjustable parameters—
represents a significant advantage of π -EFT over PPP models,
which utilize interactions that do not satisfy Maxwell’s
equations.

In particular, we have shown how π -EFT facilitates a real-
istic description of the prototypical Au-1,4-benzenedithiol-Au
junction, including transport far from equilibrium. The accu-
rate description of ionization potential and electron affinity
as poles of the Green’s function—and their shifts due to
interactions with metal electrodes—sets π -EFT apart from
standard DFT-NEGF approaches, and promises to enable
accurate transport calculations for junctions involving a variety
of conjugated organic molecules. The ability to simultaneously
describe Coulomb blockade and coherent quantum transport
appears to set our approach apart even from state-of-the-art
self-consistent many-body perturbation theory.11 The main
disadvantages of our approach compared to either DFT or
DFT + GW are (i) that certain aspects of the junction are

described only phenomenologically, such as the linker groups
between the molecule and the metal electrodes, and (ii)
that a full diagonalization even of the limited Hilbert space
of the π electrons scales very poorly. Nonetheless, exact
diagonalization of π -EFT should be tractable for conjugated
molecules significantly larger than benzene, such as biphenyl
or triphenyl, and the use of configuration-interaction tech-
niques such as coupled-cluster singles and doubles should
allow its application to still larger molecules. For these
systems, π -EFT provides a framework combining an accurate
treatment of electron correlation with a higher degree of
realism than is present in conventional PPP techniques.
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APPENDIX: MANY-BODY THEORY OF TRANSPORT
IN MOLECULAR JUNCTIONS

Within the nonequilibrium Green’s function approach to
studying transport in molecular junctions, a quantity of central
importance is the retarded Green’s function G of the molecule
coupled to the electrodes. In the energy domain and using
matrix notation, this can be expressed via the Dyson equation
as

G = Gmol + Gmol�G, (A1)

where Gmol is the interacting Green’s function of the molecule
without tunnel coupling to the electrodes, but including long-
range Coulomb interactions between the π electrons and their
image multipole moments in the leads. The self-energy � can
be partitioned into the tunneling self-energy �T associated
with the lead-molecule bonds, and a correction to the Coulomb
self-energy ��C arising from lead-molecule coherence:

� = �T + ��C.

Far from resonance and at room temperature ��C ≈ 0,
and so in the present context we neglect this correction—an
approximation which is justified in detail in Ref. 12. Assuming
the leads can be modeled as Fermi liquids with good screening,
the electron-electron interactions within them can be neglected
and the tunneling self-energy associated with a given electrode
can be expressed as69

�T = Vg(E)V †,

where g(E) is the retarded Green’s function of the lead and Vnk

are the matrix elements coupling the lead and molecule. In the
broadband limit wherein the density of states in the electrodes
varies slowly in the vicinity of the metallic Fermi level, the
self-energy then reduces to a purely imaginary matrix with no
energy dependence:69

�T = − i

2

∑
α

�α. (A2)

Here the tunneling-width matrix �α associated with lead α

given is by

�nσ,mσ = 2πρ(εf )VnV
∗
mδσσ ′,
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where ρ(εf ) is the density of states at the metallic Fermi level,
and Vn is the matrix element between the nth π orbital in
the molecule and the lead states in the vicinity of the Fermi
level. The diagonal elements of this equation are equivalent to
Fermi’s golden rule, with Tr {�α/h̄} giving the rate at which
electrons in lead α are being injected into the molecule.

Aside from the self-energy, the other ingredient needed
to evaluate Eq. (A1) is the Green’s function of the isolated
molecule. This is determined exactly by first finding the
few-body eigenstates {|ν〉} and eigenenergies Eν of the isolated
molecule, and then using these to explicitly evaluate the
molecular Green’s function:12,70

Gmol =
∑
ν,ν ′

[P (ν) + P (ν ′)]C(ν,ν ′)
E − (Eν ′ − Eν) + i0+ . (A3)

Here P (ν) is the statistical occupancy of the νth eigenstate,
given at equilibrium by the grand canonical ensemble, and

Cnσ,mσ ′ (ν,ν ′) = 〈ν|dnσ |ν ′〉〈ν ′|d†
mσ ′ |ν〉

are many-body matrix elements, where, in the present context,
d
†
mσ creates an electron with spin σ in the mth π orbital of the

molecule.
Altogether, Eqs. (A1)–(A3) provide a method for obtaining

the full interacting Green’s function of the molecule coupled to
the electrodes, which may then be used to calculate the various
physical quantities of interest. For example, the spectral

function is given by69

A(E) = −2 ImG,

the trace of which is proportional to the effective single-particle
density of states:

ρ(E) = 1

2π
Tr {A} .

Similarly, the elastic transmission function between two
electrodes can also be obtained from the full molecular Green’s
function via the expression

Tαβ = Tr{�αG�βG†},
where �α and �β are the tunneling-width matrices associated
with leads α and β, respectively. This quantity may then be
used to evaluate the various electronic transport quantities of
interest,71 such as the elastic electrical current

I e
α = −e

h

∑
β

∫
dE Tαβ(fβ − fα)

and elastic thermal current

IQ
α = 1

h

∑
β

∫
dE (E − μα)Tαβ(fβ − fα)

flowing into lead α. Here fα(E) and μα are respectively the
Fermi-Dirac distribution and chemical potential associated
with lead α.
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